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Therefore, the early diagnosis of lung cancer is of great 
significance and can considerably improve lung cancer 
patients’ therapeutic effects and prognosis. In the lung 
cancer screening guidelines, low-dose spiral computed 
tomography (LDCT) is recommended for people with 
high-risk factors worldwide [3]. However, in addition 
to radiation injury, the high false positive rate of LDCT 
will lead to unnecessary invasive examination and over-
diagnosis [4, 5]. Pathological examination is the gold 
standard for lung cancer diagnosis. This technique com-
monly requires the help of surgical approaches such as 
fiber bronchoscopy, image-guided trans-thoracic needle 
aspiration, and thoracoscopy [6]. Additionally, these pro-
cedures are costly, prone to complications, and there is a 
possible need for enough samples [6]. Still, it is unsuitable 

Background
Lung cancer has the highest incidence rate and mortal-
ity among all malignant tumors [1]. As the stage of lung 
cancer progresses, the five-year survival rate gradually 
decreases [2]. In stage IA groups, the rates exceed 90%, 
while in stage IV groups, the rates are less than 10% [2]. 
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Abstract
Background Early screening and detection of lung cancer is essential for the diagnosis and prognosis of the disease. 
In this paper, we investigated the feasibility of serum Raman spectroscopy for rapid lung cancer screening.

Methods Raman spectra were collected from 45 patients with lung cancer, 45 with benign lung lesions, and 45 
healthy volunteers. And then the support vector machine (SVM) algorithm was applied to build a diagnostic model 
for lung cancer. Furthermore, 15 independent individuals were sampled for external validation, including 5 lung 
cancer patients, 5 benign lung lesion patients, and 5 healthy controls.

Results The diagnostic sensitivity, specificity, and accuracy were 91.67%, 92.22%, 90.56% (lung cancer vs. healthy 
control), 92.22%,95.56%,93.33% (benign lung lesion vs. healthy) and 80.00%, 83.33%, 80.83% (lung cancer vs. benign 
lung lesion), repectively. In the independent validation cohort, our model showed that all the samples were classified 
correctly.

Conclusion Therefore, this study demonstrates that the serum Raman spectroscopy analysis technique combined 
with the SVM algorithm has great potential for the noninvasive detection of lung cancer.
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for early lung cancer diagnosis due to the inescapable 
invasiveness and harsh application conditions. Routine 
serum biomarkers are unsatisfactory due to their lower 
sensitivity or specificity [7–9]. Liquid biopsy is not widely 
used in clinical practice due to the uncertainty threshold 
and high testing costs [10]. Thus, a more convenient and 
noninvasive diagnosis tool with high sensitivity and spec-
ificity is needed to reduce mortality rates and burdens on 
the medical system.

Raman spectroscopy is a well-established analyti-
cal technique based on the inelastic scattering gener-
ated by rotational and vibrational modes of molecular 
bonds [11]. Compared with routine diagnostic methods, 
Raman spectroscopic techniques have the advantages 
of being fast, accurate, and non-destructive [12]. Serum 
is mainly composed of water, carbohydrates, proteins, 
phospholipids and polysaccharides, showing a unique 
Raman fingerprint profile. Metabolism of malignant cells 
affect the composition and content change of serum [13, 
14]. Raman-based methods can effectively detect minor 
changes that occur during cancer development [15]. 
Meanwhile, serum samples are easier to obtain and the 
Raman detection system has the advantages of no sample 
preparation and non-contact measurements. Effective-
ness and safety of this detection method in the previous 
study about the COVID-19 has been confirmed [16]. 
Furthermore, a review about the potential of Raman 
spectroscopy to analyze liquid plasma/serum shows that 
liquid form has potential advantages over the infrared 
absorption analysis of dry droplet form and will prove 
to be highly beneficial to clinicians for rapid screening 
in the future [17]. More studies have found that Raman 
spectroscopy has diagnostic potential in a variety of 
tumors [18], while few original clinical trials utilized 
serum Raman spectroscopy to diagnose lung cancer. 
Therefore, investigations on the performance of serum 
Raman spectroscopy in diagnosing lung cancer are of 
great significance.

Due to the complexity and heterogeneity of Raman 
spectrum data, machine learning methods are necessary 
for deep data mining. SVM is a machine learning algo-
rithm that classifies data based on supervised learning, 
particularly suitable for small sample problems and high 
latitude pattern recognition [19, 20]. SVM is an effective 
classifier because it can be used for both linearly separa-
ble and linearly inseparable data sets [21]. Additionally, 
the SVM algorithm is applied most frequently in classi-
fication and prediction methods with high accuracy for 
disease risk prediction [22]. Notably, the combination of 
SVM and Raman spectroscopy has previously been used 
to distinguish patients with hysteromyoma and cervical 
cancer from healthy controls and the results were satis-
factory [23].

In this study, we detected the serum from lung cancer 
patients, benign lung lesion patients, and healthy con-
trols using Raman spectroscopy to explore the screening 
value of Raman spectroscopy. Furthermore, a support 
vector machine (SVM) was used for model building and 
training.

Methods
Patients
A total of 90 patients with lung-occupying lesions were 
recruited in this project. Patients were selected and 
enrolled upon confirmation of clinical or pathological 
diagnosis. All enrolled participants at the time of path-
ological or clinical diagnosis of benign lung lesion or 
lung cancer reported no history of malignancy or prior 
treatment, such as chemotherapy or radiotherapy. The 
lung cancer group included patients with a pathological 
diagnosis of lung cancer. The stages were determined in 
accordance with the 8th edition of tumor node metasta-
sis (TNM) classification [24] for lung cancer, with each 
lesion being individually staged and the final stage being 
based on the highest stage. In contrast, the benign lung 
lesion group included patients diagnosed with inflamma-
tory or granulomatous changes in pathology. Thus, the 
lung cancer and benign lung lesion groups obtained 45 
patients, respectively. The healthy control group also con-
sisted of 45 healthy individuals recruited from the medi-
cal examination center of the participating institutes.

This study was approved by the Medical Ethics Com-
mittee of Guang’an People’s Hospital(approval number: 
2,022,007), Sichuan Province, China, and conducted fol-
lowing the principles of the Declaration of Helsinki. All 
the enrolled individuals signed the written informed 
consent.

Sample preparation
Fasting venous blood samples were collected from 
all participants before treatment. The serum was iso-
lated from blood samples by centrifuging for 10  min at 
3000 rpm. All the serum samples were strictly sealed in 
cryopreservation tubes and stored at -80  °C until being 
scanned. For the measurement, approximately 0.5  ml 
of the serum sample was prepared in cryopreservation 
tubes made of polypropylene with a specification of 2 ml. 
All blood samples were collected from March to Decem-
ber 2022 in this study.

Raman measurements
The Raman system is designed by the Sichuan Institute 
for Brain Science and Brain-Inspired Intelligence, which 
consists of a volume-phase holographic spectrograph 
(F/2ctroEMvision), deep-cooled CCD camera (at -60 °C, 
Andor iVac DR-316B-LDC-DD), Raman probe, and laser. 
The sample end uses a microscope objective (50X, NA 
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0·5, WD 8·0, Sunnyoptical) as a focusing lens. An inter-
nal laser line filter (Semrock, LL01-785-12·5) was applied 
to obtain a clean laser profile. A single-mode diode laser 
with wavelength 785  nm and 100 mW power was used 
for Raman excitation. The laser power on the sample was 
detected to be around 70mW. Furthermore, the spectra 
were recorded in the 400–1800  cm-1 range. The detec-
tion process was repeated 3 times and acquired 5 spectra 
each time, and 15 Raman spectra were collected in total 
from each serum sample.

First, the ethanol spectrum was measured using an 
exposure time of 3s for the wavenumber calibration. 
Second, the cryopreservation tubes with a 5% normal 
saline spectrum were acquired using an exposure time 
of 3 s with five successive scans for every beginning and 
completion of the experiment. The average spectrum of 
the cryopreservation tube spectra was used for back-
ground subtraction. Next, the Raman spectrum of the 
serum samples sealed within the cryopreservation tube 
was measured using the same integration parameters as 
the cryopreservation tube measurements. Three experi-
menters took the Raman scan for each sample tube and 
repeated it five times. Following cosmic ray removal from 
the spectral data, we had 15 scans per serum sample. Fur-
thermore, the cryopreservation tube was placed in the 
specific card slot of the Raman spectrometer, ensuring 
that the laser passed through the tube wall at a certain 
angle.

Date processing and SVM classification
Raman spectral data preprocessing steps include smooth-
ing by automatic-weighted least squares, baseline correc-
tion based on polynomial fitting, and normalization by 
total area. A total of 1800 spectra from 120 individuals 
were preprocessed for model building. The ANOVA sta-
tistical test method was used to select relevant features. 
Additionally, the points that passed the ANOVA statisti-
cal test between the two groups were used as input fea-
tures of the SVM. Our SVM algorithm used a non-linear 
radial basis function (RBF).

In this study, we used a two-level cross-validation 
approach. The model building data set were divided into 
two groups, containing 70% and 30% of the data for train-
ing and testing groups, respectively. The training and 
cross-validation data sets were separated by randomly 
selecting 70% of the total data. The remaining 30% of 
the data was used as unseen data to assess the predic-
tive power of the classification models. The process men-
tioned above was repeated 50 times.

We externally validated the predictive model after it 
was built. In total, 15 serum samples were selected for 
verification, including 5 lung cancer patients, 5 patients 
with benign lung lesions, and 5 healthy controls. These 
samples are used as independent external datasets, and 
their spectra were preprocessed the same way as those 
used to build the model. Using an SVM model, each unla-
beled spectrum was assigned to the class with the highest 
probability. The true classification of the samples was not 
revealed until after the model had made its predictions, 
allowing for an unbiased evaluation of the model’s perfor-
mance. Finally, the receiver operating curve (ROC) was 
used to check the diagnostic performance of the model. 
MATLAB was used for the preprocessing of Raman spec-
trum data and the calculation of SVM and ROC.

Results
Clinical characteristics
Data regarding the age, sex, pathological results, and 
clinical stages of the participants are shown in Table  1. 
There is no statistically significant difference between 
these three groups regarding gender and age. The lung 
cancer group consisted of 20 cases of adenocarcinoma, 
14 cases of squamous cell carcinoma, 8 cases of small cell 
carcinoma, 1 case of neuroendocrine tumor, 1 case of 
adenosquamous cell carcinoma, and 1 case of undifferen-
tiated carcinoma. Moreso, the benign lung lesion group 
included 16 cases of pneumonia, 14 cases of chronic 
obstructive pulmonary diseases, 11 cases of tuberculosis, 
2 cases of benign lung tumor, 1 case of interstitial lung 
disease, and 1 case of fungal pneumonia.

Table 1 Clinical characteristics
Lung 
cancer

Benign 
lung 
lesion

Healthy 
control

n = 45 n = 45 n = 45
Age, y
 Min-max(median) 51–85(67) 55–

84(67)
56–
76(65)

Sex
 Male 35 29 27
 Female 10 16 18
Pathological findings
Adenocarcinoma 20
 Squamous cell carcinoma 14
 Small cell carcinoma 8
 Neuroendocrine tumor 1
 Adenosquamous carcinoma 1
 Undifferentiated carcinoma 1
TNM Stage
 I 12
 II 9
 III 8
 IV 16
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Fig. 1 The total average serum Raman of the three groups and the difference between the groups. (a) The total average of the three types of Raman, the 
color band represents the standard deviation. (b) The Raman difference signal between the groups (blue) and the Raman signal of the groups between 
± 2 standard deviations (red and yellow)
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Raman Spectra and statistical analysis
The mean preprocessed spectra of the three groups are 
shown in Fig.  1a. The differences between healthy con-
trols vs. benign lung lesions, healthy controls vs. lung 
cancer, and benign lung lesions vs. lung cancer are 
depicted in Fig. 1b. The difference in the mean spectrum 
is shown within ± 2 standard deviations, suggesting that 
the mean difference between the groups is statistically 
insignificant. It is necessary to exploit the difference that 
may exist through deep learning algorithms.

The ANOVA test selected relevant features between the 
three experimental groups. The sample selection process 

was random and needed to be repeated 100 times. Only 
the statistical significance of the ANOVA test over 70 
times out of 100 points was selected as the feature. High 
inter-group consistency was shown after the ANOVA 
analysis, while the differences in the intra-group were 
random. The difference between the three compared 
groups was in the spectra range of 400–1800 cm − 1 and 
is observed in Fig. 2a. The differences between lung can-
cer vs. benign lung lesions shown are significantly less 
than those two compared groups. However, the ANOVA 
test result showed no apparent consistency for the inter-
group (Fig. 2b).

Fig. 2 The result of the ANOVA test. The spectra range without a significant difference in the ANOVA test (p < 0.05) was indicated in blue, while others 
were indicated in yellow. (a) The Raman shift spectrum of the difference in the p-value for the inter-group. (b) The Raman shift spectrum of the difference 
in the p-value for the intra-group
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Serum Raman spectroscopy combined with support 
vector machine algorithm shows great diagnostic ability 
in lung cancer screening. The performance of the classi-
fiers are evaluated by the ROC curve and shown in Fig. 3. 
All ROC analyses are based on nonparametric techniques 
and are conducted for the SVM analyses. For each of the 
three classification tasks, the area under the curve (AUC) 
value and the results of AUC, specificity, accuracy, and 
sensitivity of the SVM classification are calculated and 
shown in Table 2.

The overall serum-level classification of each of the 15 
serum samples is shown in Table 3. A serum sample was 
assigned to the class that received the majority of spec-
tra assigned to it. For the independent test, our model 
showed that all the samples were classified correctly.

Discussion
Raman spectroscopy measurement is an increasingly 
popular method of diagnosing cancer [18]. Recently, 
many studies have shown that Raman spectroscopy is a 
high-accuracy method for diagnosing lung cancer [25–
30]. However, most studies mainly carried out Raman 
detection on tissues to screen for lung cancer [27–30]. 
Raman detection using tissue is not as convenient as 
blood detection in general physical examination. Notably, 
serum detection could be a more favorable and noninva-
sive method than tissue. Once lung cancer screening can 
be carried out through blood testing, early lung cancer 
screening can be realized in a general physical examina-
tion which is incomparable with tissue testing [17].

Our study observed significant differences between 
the average Raman spectrum of lung cancer patients and 
healthy controls. Meanwhile, the classification model of 
lung cancer patients and healthy controls show excellent 
discrimination ability with AUC values of 0.973, and the 

Table 2 Performance parameters of the SVM
Class Value ± SD

AUC Sensitivity Specificity Accuracy
healthy controls vs. benign lung lesions 0.984 ± 0.003 0.922 ± 0.004 0.956 ± 0.002 0.933 ± 0.006
healthy controls vs. lung cancer 0.974 ± 0.003 0.917 ± 0.007 0.922 ± 0.006 0.906 ± 0.005
lung cancer vs. benign lung lesions 0.853 ± 0.006 0.800 ± 0.007 0.833 ± 0.005 0.808 ± 0.011

Fig. 3 The ROC curve of the SVM diagnostic algorithm for the healthy controls group vs. benign lung lesion group, healthy controls group vs. lung cancer 
group, and benign lung lesion group vs. lung cancer group
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sensitivity and specificity were 0.917 and 0.922, respec-
tively. Similar conclusions of serum samples detected by 
Raman spectroscopy were also produced in Shin et al. 
[31]. and Moisoiu et al. [32]. studies in which diagnostic 
sensitivity and specificity in lung cancer were 0.84 (95% 
CI 0.69–0.93), 0.85 (95% CI 0.62–0.97) and 0.85 (95% 
CI 0.68–0.95), 0.87 (95% CI 0.73–0.96), respectively. 
Moreso, Lei et al. [33]. used surface enhanced Raman 
spectroscopy (SERS) combined with principal compo-
nent analysis (PCA) and partial least-squares discrimi-
nant analysis (PLS-DA) to diagnose and distinguish lung 
cancer and normal serum. Importantly, the model’s sen-
sitivity improved to 100%, while the specificity decreased 
to 83.33% [29]. Compared with these similar studies, 
our classification model seems more excellent. From the 
studies of Ke et al. [34]. and Chen et al. [35]. , the results 
of tissue samples detected by Raman spectroscopy were 
more reliable than serum samples. Tissue samples are 
certainly better, but they cannot be used for early screen-
ing of lung cancer because they are difficult to obtain. 
Therefore, if the pathology sample was unavailable, serum 
detection could be more favorable and noninvasive.

Different from previous studies, our study included a 
benign lung lesion group, which is also one of our inno-
vative points. The majority of patients in the benign lung 
lesion group were diagnosed with infectious inflamma-
tion. There is a certain similarity between serum metab-
olites in cancers and inflammatory diseases [13, 14, 36]. 
Furthermore, most patients in our lung cancer groups 
are usually not challenged with a single disease, and they 
are often concurrent with chronic lung inflammatory dis-
ease. Therefore, the dual factors increase the classifica-
tion difficulty of our model of lung cancer patients and 
benign lung lesion individuals. This result may be why 

our model’s diagnosis accuracy, sensitivity, and specificity 
were only 0.808, 0.800, and 0.833, respectively. From the 
lung cancer and benign lung lesion classification model, 
the area under the curve (AUC) value was also obiviously 
lower than that of the other two classification models, 
only 0.853. Nevertheless, our results are meaningful and 
provide a reference for differentiating benign and malig-
nant lung diseases. Takamori et al. analyzed salivary 
metabolites and built a multiple logistic regression (MLR) 
models for discriminating patients with lung cancer from 
benign lung lesions (AUC = 0.729, 95%CI = 0.598–0.861, 
p = 0.003) [37]. Compared with this consequence, our 
research shows a more robust diagnostic ability. Besides 
the use of cancer diagnosis, Raman spectroscopy has 
also been applied in many studies regarding inflamma-
tory diseases such as dengue fever [38], malaria infec-
tion [39], virus infection [40], cryptococcal infection [41], 
ulcerative colitis [42], and cervicitis [43]. Our results are 
consistent with these studies and shows more excellent 
diagnostic ability. Therefore, our model has a good clini-
cal practicability.

Conclusions
This study is based on a label-free serum detection of the 
Raman spectrum and combined with machine learning 
methods to realize the rapid diagnosis of lung cancer. We 
used the SVM to establish the two-way (lung cancer vs. 
healthy control, benign lung lesion vs. healthy, and lung 
cancer vs. benign lung lesion) classification model. Nota-
bly, all three models demonstrated an outstanding differ-
entiation ability. Therefore, these findings indicate that 
the serum Raman spectroscopy combined with a support 
vector machine model can be used as a standard pre-
screening tool for lung cancer.

Table 3 Results of 15 samples for the independent verification
Individual spectra predictions
Sample # Number of prediction External validation results

Healthy control Benign lung lesion Lung Cancer Sample # Predicted class True class
1 990 307 203 1 Healthy Control Healthy Control
2 985 375 140 2 Healthy Control Healthy Control
3 989 313 198 3 Healthy Control Healthy Control
4 994 200 306 4 Healthy Control Healthy Control
5 997 300 203 5 Healthy Control Healthy Control
6 237 911 352 6 Benign lung lesion Benign lung lesion
7 319 949 232 7 Benign lung lesion Benign lung lesion
8 212 982 306 8 Benign lung lesion Benign lung lesion
9 345 986 169 9 Benign lung lesion Benign lung lesion
10 299 982 219 10 Benign lung lesion Benign lung lesion
11 98 695 707 11 Lung Cancer Lung Cancer
12 235 294 971 12 Lung Cancer Lung Cancer
13 208 316 976 13 Lung Cancer Lung Cancer
14 276 266 958 14 Lung Cancer Lung Cancer
15 203 488 809 15 Lung Cancer Lung Cancer



Page 8 of 9Yan et al. BMC Cancer          (2024) 24:791 

This study also has limitation. The sample size was 
small, and well-powered large-scale multicenter stud-
ies are needed to verify this conclusion in the future. 
Besides, prospective early screening clinical trial design 
is also needed.

Abbreviations
SVM  Support vector machine
LDCT  Low-dose spiral computed tomography
TNM  Tumor node metastasis
ROC  Receiver operating curve
AUC  area under the curve
RBF  Non-linear radial basis function
SERS  Surface-enhanced Raman spectroscopy
PCA  Principal component analysis
PLS-DA  Partial least-squares discriminant analysis

Acknowledgments
The authors thank AiMi Academic Services (www.aimieditor.com) for English 
language editing and review services.

Author contributions
Huiting Su conceived and designed the paper. Xiaozheng Wen and Xiaoqiang 
Guo recruited participants and collected the serum samples. Jiafei Liu 
collected and analyzed the clinical datas. Huaichao Luo detected the samples. 
Yu Yin analyzed the data and provided technical support. Linfang Yan wrote 
the initial draft of the manuscript. All authors contributed to the editing, 
review of the manuscript and approved the final manuscript.

Funding
This study was funded by Guang’an Science and Technology Bureau 
(NO.2021SYF01).

Data availability
The datasets used and analyzed during the current study are available from 
the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
This study was approved by the Medical Ethics Committee of Guang’an 
People’s Hospital (approval number: 2022007), Sichuan Province, China. All 
participants provided written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 25 May 2023 / Accepted: 28 June 2024

References
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J 

Clin. 2022;72(1):7–33.
2. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, et 

al. The IASLC Lung Cancer Staging Project: proposals for revision of the TNM 
Stage groupings in the Forthcoming (Eighth) Edition of the TNM classifica-
tion for Lung Cancer. J Thorac Oncol. 2016;11(1):39–51.

3. Mazzone PJ, Silvestri GA, Souter LH, Caverly TJ, Kanne JP, Katki HA, et al. 
Screening for Lung Cancer: CHEST Guideline and Expert Panel Report. Chest. 
2021;160(5):e427–94.

4. Shen H. Low-dose CT for lung cancer screening: opportunities and chal-
lenges. Front Med. 2018;12(1):116–21.

5. Patz EF Jr, Pinsky P, Gatsonis C, Sicks JD, Kramer BS, Tammemägi MC, et al. 
Overdiagnosis in low-dose computed tomography screening for lung cancer. 
JAMA Intern Med. 2014;174(2):269–74.

6. Hirsch FR, Prindiville SA, Miller YE, Franklin WA, Dempsey EC, Murphy JR, et al. 
Fluorescence versus white-light bronchoscopy for detection of preneoplastic 
lesions: a randomized study. J Natl Cancer Inst. 2001;93(18):1385–91.

7. Grenier J, Pujol JL, Guilleux F, Daures JP, Pujol H, Michel FB. Cyfra 21 – 1, a new 
marker of lung cancer. Nucl Med Biol. 1994;21(3):471–6.

8. Okamura K, Takayama K, Izumi M, Harada T, Furuyama K, Nakanishi Y. Diagnos-
tic value of CEA and CYFRA 21 – 1 tumor markers in primary lung cancer. 
Lung Cancer. 2013;80(1):45–9.

9. Muraki M, Tohda Y, Iwanaga T, Uejima H, Nagasaka Y, Nakajima S. Assessment 
of serum CYFRA 21 – 1 in lung cancer. Cancer. 1996;77(7):1274–7.

10. Li W, Liu JB, Hou LK, Yu F, Zhang J, Wu W, et al. Liquid biopsy in lung cancer: 
significance in diagnostics, prediction, and treatment monitoring. Mol Can-
cer. 2022;21(1):25.

11. Ember KJI, Hoeve MA, McAughtrie SL, Bergholt MS, Dwyer BJ, Stevens MM, 
et al. Raman spectroscopy and regenerative medicine: a review. NPJ Regen 
Med. 2017;2:12.

12. Wang N, Cao H, Wang L, Ren F, Zeng Q, Xu X, et al. Recent advances in spon-
taneous Raman Spectroscopic Imaging: Instrumentation and Applications. 
Curr Med Chem. 2020;27(36):6188–207.

13. Ahmed N, Kidane B, Wang L, Nugent Z, Moldovan N, McElrea A, et al. 
Metabolic changes in early-stage Non-small Cell Lung Cancer patients after 
Surgical Resection. Cancers (Basel). 2021;13(12):3012.

14. You L, Fan Y, Liu X, Shao S, Guo L, Noreldeen HAA, et al. Liquid Chromatog-
raphy-Mass Spectrometry-based tissue metabolic profiling reveals major 
metabolic pathway alterations and potential biomarkers of Lung Cancer. J 
Proteome Res. 2020;19(9):3750–60.

15. Zheng Q, Li J, Yang L, Zheng B, Wang J, Lv N, Luo J, Martin FL, Liu D, He J. 
Raman spectroscopy as a potential diagnostic tool to analyse biochemical 
alterations in lung cancer. Analyst. 2020;145(2):385–92.

16. Yin G, Li L, Lu S, Yin Y, Su Y, Zeng Y, Luo M, Ma M, Zhou H, Orlandini L, Yao D, 
Liu G, Lang J. An efficient primary screening of COVID-19 by serum Raman 
spectroscopy. J Raman Spectrosc. 2021;52(5):949–58.

17. Parachalil DR, McIntyre J, Byrne HJ. Potential of Raman spectroscopy for the 
analysis of plasma/serum in the liquid state: recent advances. Anal Bioanal 
Chem. 2020;412(9):1993–2007.

18. Auner GW, Koya SK, Huang C, Broadbent B, Trexler M, Auner Z, et al. Applica-
tions of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. 
2018;37(4):691–717.

19. Gao L, Ye M, Lu X, Huang D. Hybrid method based on Information Gain and 
Support Vector Machine for Gene Selection in Cancer classification. Genom-
ics Proteom Bioinf. 2017;15(6):389–95.

20. Ozer ME, Sarica PO, Arga KY. New machine learning applications to accelerate 
personalized medicine in breast Cancer: rise of the support Vector machines. 
OMICS. 2020;24(5):241–6.

21. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a 
practical introduction. BMC Med Res Methodol. 2019;19(1):64.

22. Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised 
machine learning algorithms for disease prediction. BMC Med Inf Decis Mak. 
2019;19(1):281.

23. Zheng X, Wu G, Wang J, Yin L, Lv X. Rapid detection of hysteromyoma and 
cervical cancer based on serum surface-enhanced Raman spectroscopy and 
a support vector machine. Biomed Opt Express. 2022;13(4):1912–23.

24. Goldstraw P, Chansky K, Crowley J, et al. The IASLC Lung Cancer Staging 
Project: proposals for revision of the TNM stage groupings in the forthcom-
ing (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 
2016;11(1):39–51.

25. Wang H, Zhang S, Wan L, Sun H, Tan J, Su Q. Screening and staging for non-
small cell lung cancer by serum laser Raman spectroscopy. Spectrochim Acta 
Mol Biomol Spectrosc. 2018;201:34–8.

26. Qian K, Wang Y, Hua L, Chen A, Zhang Y. New method of lung cancer detec-
tion by saliva test using surface-enhanced Raman spectroscopy. Thorac 
Cancer. 2018;9(11):1556–61.

27. McGregor HC, Short MA, McWilliams A, Shaipanich T, Ionescu DN, Zhao J, et 
al. Real-time endoscopic raman spectroscopy for in vivo early lung cancer 
detection. J Biophotonics. 2017;10(1):98–110.

28. Sinica A, Brožáková K, Brůha T, Votruba J. Raman spectroscopic discrimina-
tion of normal and cancerous lung tissues. Spectrochim Acta Mol Biomol 
Spectrosc. 2019;219:257–66.

http://www.aimieditor.com


Page 9 of 9Yan et al. BMC Cancer          (2024) 24:791 

29. Zhang K, Hao C, Huo Y, Man B, Zhang C, Yang C, et al. Label-free diagnosis 
of lung cancer with tissue-slice surface-enhanced Raman spectroscopy and 
statistical analysis. Lasers Med Sci. 2019;34(9):1849–55.

30. Song D, Yu F, Chen S, Chen Y, He Q, Zhang Z, et al. Raman spectroscopy 
combined with multivariate analysis to study the biochemical mechanism of 
lung cancer microwave ablation. Biomed Opt Express. 2020;11(2):1061–72.

31. Shin H, Oh S, Hong S, Kang M, Kang D, Ji YG, et al. Early-Stage Lung Cancer 
diagnosis by Deep Learning-based spectroscopic analysis of circulating 
exosomes. ACS Nano. 2020;14(5):5435–44.

32. Moisoiu V, Stefancu A, Gulei D, Boitor R, Magdo L, Raduly L, et al. SERS-based 
differential diagnosis between multiple solid malignancies: breast, colorectal, 
lung, ovarian and oral cancer. Int J Nanomed. 2019;14:6165–78.

33. Lei J, Yang D, Li R, Dai Z, Zhang C, Yu Z, et al. Label-free surface-enhanced 
Raman spectroscopy for diagnosis and analysis of serum samples with 
different types lung cancer. Spectrochim Acta Mol Biomol Spectrosc. 
2021;261:120021.

34. Ke ZY, Ning YJ, Jiang ZF, Zhu YY, Guo J, Fan XY, et al. The efficacy of Raman 
spectroscopy in lung cancer diagnosis: the first diagnostic meta-analysis. 
Lasers Med Sci. 2022;37(1):425–34.

35. Chen C, Hao J, Hao X, Xu W, Xiao C, Zhang J, et al. The accuracy of Raman 
spectroscopy in the diagnosis of lung cancer: a systematic review and meta-
analysis. Transl Cancer Res. 2021;10(8):3680–93.

36. Greten FR, Grivennikov SI. Inflammation and Cancer: triggers, mechanisms, 
and consequences. Immunity. 2019;51(1):27–41.

37. Takamori S, Ishikawa S, Suzuki J, Oizumi H, Uchida T, Ueda S, et al. Differential 
diagnosis of lung cancer and benign lung lesion using salivary metabolites: a 
preliminary study. Thorac Cancer. 2022;13(3):460–5.

38. Mahmood T, Nawaz H, Ditta A, Majeed MI, Hanif MA, Rashid N, et al. Raman 
spectral analysis for rapid screening of dengue infection. Spectrochim Acta 
Mol Biomol Spectrosc. 2018;200:136–42.

39. Bilal M, Saleem M, Amanat ST, Shakoor HA, Rashid R, Mahmood A, et al. Opti-
cal diagnosis of malaria infection in human plasma using Raman spectros-
copy. J Biomed Opt. 2015;20(1):017002.

40. Moor K, Terada Y, Taketani A, Matsuyoshi H, Ohtani K, Sato H. Early detection 
of virus infection in live human cells using Raman spectroscopy. J Biomed 
Opt. 2018;23(9):1–7.

41. Zhu S, Li Y, Gao H, Hou G, Cui X, Chen S, et al. Identification and assessment of 
pulmonary Cryptococcus neoformans infection by blood serum surface-
enhanced Raman spectroscopy. Spectrochim Acta Mol Biomol Spectrosc. 
2021;260:119978.

42. Veenstra MA, Palyvoda O, Alahwal H, Jovanovski M, Reisner LA, King B, et al. 
Raman spectroscopy in the diagnosis of ulcerative colitis. Eur J Pediatr Surg. 
2015;25(1):56–9.

43. Barik AK, M SP, Pai NM, Upadhya MV, Pai R. A micro-raman spectroscopy study 
of inflammatory condition of human cervix: probing of tissues and blood 
plasma samples. Photodiagnosis Photodyn Ther. 2022;39:102948.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	Rapid detection of lung cancer based on serum Raman spectroscopy and a support vector machine: a case-control study
	Abstract
	Background
	Methods
	Patients
	Sample preparation
	Raman measurements
	Date processing and SVM classification

	Results
	Clinical characteristics
	Raman Spectra and statistical analysis

	Discussion
	Conclusions
	References


