RESEARCH

eHSP90α in front-line therapy in EGFR exon 19 deletion and 21 Leu858Arg mutations in advanced lung adenocarcinoma

Yingzhen Bian^{1†}, Haizhou Liu^{1,2†}, Jinglei Huang^{1†}, Zhaorong Feng¹, Yanyan Lin¹, Jilin Li^{1,2*} and Litu Zhang^{1,2*}

Abstract

Purpose Extracellular heat shock protein 90 AA1(eHSP90α) is intricately linked to tumor progression and prognosis. This study aimed to investigate the difference in the value of eHSP90α in post-treatment response assessment and prognosis prediction between exon 19 deletion(19DEL) and exon 21 Leu858Arg(L858R) mutation types in lung adenocarcinoma(LUAD).

Methods We analyzed the relationship between the expression of eHSP90a and clinicopathological features in 89 patients with L858R mutation and 196 patients with 19DEL mutation in LUAD. The Kaplan-Meier survival curve was used to determine their respective cut-off values and analyze the relationship between eHSP90a expression and the survival time of the two mutation types. The area under the curve (AUC) was used to evaluate the diagnostic performance of biomarkers. Then, the prognostic model was developed using the univariate-Cox multivariate-Cox and LASSO-multivariate logistic methods.

Results In LUAD patients, eHSP90a was positively correlated with carcinoembryonic antigen(CEA), carbohydrate antigen 125(CA125), and carbohydrate antigen 153(CA153). The truncated values of eHSP90a in L858R and 19DEL patients were 44.5 ng/mL and 40.8 ng/mL, respectively. Among L858R patients, eHSP90a had the best diagnostic performance (AUC = 0.765), and higher eHSP90a and T helper cells(Th cells) expression were significantly related to shorter overall survival(OS) and worse treatment response. Also, high eHSP90a expression and short progression-free survival(PFS) were significantly correlated. Among 19DEL patients, CEA had the best diagnostic efficacy (AUC = 0.734), and CEA and Th cells were independent prognostic factors that predicted shorter OS. Furthermore, high CA125 was significantly associated with short PFS and poor curative effect.

Conclusions eHSP90a has a better prognostic value in LUAD L858R patients than 19DEL, which provides a new idea for clinical diagnosis and treatment.

Keywords eHSP90a, Exon 19 deletion, Exon 21 Leu858Arg, Lung adenocarcinoma, Biomarker

¹Yingzhen Bian, Haizhou Liu and Jinglei Huang contributed equally to this work.

*Correspondence: Jilin Li lijilingxmu@outlook.com Litu Zhang zhanglitu@gmail.com ¹Department of Research, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China ²Guangxi Cancer Molecular Medicine Engineering Research Center, Guangxi Zhuang Autonomous Region, Nanning 530021, China

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence, unless indicate otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction

Lung cancer has been shown to have the highest cancerrelated mortality rate of all cancers [1]. Furthermore, the proportion of lung adenocarcinoma (LUAD) is the largest and still increasing [2]. Lung cancer treatment mainly includes surgical, chemotherapy, radiotherapy, and immunotherapy [3]. With the significant increase in lung cancer pathogenesis research and precision therapy, molecular targeted therapy based on lung cancer driver mutations has dramatically enhanced the overall survival(OS) rate of patients [4]. Epidermal growth factor receptor (EGFR) mutations occur mainly in LUAD. EGFR tyrosine kinase inhibitor (EGFR-TKI) sensitizing mutations are most commonly found in exon 19 deletion (19DEL) or exon 21 Leu858Arg (L858R) [5]. Moreover, some studies have found differences in the efficacy of targeted therapy for different EGFR mutation types, with some mutations being more responsive to treatment than others [6, 7]. This difference is crucial for LUAD patients' precise treatment and prognosis.

The heat shock protein 90 (HSP90) family comprises a highly conserved chaperone protein with a molecular weight of approximately 90 kDa, widely distributed in mammals. HSP90 has different isoforms in various intracellular spaces, with heat shock protein 90 AA1(HSP90a) and heat shock protein 90 AB1(HSP90 β) primarily distributed in the cytoplasm. HSP90 α is the stress-inducible type, and HSP90 β is expressed constitutively [8-10]. Besides its intracellular localization, HSP90 α can also be excreted into the extracellular environment, referred to as extracellular HSP90 α (eHSP90 α). As a chaperone protein, $HSP90\alpha$ has numerous client proteins and is therefore involved in many critical activities, such as inflammation regulation, apoptosis, and immunity [11]. Previous research found that the expression of eHSP90 α is higher in cancer patients than in healthy populations, making it a reliable prognostic marker for several cancers [12]. For instance, Han et al. demonstrated that eHSP90α could be an effective diagnostic biomarker for liver cancer and predict patient response to surgery [13]. Similarly, in lung cancer(LC), Shi et al. found it can be a valid diagnostic biomarker and can expect the response to chemotherapy [14]. Besides, Huang et al. found that high expression of eHSP90 α is associated with the poor efficacy of chemotherapy and prognosis in Small Cell Lung Cancer(SCLC), and the area under the diagnosis curve of eHSP90α against SCLC appears to be 0.791, with outstanding sensitivity and specificity [15].

However, we have yet to find any studies exploring whether eHSP90 is different under different EGFR mutations in LUAD. This study aims to use eHSP90 α to predict the prognosis of patients with 19DEL and L858R mutations in LUAD patients and explore its different prognostic values. In addition, we further combined eHSP90 α with other serum markers to develop a predictive nomogram model to assess prognosis accurately.

Methods

Patient inclusion and exclusion criteria

This study included 93 patients with L858R in LUAD and 220 patients with 19DEL mutation admitted to the Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital from July 2008 to July 2021. Four L858R patients and 16 19DEL patients were excluded due to incomplete clinical information. Eight 19DEL patients with exon 20 mutations were also excluded (Fig. 1A).

The inclusion criteria for this study were as follows: (1) Pathological diagnosis of LUAD; (2) Obtained blood samples; (3) Confirmed EGFR mutations of 19DEL or L858R only; (4) Availability of tumor markers and immune cells after admission. (5) Response assessments were conducted using chest and abdominal computed tomography scans (CT scans) every two treatment cycles, following the Response Evaluation Criteria in Solid Tumors (RECIST version 1.1). Each patient's response was categorized into one of the following groups: responders, which encompassed cases of complete response (CR), partial response (PR), and stable disease (SD), and non-responders, which included instances of disease progression (PD). Exclusion criteria for this study were: (1) Incomplete clinical information such as tumornode-metastasis (TNM) stage; (2) They also carried other EGFR mutations or have not been tested for EGFR gene mutations; (3) Patients who also had other oncological diseases.; (4) Incomplete follow-up information (Table 1).

Our outcome overall survival(OS) was based on all causes of death, while progression-free survival(PFS) was based on time for people who relapsed. Follow-up for all participants ended in July 2021. Among them, the median follow-up time of L858R mutation patients was 15 months, and for 19DEL mutation patients, it was 29 months.

Information collection

This prospective study collected peripheral blood data of patients diagnosed with LUAD who were detected as 19DEL or L858R mutation, including age, gender, TNM staging, carbohydrate antigen 125 (CA125), carbohydrate antigen 153 (CA153), carbohydrate antigen 199 (CA199), carcinoembryonic antigen (CEA). In addition, immune cells, T lymphocytes (T cell), T helper cells (Th), suppressor T cells (Ts), T helper cells/ suppressor T cells (Th/Ts), natural killer (NK) cells and B lymphocytes (B cell) were included. All

Fig. 1 Workflow diagram and survival curves of eHSP90a expression differences, survival in lung adenocarcinoma (LUAD) EGFR exon 19 Deletion(19DEL) and 21 Leu858Arg(L858R) mutations patients, and Kaplan-Meier Survival curve of eHSP90a and overall survival(OS) in patients with LUAD L858R mutation. (A) Workflow. (B) The scatterplot shows the difference in expression of the continuous variable eHSP90a in the OS outcome state of the 19del and L858R mutations. (C) The scatterplot shows the OS of 19DEL and L858R mutation. (D) Survival of 19DEL and L858R mutation patients. (E) Kaplan-Meier Survival curve of eHSP90a and OS in patients with LUAD L858R mutation.

blood samples were collected from patients for the first time after admission.

Detection of serum HSP90a

HSP90 α was measured using a Yantai Protgen Biotechnology Development Co., Ltd., Shandong, China assay kit. Patient blood samples, collected in EDTA anticoagulant tubes in the early morning, were centrifuged at 3000 rpm for 15 min at 4 °C to remove particles. The assay kit was equilibrated at 37 °C for 30 min before use. Plasma samples were diluted 20 times with the diluent. Each assay plate well received 50μ L

Inclusion criteria	Exclusion criteria
They have pathologically diagnosed LUAD.	Clinical information such as TNM stage was incomplete.
Blood samples could be obtained.	They also carried other EGFR mutations or has not been tested for EGFR gene mutations.
19DEL or L858R was the only EGFR mutation they carried.	Patients who also had other oncological diseases.
Tumor markers and immune cells were availabile.	Follow-up information was incomplete.
Response assessments were conducted using chest and abdominal com-	

the Response Evaluation Criteria in Solid Tumors (RECIST version 1.1). of standard, plasma sample, and HSP90 α marker solution. Incubating the plate at 37 °C for 60 min. After incubation, the wells were washed multiple times with the washing solution. Color developers A and B were added sequentially, and the plate was incubated at 37 °C in the dark for 20 min. The color development was then stopped by adding a stop solution. The opti-

puted tomography scans (CT scans) every two treatment cycles, following

cal density (OD) values were measured at 450 nm/620 nm within 10 min of color development termination. The HSP90 α content in plasma samples was calculated based on these OD values.

Nomogram, lasso regression, logistic regression, and cox regression

The nomogram consists of a set of parallel lines, each representing a variable and a scale along each line. Lasso Regression is a type of linear regression that uses regularization methods to prevent overfitting. In traditional linear regression, the model tries to fit the data as closely as possible, which can lead to overfitting and poor performance on new data. Logistic regression is defined as: $p = \frac{1}{1} {1+e^{-2}}$. where 'p' is the predicted probability, 'z' is the weighted sum of the input features, and 'e' is the mathematical constant of approximately 2.71828. The Cox regression model estimates the hazard ratio, which is the ratio of the hazard rates between two groups while adjusting for other covariates that may affect the outcome.

Statistical analysis

Data analysis was performed using SPSS25.0 software. Clinical baseline data were presented as medians and interquartile ranges. Spearman rank correlation analysis was used to analyze the correlation between eHSP90 α and other clinical biomarkers. The ROC curve was used to evaluate the diagnostic efficacy of all included clinical indicators for the prognosis of the disease. LASSO and multivariate logistic regression analyses were used to analyze the relationship between response to treatment and eHSP90 α . Univariate and multivariate Cox regression analyses analyzed the relationship between eHSP90 α and OS and PFS. Peripheral blood indicators less than 0.05 were included in the multivariate analysis. The best cut-off value of each

index was calculated using R4.03 software, and the Kaplan-Meier(K-M) survival curve was drawn. Nomogram software was used for validation. *P*values<0.05 were considered statistically significant.

Results

Clinicopathological features of LUAD patients

Our analysis included 89 patients with L858R mutations and 196 patients with 19DEL mutations, respectively, with a mean age of 58.67 ± 9.30 years and 58.01 ± 9.01 years, respectively. Among the 89 patients with L858R mutation, 11 (12.4%) were stage III, 80 (85.4%) were stage IV, 69 (77.5%) received chemotherapy, and 84 (94.4%) received targeted therapy. Among the 196 patients with 19DEL mutations, 25 (12.8%) were stage III, 161 (82.1%) were stage IV, 159 (81.1%) received chemotherapy, and 181 (92.3%) received targeted therapy. The clinicopathological data are shown in Table 2.

Furthermore, we analyzed the K-M survival curves of OS for two mutations and tested them with log rank. The K-M survival curve shows that patients with 19DEL mutation predicted a worse prognosis (Fig. 1D), and the median survival time of L858R mutation patients was 43 months; the median survival time of patients with 19DEL mutation was 63 months. Also, statistics show that the OS of L858R patients was lower than that of 19DEL patients (Fig. 1C).

Correlations of eHSP90 α and clinical index

CEA is the most common tumor marker for LUAD, and we analyzed the correlation between eHSP90 α and CEA in LUAD and with other clinical biomarkers (Table 3). Through analysis, we found that eHSP90 α was positively correlated with CEA, CA125, and CA153 among all LUAD patients we recruited. When differentiating mutations, eHSP90 α was only positively associated with CEA in patients with L858R mutation. In patients with 19DEL mutation, eHSP90 α was positively correlated with CEA, CA125, and CA153. eHSP90 α may have good diagnostic and prognostic value, but there may also be some differences between the two mutations.

 Table 2
 Baseline on L858R and 19DEL categorical variables in our study

Features	L858R	19DEL
Total	89	196
Gender		
Male (%)	44 (49.4%)	105(53.6%)
Female (%)	45 (50.6%)	91(46.4%)
Age (years, X±SD)	58.67±9.30	58.01 ± 9.01
TNM stage		
Stage I (%)	1 (1.1%)	6 (3.1%)
Stage II (%)	1 (1.1%)	4 (2.0%)
Stage III (%)	11 (12.4%)	25 (12.8%)
Stage IV (%)	80 (85.4%)	161 (82.1%)
T stage		
T1 (%)	16 (18.0%)	38 (19.4%)
T2 (%)	19 (21.3%)	52 (26.5%)
T3 (%)	13 (14.6%)	27(13.8%)
T4 (%)	41 (46.1%)	79(40.3%)
N stage		
0 (%)	7 (7.9%)	23 (11.7%)
1 (%)	8 (9.0%)	32 (16.3%)
2 (%)	51 (57.3%)	88 (45.0%)
3 (%)	23 (25.8%)	53 (27.0%)
М		
0 (%)	13 (14.6%)	34 (17.3%)
1 (%)	76 (85.4%)	162 (82.7%)
Chemotherapy		
Yes (%)	69 (77.5%)	159 (81.1%)
No (%)	20 (22.5%)	37 (18.9%)
Targeted therapy		
Yes (%)	84 (94.4%)	181 (92.3%)
No (%)	5 (5.6%)	15 (7.7%)
eHSP90α (median [IQR])	40.46 [28.82,65.15]	45.60[31.01,72.85]
T lymphocytes (median [IQR])	64.30 [55.75,72.22]	62.69[56.54,71.23]
T helper cells (median [IQR])	33.10 [29.69,40.42]	35.60[30.75,41.70]
suppressor T cells (median [IQR])	23.00 [16.65,27.65]	21.29[16.80,25.30]
T helper cells/ suppressor T cells (median [IQR])	1.50 [1.20,2.10]	1.70[1.30,2.30]
Natural killer cells (median [IQR])	15.10 [9.55,21.95]	14.60[9.23,20.88]
B lymphocytes (median [IQR])	9.70 [6.00,15.35]	11.10[7.45,15.40]
Carcinoembryonic antigen (median [IQR])	14.22 [2.83,52.92]	17.73[3.37,120.75]
Carcinoembryonic antigen 125(median [IQR])	34.60[17.20,92.90]	41.80[17.28,187.10]
Carcinoembryonic antigen 153(median [IQR])	19.50[10.40,33.00]	23.40[13.38,50.03]
Carbohydrate antigen 199 (median [IQR])	7.60 [8.00,26.70]	7.75[2.18,36.20]
Thymidine kinase1 (median [IQR])	0.77[0.30,1.22]	0.69[0.36,1.35]

Abbreviation: CEA: carcinoembryonic antigen; CA125: carbohydrate antigen 125; CA153: carbohydrate antigen 153; CA199: carbohydrate antigen 199; eHSP90a: extracellular heat shock protein 90 AA1; T cell: T lymphocytes; Th: T helper cells; Ts: suppressor T cells; B cell: B lymphocytes; Th/Ts: T helper cells/ suppressor T cells; NK: natural killer; TK1: thymidine kinase 1

Diagnostic value of biomarkers in LUAD

To better study the influence of clinical and biological indicators on the prognosis of LUAD patients, we made Receiver operating characteristic(ROC) curves of each physical index with OS as the outcome. We calculated the area under the curve(AUC) to judge its diagnostic efficiency (Table 4). Through analysis, we found that the top three AUC values in all our included patient data were CEA, CA125, and eHSP90 α , with 0.718, 0.668, and 0.644, respectively. In L858R mutant LUAD patients, the top three places calculated by the area under the curve were eHSP90 α , CEA, and CA125, and their AUC values were 0.765, 0.682, and 0.63, respectively. In patients with 19DEL mutation, the top 3 areas under the curve were CEA, CA125, and CA153, and their AUC values were 0.734, 0.684, and 0.673, respectively, while eHSP90 α had an AUC of 0.591 and a Youden index of 0.209. Suppose a single biomarker is

Parameter	Total		L858R		19DEL	
	r	р	r	p	r	p
Sex	-0.138	0.029	-0.288	0.011	-0.076	0.319
Age	-0.132	0.038	-0.002	0.986	-0.178	0.020
T lymphocytes	0.059	0.375	-0.003	0.978	0.086	0.288
T helper cells	0.078	0.247	0.070	0.565	0.081	0.318
suppressor T cells	-0.032	0.631	-0.059	0.625	-0.004	0.962
T helper cells/ suppressor T cells	0.100	0.135	0.112	0.355	0.078	0.338
Natural killer cells	-0.083	0.212	-0.079	0.516	-0.062	0.441
B lymphocytes	0.002	0.981	-0.097	0.426	0.028	0.733
CEA	0.324	0.001	0.270	0.021	0.340	0.001
CA125	0.289	0.001	0.226	0.055	0.315	0.001
CA153	0.206	0.002	0.199	0.091	0.210	0.008
CA199	0.119	0.069	0.158	0.183	0.083	0.299
TK1	-0.026	0.690	-0.004	0.976	-0.007	0.934

Table 3 Correlation of eHSP90a and other Index in LUAD patients

Abbreviation: CEA: carcinoembryonic antigen; CA125: carbohydrate antigen 125; CA153: carbohydrate antigen 153; CA199: carbohydrate antigen 199; eHSP90α: extracellular heat shock protein 90 AA1; T cell: T lymphocytes; Th: T helper cells; Ts: suppressor T cells; B cell: B lymphocytes; Th/Ts: T helper cells/ suppressor T cells; NK: natural killer; TK1: thymidine kinase 1

used to diagnose LUAD among the L858R mutations. In that case, the highest specificity is CEA, the highest sensitivity is Ts, and the highest Youden index is eHSP90 α , with a Youden index of 0.505. In contrast, among the 19DEL mutations, the highest specificity is T cell, the highest sensitivity is CA.153, and the highest Youden index is CEA, with a Youden index of 0.397. So, the CEA index has the best diagnostic value in patients with 19DEL mutation, while eHSP90 α has a better diagnostic value in L858 mutation patients in LUAD.

Value of eHSP90a in clinical prognostic assessment in patients with L858R mutation and 19DEL mutation

Then, we explored the different expressions of eHSP90 α in Alive and Dead groups in OS in patients with L858R and 19DEL mutations, respectively. Statistics show that in L858 patients, those who eventually died had higher eHSP90 α levels than the non-dead group, whereas in 19del, there was no difference in eHSP90 α levels between the two groups (Fig. 1B).

The K-M survival analysis was performed to determine the cutoff points of the index. The cut-off value of eHSP90 α for L858R mutation with OS was 44.5ng/mL, and for 19DEL mutation was 40.8ng/mL. Kaplan-Meier survival analysis showed that L858R mutation patients with high eHSP90 α levels had poor OS. However, this trend could not be detected in19DEL mutation patients (Fig. 1E). Other clinical biomarkers were also subjected to K-M survival analysis, and the indicators that have predictive value on prognosis are shown in Figs. 1E and 2.

We performed COX univariate and multivariate analyses for OS outcomes to determine which factors are independent in the prognosis of patients with L858R and 19DEL mutation (Tables 5 and 6). In multivariate analysis, we found that in patients with L858R mutation, high eHSP90 α expression and high Th levels were short OS significantly associated (eHSP90a, *P*=0.0305 and Th, *P*=0.0282); In patients with 19DEL mutations, high CEA and Th levels had independent indicators of the prognosis of their short OS (CEA, *P*=0.0150, and Th, *P*=0.0392). Therefore, we included eHSP90 α and Th, CEA, and Th as reference factors for two different mutations, constructing their nomograms to predict the OS of two other mutations (Fig. 3).

Indicator value of eHSP90 α in PFS and response evaluation in patients with L858R mutation and 19DEL mutation

Compared with OS, PFS and treatment response (RECIST version 1.1) reflect the short-term survival benefits of patients more. Therefore, PFS was first used as the outcome for univariate and multivariate analysis of Cox (Tables 5 and 6). In multivariate analysis, we found a significant relationship between high eHSP90 α expression and short PFS in patients with L858R mutation (eHSP90 α , *P*=0.0173). In patients with 19DEL mutations, high CA125 is an independent indicator of the prognosis of PFS (CA125, *P*=0.000575).

Then, eHSP90a was used to explore the diagnostic significance of response status. We screened 89 L858R mutant patients and 196 patients with 19DEL, using LASSO and 10-fold cross-validation, respectively, which were stage, M stage, eHSP90 α , Th, Ts (lambda, Min=0.0472479) and stage, eHSP90 α , CEA, CA125, Th, Th.Ts (lambda, Min=0.04348617). Multiple logistic regression analysis was performed on the above features to further select the independent variables of effective chemotherapy from the LASSO results. The L858R mutation data model ultimately containede HSP90 α (OR=2.865121e+00, p=0.0324)

Characteristics	Total					L858R					19DEL				
	AUC (95%Cl)	Threshold	specificity	Sensitivity	Youden	AUC (95%CI)	Threshold	specificity	Sensitivity	Youden	AUC (95%Cl)	thresh- old	spec- ific- ity	sitiv- ty	ouden
CEA	0.716(0.65- ² 0.783)	45.82	0.804	0.573	0.378	0.682(0.557– 0.807)	41	0.804	0.556	0.359	0.734(0.657– 0.811)	46.815	0.797	0.0	.397
CA125	0.668(0.598- ² 0.738)	43.9	0.626	0.646	0.272	0.63(0.502– 0.758)	55.8	0.714	0.556	0.27	0.684(0.599– 0.769)	38.6	0.585).745 0	331
eHSP90a	0.644(0.57- 3 0.718)	35.6	0.45	0.825	0.275	0.765(0.649– 0.88)	44.8	0.755	0.75	0.505	0.591(0.499– 0.683)	35.75	0.388	0.821 0	209
CA153	0.639(0.569- ⁻ 0.71)	18.85	0.508	0.744	0.252	0.577(0.445– 0.709)	19	0.554	0.667	0.22	0.673(0.591– 0.755)	12.5	0.317	0.982	299
Natural killer cells	0.592(0.512- ⁻ 0.672)	19.25	0.756	0.429	0.184	0.538(0.4- 0.676)	16.865	0.625	0.56	0.185	0.612(0.514– 0.71)	24.635	0.0).346 0	.246
CA199	0.588(0.508- 3 0.668)	30.1	0.827	0.415	0.241	0.573(0.44– 0.707)	14.2	0.643	0.519	0.161	2.592(0.49– 2.693)	30.1	0.829	0.455 0	284
B lymphocytes	0.568(0.493- ⁻ 0.643)	11.8	0.477	0.688	0.166	0.467(0.334– 0.601)	6.1	0.286	0.8	0.086	0.586(0.494– 0.677)	12.085	0.492	0.712 0	203
TK1	0.54(0.466- (0.614)	0.305	0.258	0.877	0.135	0.566(0.427– 0.704)	0.63	0.473	0.704	0.176	0.531(0.444– 0.618)	0.305	0.252	0.926 0	.178
T helper cells	0.538(0.459- 3 0.616)	34.25	0.562	0.545	0.108	0.58(0.447– 0.713)	36.415	0.714	0.52	0.234 (0.587(0.489– 0.685)	34.25	0.642).577 0	219
T lymphocytes	0.533(0.454- 5 0.611)	51.965	0.875	0.234	0.109	0.504(0.374– 0.634)	60.25	0.393	0.8	0.193 (0.552(0.454– 0.651)	52.015	0.883	0.308 0	.191
suppressor T cells	0.508(0.433- 2 0.584)	26.165	0.278	0.844	0.123	0.525(0.394– 0.656)	26.15	0.375	0.84	0.215 (0.5(0.406– 0.594)	18.5	0.383	0.731 0	114
T helper cells/ suppressor T cells	0.48(0.402- ⁻ 0.558)	1.65	0.511	0.532	0.044	0.547(0.411– 0.683)	1.35	0.411	0.76	0.171	0.548(0.451– 0.645)	1.55	0.642	0.462 0	.103
Abbreviation: CEA: (Th: T helper cells; Ts	carcinoembryonic : suppressor T cell.	: antigen; CA12 s; B cell: B lym	25: carbohydr: phocytes; Th/	ate antigen 125; C/ 'Ts: T helper cells/	V153: carboh suppressor	lydrate antigen 1 T cells; NK: natura	53; CA199: carb al killer; TK1: thy	ohydrate anti midine kinase	gen 199; eHSP9 e 1; OS: overall	90α: extrace survival; PF	ellular heat shocl S: progression-fi	 k protein 9 ee surviva 	0 AA1; T 6	ell: T lym	ohocytes;

 Table 4
 Receiver operating characteristic curve of parameters

 Characteristics
 Total

Bian et al. BMC Cancer

Note: Bold font indicates maximum value

Fig. 2 Kaplan-Meier Survival curve of CEA, CA125, CA153, CA199, Th cells, Ts cells, B lymphocytes, TK1 of OS in patients with LUAD 19DEL mutation

Variables	Univaria	ate Cox regre	ession analysis				Multiva	riate Co	regression a	analysis		
	os			PFS			os			PFS		
	P-value	HR	95%CI	P-value	HR	95%Cl	P-value	HR	95%CI	P-value	HR	95%Cl
Stage												
Stage II	1.000	9.840e-01	0-Inf	1.000	9.598e-01	0-Inf						
Stage III	0.998	1.886e+07	0-Inf	0.998	1.021e+07	0-Inf						
Stage IV	0.998	2.623e+07	0-Inf	0.997	3.063e+07	0-Inf						
T stage												
T2	0.578	0.6279	0.1221-3.230	0.729	1.2252	0.3878-3.871						
Т3	0.419	1.8324	0.4213-7.969	0.381	1.7083	0.5156-5.660						
T4	0.271	2.0150	0.5794-7.008	0.347	1.6295	0.5893–4.505						
N stage												
N1	0.349	0.3171	0.0287-3.507	0.996	7.203e+07	0-Inf						
N2	0.289	2.2549	0.5021-10.124	0.996	9.526e+07	0-Inf						
N3	0.256	2.4808	0.5167-11.911	0.996	8.516e+07	0-Inf						
M stage	0.486	1.6799	0.3899–7.237	0.0667	3.8515	0.9111-16.28						
eHSP90a	0.0371	2.7732	1.063-7.237	0.0156	2.4257	1.183–4.976	0.0305	2.3846	1.085-5.239	0.0173	2.4126	1.168-4.982
TK1	0.194	1.9369	0.7137-5.256	0.602	1.3773	0.4129–4.594						
CEA	0.516	0.7094	0.2517-1.999	0.213	1.9738	0.677-5.754						
CA125	0.604	0.7845	0.3132-1.965	0.168	1.8826	0.7657-4.629						
CA153	0.0805	2.0037	0.9192-4.368	0.0474	2.0159	1.008-4.031						
CA199	0.165	1.8223	0.7817-4.248	0.124	1.9397	0.833-4.517						
T cell	0.0931	2.3224	0.8686-6.21	0.266	1.5730	0.708-3.494						
Th	0.0195	2.9964	1.194–7.522	0.411	1.3988	0.6284-3.114	0.0282	2.7168	1.112-6.635			
Ts	0.218	3.537	0.473-26.45	0.125	3.0922	0.7303-13.09						
Th/Ts	0.174	1.8946	0.7538-4.762	0.247	0.6552	0.3204-1.34						
NK cell	0.13	0.4214	0.1376-1.291	0.572	0.7347	0.2522-2.14						
B cell	0.263	0.4370	0.1026-1.861	0.635	0.7742	0.2691-2.228						

Table 5 Cox regression analysis on the L858R OS and PFS of LUAD

Abbreviation: CEA: carcinoembryonic antigen; CA125: carbohydrate antigen 125; CA153: carbohydrate antigen 153; CA199: carbohydrate antigen 199; eHSP90a: extracellular heat shock protein 90 AA1; T cell: T lymphocytes; Th: T helper cells; Ts: suppressor T cells; B cell: B lymphocytes; Th/Ts: T helper cells/ suppressor T cells; NK: natural killer; TK1: thymidine kinase 1; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; PFS: progression-free survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; CI: confidence interval; HR: hazard ratio; OS: overall survival; CI: confidence interval; HR: hazar

and Th(OR=3.182332e+00, p=0.0288), and the 19DEL mutation data model ultimately contained eHSP90 α (OR=2.130448e+00, p=0.0246), CA.125 (OR=2.087725e+00, p=0.0367), Th.Ts (OR=4.334531e-01, p=0.0260) (Fig. 4A adn 4E). The AUC of the model in L858R mutation and 19DEL were 0.68 and 0.683, respectively (Fig. 4B and F). The models were verified by bootstrapping (Fig. 4D, C-index=0.68 and 4 H, C-index=0.683). In this study, the decision curve analysis of two models showed that the response evaluation nomogram would profit more than the threshold (Fig. 4C and G).

Discussion

EGFR is a transmembrane glycoprotein distributed on the surface of epithelial cells and consists of extracellular ligand-binding regions, transmembrane regions, and intracellular tyrosine kinase binding regions. Studies have found that patients with EGFR gene mutations are relatively more likely to have metastasis. The most common is bone metastasis and brain metastasis [16]. In recent years, targeted therapy for patients with EGFR mutations has achieved significant clinical efficacy, significantly prolonging survival compared with traditional chemotherapy regimens [17]. 19DEL and L858R are the two most common sensitive mutations in EGFR-TKI. Data from multiple trials suggest that the efficiency of different treatment strategies may vary depending on various EGFR mutation states, particularly between 19DEL and L858R mutations. For example, studies have found that patients with 19DEL have a higher PFS than patients treated with TKIs than patients with L858R [18]. It has also been found that OS in patients with 19DEL is higher than in patients with L858R in our study [7].

HSP90 α is the only isoform detected in plasma. In addition to participating in various cell life activities such as apoptosis, it has also been used as a clinical biomarker in multiple cancers. Several studies have shown that it has good diagnostic performance and prognostic value as a marker for cancers [19–21]. Studies have long found that eHSP90a can assist in

Od Product Hs S9%CI Product Hs S9%CI Product Hs S9%CI Product Hs S9%CI Hs S9%CI Product Hs S9%CI Hs S9%CI <th>Variables</th> <th>Univariate (</th> <th>Cox regression a</th> <th>analysis</th> <th></th> <th></th> <th></th> <th>Multivaria</th> <th>ite Cox regr</th> <th>ession analysis</th> <th></th> <th></th> <th></th>	Variables	Univariate (Cox regression a	analysis				Multivaria	ite Cox regr	ession analysis			
Addit H 95%CI Andlue 95%CI 95%CI </th <th></th> <th>SO</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>PFS</th> <th></th> <th></th> <th></th> <th></th> <th></th>		SO						PFS					
Stage Bage Bage Bage Bage Bage Bage Bage B		P-value	HR	95%CI	P-value	HR	95%CI	P-value	HR	95%CI	P-value	HR	95%CI
Singell 097 36.0.e+0 0+1 094 4776+0 0+1 Singell 097 36.0.e+0 0+1 094 2.128e+0 0+1 Singell 097 3.66.2.e+0 0+1 094 2.128e+0 0+1 Singell 097 3.66.2.e+0 0+1 0.94 2.128e+0 0+1 Tage 0383 095370 0.4991-1970 0.0397 1.0695-3.540 0+1 Tage 0335 04591-1970 0.0397 1.9752 10605-3.540 0+1 Tage 0335 04591-1970 0.0397 1.9752 10605-3.540 0+1 Nitage 3350 04489-138 0.3075 1.468-616 0+1 0.001	Stage												
Stage II 037 3622=407 01f 0394 2.128=407 01f Stage IV 037 2.496+107 0141 2.126=407 01f Stage IV 037 04591-1979 0.3577 19752 10695-3649 12 0588 045317 04591-1979 0.3577 139933 05734-200 17 033 07565 04591-1979 0.3677 13993 05734-200 17 033 075636 04591-1979 0.3677 13973 05734-200 17 033 075636 0471-1979 0.4573-1360 05734-200 17 033 03570 0478-1563 00716 3462 1378-16137 17 0219 33292 1378-16137 1386-16137 1378-16137 17 0219 3472 1386-16137 0478-1639 0378-1243 17 0219 3472 1386-16137 0478-1639 0478-1637 17 0219 0479234 09792-1248 0979-1	Stage II	0.997	3.662e+07	0-Inf	0.994	4.437e+07	0-Inf						
Stage () 037 2749e+07 0hf 0345 2749e+07 0hf 0345 0456-3649 0 12 088 03527 04391-139 0367 139732 0569-3649 1 1 13 0578 04391-139 0367 139732 0578-1742 0 1 0 <td>Stage III</td> <td>0.997</td> <td>3.662e+07</td> <td>0-Inf</td> <td>0.994</td> <td>2.128e+07</td> <td>0-Inf</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Stage III	0.997	3.662e+07	0-Inf	0.994	2.128e+07	0-Inf						
Tstage 1 12 0.898 0.95327 0.491-1979 0.0297 1.9973 0.654-3649 12 0.898 0.95327 0.491-1979 0.0297 1.3973 0.654-3649 13 0.835 0.4961-1979 0.8577 1.3973 0.5078-1742 14 0.835 0.9570 0.4661-1918 0.8457 1.3973 0.578-1742 N tage 335 0.9250 0.4919-2639 0.90176 3.8762 1.3875-16137 N tage 0.3259 0.4919-2639 0.00176 3.8864 0.9955-8343 N tage 0.244 1.5591 0.00176 3.8864 0.9955-8343 N tage 0.244 1.5591 0.00176 3.8864 0.9955-8343 N tage 0.234 1.885-16137 1.2853-1313 0.0176 3.8962 N tage 0.244 0.3933 0.3932-1313 0.3975-1343 0.3975-1343 N tage 0.244 0.0129 1.3711 0.3932-2203 0.3972-1314 0.0156	Stage IV	0.997	2.749e+07	0-Inf	0.994	2.745e+07	0-Inf						
12 0.888 0.93327 0.4591-1979 0.0297 197522 10.065-3649 13 0.578 0.7688 0.4591-1979 0.3677 1.39733 0.6734-2.000 14 0.835 0.9270 0.4468-1918 0.4551-1979 0.3677 1.39733 0.6734-2.000 14 0.835 0.4581-1979 0.3677 1.39733 0.6734-2.000 17 0.248 3.354 0.4488-1613 0.6734-1200 0.6734-1200 1 0.11 3.529 0.4719-5.639 0.0176 3.4622 1.3765-6137 0.0335-8333 0.0335-8333 0.0357-8343 1 0.11 3.529 0.4719-5.638 0.0129 1.37559 0.3875-1513 0.0357-8343 1 0.11 0.259 0.9875-333 0.0375-8343 0.0375-8343 0.0375-834 1 0.11 0.029 4.8301 1.174-1986 0.407 0.7766 0.4308-1407 0.0150 1.2201-9274 0.03574 1 0.0234 1.174-1986 0.407	T stage												
13 0578 076685 04591-1979 03571 139973 06734-2909 14 0835 092570 04468-1918 04555 0308-1742 N1 0248 3364 04289-2638 0.04058 05076 1385-16137 N1 0248 3354 04719-5639 001716 34622 13875-16137 N2 0111 3529 04719-5639 00716 34622 13875-16137 N3 0111 3529 04719-5639 05074 28848 09975-9343 N4 0524 1599 07079-3899 0129 13711 0532-2233 M4306 0531 17740 0381-3156 0192 13711 0532-2233 M4308 0531 17740 0381-3136 0479-5432 0375 1371 M4308 2371-1040 000077 1371 05322-2203 0372-2705 CA125 2374 0438-1407 0453 1271-9274 0053 CA125 2374	Τ2	0.898	0.95327	0.4591–1.979	0.0297	1.97552	1.0695-3.649						
	T3	0.578	0.76585	0.4591-1.979	0.3677	1.39973	0.6734-2.909						
N tage N tage 0.0355 3.364 0.428-26.38 0.00188 5.505 1.8785-16.137 0.03556 3.2972 1.0859-10012 N1 0.248 3.359 0.4719-56.39 0.01716 3.4622 1.3468-9614 1.001 3.297 1.0859-10012 1.0859-10012 N3 0.111 3.529 0.6855-3933 0.05054 2.8848 0.9975-8343 1.0468-9614 1.001 1.011 3.529 0.07176 3.4922 1.3468-9614 1.011 3.529 0.01716 3.0975-8343 0.0975-8343 0.0975-8343 0.0975-8343 0.0129 1.3711 0.0392-2544 0.3992-1304 0.0136 3.1292-1314 0.015 1.2922-3134 0.015 1.2922-3134 0.015 1.2922-3203 0.00145 3.0324 1.201-9274 0.015 1.2452-368 1.2452-368 1.2462-3134 0.015 1.2120-9274 0.0015 1.2452-368 1.2462-368 1.2462-3613 1.2452-368 1.2462-3613 1.2462-3613 1.2462-3613 1.2462-3613 1.2462-3613 1.2462-3613 1.2462-3613	Τ4	0.835	0.92570	0.4468-1.918	0.8455	0.94055	0.5078-1.742						
NI 0.248 3364 0.4289-26.38 0.0018 5.507 1.8785-16.137 0.035526 3.2972 10859-10012 N2 0.219 3.229 0.4719-26.39 0.01716 3.4622 1.2468-9614 1.468-9614 N3 0.111 3.529 0.8655-3933 0.0054 2.8848 0.9975-8343 1.0468-9614 M stage 0.244 1.6591 0.7079-3889 0.129 1.5559 0.8972-554 1.7540 0.8851-3136 0.129 1.3771 0.892-2203 M stage 0.0281 1.7540 0.881-3156 0.410 0.897-3203 0.897-3203 1.846-961407 0.8851-3109 0.897-2203 Ktl 0.00581 1.174-1946 0.4047 0.786 0.444-3503 1.2701-9274 0.00575 1.2452-3688 CA125 2.788-06 4.3888 2.00337 2.2489 1.444-3503 1.2701-9274 0.00575 2.1283 1.2452-3.688 CA125 2.788-06 4.3888 2.00237 2.2489 1.444-3503 0.00575 <td< td=""><td>N stage</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	N stage												
N2 0.219 3.529 0.4719-26.39 0.0716 3.4622 1.2468-9614 N3 0.111 3.529 0.6855-3933 0.0054 2.848 0.9975-8343 M stage 0.244 1.559 0.6857-3933 0.05054 2.848 0.9975-8343 M stage 0.244 1.559 0.6857-3933 0.05054 2.848 0.9975-8343 M stage 0.244 1.559 0.879-2.754 0.879-2.754 eH5P00 0.0581 1.7540 0.991-3.136 0.192 1.3711 0.8532-2.203 TK1 0.029 48301 1.174-1986 0.407 1.9651 1.232-3.134 0.0150 TC413 0.00146 3.0534 1.744-3503 0.382-1.109 0.00272 1.114-3.03 CA125 2.78e-06 4.8388 2.502-9357 0.00033 2.033-4.234 0.0150 CA125 2.78e-06 1.38841 1.746-5.432 0.272 0.2022-2.111 CA110 0.078 1.2692 0.404-1.1053 <t< td=""><td>N1</td><td>0.248</td><td>3.364</td><td>0.4289–26.38</td><td>0.00188</td><td>5.5057</td><td>1.8785-16.137</td><td></td><td></td><td></td><td>0.03526</td><td>3.2972</td><td>1.0859-10.012</td></t<>	N1	0.248	3.364	0.4289–26.38	0.00188	5.5057	1.8785-16.137				0.03526	3.2972	1.0859-10.012
N3 0.111 3.2.9 0.6855-3933 0.6054 2.848 0.9975-8.343 M stage 0.244 1.6591 0.7079-3.889 0.129 1.5559 0.879-2.754 M stage 0.244 1.6591 0.7079-3.889 0.129 1.5519 0.879-2.754 H SP00a 0.0581 1.7540 0.981-3136 0.192 1.3711 0.8532-2.203 T K1 0.029 4.8301 1.174-1986 0.407 0.7786 0.4306-1.407 C H2 3.18e-05 5.1159 2.371-1104 0.00457 1.3661 1.232-3134 0.0150 3.4321 1.2701-9274 C H3 3.18e-05 5.1159 2.371-1104 0.00457 1.3070 0.322-3113 0.0157 0.00575 1.2452-3.638 C H1 0.078 1.7699 0.337-1099 0.444-3.503 0.2555-1909 0.3222-2.011 C M15 0.0078 1.203-3.340 0.266 1.2088 0.7555-1.909 1.2701-9.274 C m078 1.7669 0.333-3.243 <	N2	0.219	3.529	0.4719-26.39	0.01716	3.4622	1.2468–9.614						
M stage 0.244 1.6591 0.7079-3.889 0.129 15559 0.879-2.754 eHSP000 0.0581 1.7540 0.981-3.136 0.192 1.3711 0.8532-2.203 TK1 0.029 4.8301 1.174-19.86 0.407 0.7786 0.4308-1.407 0.6351-3.134 0.0150 3.4321 1.2701-9.274 CA125 3.18e.05 5.1159 2.371-11.04 0.00437 1.232-3.134 0.0150 3.4321 1.2701-9.274 CA125 2.78e.06 4.838 2.502-9.357 0.00337 2.2489 1.444-3.503 CA153 0.00146 3.0534 1.716-5.432 0.00337 2.2489 1.444-3.503 CA159 0.00146 3.0534 1.716-5.432 0.00337 2.2489 1.444-3.503 CA159 0.00146 3.0534 1.716-5.432 0.257 1.3070 0.322-2.109 CA150 0.078 1.7699 0.938-3.344 0.2026 0.404+1.053 0.013 0.0573 2.1233 1.2452-3.638	N3	0.111	3.529	0.6855-39.33	0.05054	2.8848	0.9975-8.343						
eHSP90a0.05811.75400.981-3.1560.1921.37110.8532-2.203TK1 0.029 483011.174-19860.4070.07860.4308-1.4073.43211.2701-9.274CEA 3.18e-05 5.11592.371-1104 0.00457 1.96511.232-3.134 0.0150 3.43211.2701-9.274CA125 2.378 0.003372.24891.444-3.5030.01503.43211.2701-9.274 0.00575 CA153 0.00146 3.05341.716-5.4320.003372.24891.444-3.5030.01503.43211.2701-9.274CA159 0.00146 3.05341.716-5.4320.2571.30700.8227-2.0769.0327-2.0762.12831.2452-3.638CA199 0.00833 2.05381.203-3.3060.4161.20880.7655-1.9099.0322-2.1119.033732.12831.2452-3.638Tcell0.0781.97690.938-3.340.2861.30130.8022-2.111 0.03392 2.09581.0373-4.234Trell0.0780.06200.343-1.2780.07041.50220.9667-2.3340.03921.0373-4.234ThVTs0.2190.66200.343-1.2780.066220.311-0.90880.056220.311-0.9088Mcell0.4580.77580.374-0.85860.110.60900.511-0.9088Mcell0.0130.4360.5220.5004-2.3340.017-0.9038Mcell0.4580.77580.272-0.06890.311-0.9088Mcell0.4360.2720.502	M stage	0.244	1.6591	0.7079–3.889	0.129	1.5559	0.879-2.754						
TK1 0.029 4.8301 1.174-19.86 0.407 0.7786 0.4308-1407 3.4321 1.2701-9.274 CEA 3.18e-05 5.1159 2.371-1104 0.00457 19651 1.232-3.134 0.0150 3.4321 1.2701-9.274 CA125 2.78e-06 48388 2.502-9.357 0.00337 2.489 1.44-3503 0.0150 3.4321 1.2701-9.274 0.255 -3.158 CA153 0.000146 3.0534 1.716-5.432 0.257 1.3070 0.8227-2.076 0.0157 2.1283 1.2452-3.638 CA199 0.06333 2.0538 1.203-3.506 0.416 1.208 0.7555-1.1099 0.00575 2.1283 1.2452-3.638 T cell 0.078 1.7699 0.383-3.34 0.2655-1.1099 0.8227-2.076 0.00575 2.1283 1.2452-3.638 T cell 0.078 1.7699 0.383-3.34 0.2825 0.3022-2.111 0.00575 2.1283 1.2455-3.638 T cell 0.0713 1.9786 1.3013 0.6222	eHSP90α	0.0581	1.7540	0.981–3.136	0.192	1.3711	0.8532-2.203						
CEA 3.18e-05 5.11592.371-11.04 0.00457 1.96511.232-3.134 0.0150 3.43211.2701-9.274CA125 2.78e-06 483882.502-9.357 0.000337 2.24891.444-3.503 0.00575 2.12831.2452-3.638CA153 0.000146 3.05341.716-5.4320.2571.30700.8227-2.076 0.00575 2.12831.2452-3.638CA199 0.00833 2.05381.203-3.5060.4161.20880.7655-1.909 0.00575 2.12831.2452-3.638CA1900.0781.76990.938-3.3440.2861.30130.8227-2.111 0.00575 2.12831.2452-3.638T cell0.0781.76990.938-3.3440.2861.30130.8022-2.111 0.0372 2.09581.0373-4.234T cell0.0741.5020.080330.65250.4044-1.053 0.0392 2.09581.0373-4.234Th 0.0413 1.84811.025-3.3340.07041.50220.9667-2.334 0.0392 2.09581.0373-4.234Th 0.0413 1.84811.025-3.3340.07041.50220.9667-2.334 0.0373-4.234 Th 0.0413 1.84811.025-3.3340.07041.50220.9667-2.334Th0.4160.7580.3998-1.5050.25221.36750.9667-2.334Th0.4580.77580.3998-1.5050.25221.36750.9667-2.334Th0.4580.77580.3998-1.5050.25221.36750.9667-2.334<	TK1	0.029	4.8301	1.174–19.86	0.407	0.7786	0.4308-1.407						
CA125 2.78e-06 483882.502-9.357 0.00337 2.24891.444-3.503 0.00575 2.12831.2452-3.638CA153 0.00146 3.05341.716-5.4320.2571.30700.8227-2.076 0.00575 2.12831.2452-3.638CA199 0.00833 2.05381.203-3.5060.4161.20880.7655-1.909 0.8227-2.111 Tcell0.0781.76990.938-3.340.2861.30130.8022-2.111Tcell0.0781.97861.051-3.7250.80030.65250.4044-1.053 0.0392 2.09581.0373-4.234Th 0.0345 1.97861.051-3.7250.80030.65250.4044-1.053 0.0392 2.09581.0373-4.234Th 0.0413 1.84811.025-3.3340.07041.50220.9667-2.334 0.0392 2.09581.0373-4.234Th/Ts0.2190.66200.343-1.278 0.0209 0.53160.311-0.9088 0.311-0.9088 Nkcell0.4530.7551.36750.8004-2.337 0.8004-2.3370.8004-2.337 Scell 0.011 0.48360.110.69900.4508-1.084 0.4508-1.084	CEA	3.18e-05	5.1159	2.371-11.04	0.00457	1.9651	1.232–3.134	0.0150	3.4321	1.2701–9.274			
CA153 0.000146 305341.716-54320.2571.30700.8227-2.076CA199 0.00833 2.05381.203-3.5060.4161.20880.7655-1.909T cell0.0781.76990.938-3.340.2861.30130.8022-2.111T h 0.0345 1.97860.03130.65250.4044-1.053 0.0392 2.0958Th 0.0345 1.97861.051-3.7250.80030.65250.4044-1.053 0.0392 2.0958Th 0.0413 1.84811.025-3.3340.07041.50220.9667-2.334Th/Ts0.2190.66200.343-1.278 0.0209 0.53160.311-0.9088Nk cell0.4530.77580.3998-1.5050.52160.311-0.9088S cell 0.0131 0.48360.110.69900.4508-1.084	CA125	2.78e-06	4.8388	2.502-9.357	0.000337	2.2489	1.444–3.503				0.00575	2.1283	1.2452–3.638
CA199 0.00833 205381.203-3.5060.4161.20880.7655-1.909T cell0.0781.76990.938-3.340.2861.30130.8022-2.111Th 0.0345 1.97861.051-3.7250.80030.65250.4044-1.053 0.0392 2.09581.0373-4.234Th 0.0413 1.84811.051-3.3340.07041.50220.9667-2.334 0.0392 2.09581.0373-4.234Th/Ts0.2190.66200.343-1.278 0.0209 0.53160.311-0.9088 0.0392 2.09581.0377-4.234NK cell0.4530.77580.3998-1.5050.53160.311-0.9088 0.0104 1.50220.8004-2.334B cell 0.0131 0.48360.110.69900.4508-1.084 0.4508-1.084	CA153	0.000146	3.0534	1.716-5.432	0.257	1.3070	0.8227-2.076						
T cell 0.078 1.7699 0.938-3.34 0.286 1.3013 0.8022-2.111 Th 0.0345 1.9786 1.051-3.725 0.8033 0.6525 0.4044-1.053 0.0392 2.0958 1.0373-4.234 Th 0.0345 1.8481 1.025-3.334 0.0704 1.5022 0.9667-2.334 Th/Ts 0.219 0.6620 0.343-1.278 0.0709 1.5022 0.3667-2.334 NK cell 0.453 0.7758 0.3099 -1.505 0.5316 0.311-0.9088 NK cell 0.453 0.7758 0.2099 0.5316 0.301-2.334 B cell 0.0131 0.4836 0.11 0.6990 0.4508-1.084	CA199	0.00833	2.0538	1.203–3.506	0.416	1.2088	0.7655-1.909						
Th 0.0345 1.9786 1.051-3.725 0.8033 0.6525 0.4044-1.053 0.0392 2.0958 1.0373-4.234 Ts 0.0413 1.8481 1.025-3.334 0.0704 1.5022 0.9667-2.334 Th/Ts 0.219 0.6620 0.343-1.278 0.0209 0.5316 0.311-0.9088 NK cell 0.453 0.7758 0.3998-1.505 0.252 1.3675 0.8004-2.337 B cell 0.0131 0.4836 0.11 0.6990 0.4508-1.084	T cell	0.078	1.7699	0.938–3.34	0.286	1.3013	0.8022-2.111						
Ts 0.0413 18481 1.025-3.334 0.0704 1.5022 0.9667-2.334 Th/Ts 0.219 0.6620 0.343-1.278 0.0209 0.5316 0.311-0.9088 NK cell 0.453 0.7758 0.3998-1.505 0.252 1.3675 0.8004-2.337 B cell 0.0131 0.4836 0.11 0.6990 0.4508-1.084	Th	0.0345	1.9786	1.051-3.725	0.0803	0.6525	0.4044-1.053	0.0392	2.0958	1.0373-4.234			
Th/Ts 0.219 0.6620 0.343-1.278 0.0209 0.5316 0.311-0.9088 NK cell 0.453 0.7758 0.3998-1.505 0.252 1.3675 0.8004-2.337 B cell 0.0131 0.4836 0.21724-0.8586 0.11 0.6990 0.4508-1.084	Ts	0.0413	1.8481	1.025–3.334	0.0704	1.5022	0.9667–2.334						
NK cell 0.453 0.7758 0.3998-1.505 0.252 1.3675 0.8004-2.337 B cell 0.0131 0.4836 0.2724-0.8586 0.11 0.6990 0.4508-1.084	Th/Ts	0.219	0.6620	0.343-1.278	0.0209	0.5316	0.311-0.9088						
B cell 0.0131 0.4836 0.2724-0.8586 0.11 0.6990 0.4508-1.084	NK cell	0.453	0.7758	0.3998-1.505	0.252	1.3675	0.8004-2.337						
	B cell	0.0131	0.4836	0.2724-0.8586	0.11	0669.0	0.4508-1.084						
	hazard ratio;	OS: overall surviv	val; PFS: progressic	on-free survival									

ī -Tabla 6

Fig. 3 Nomograms based on OS in patients with LUAD 19DEL and L858R mutations. The prognostic nomogram for OS is based on the prognostic scores of eHSP90α and other factors in (A) L858R and (C)19DEL patients. The prognostic nomogram for PFS is based on the prognostic scores of eHSP90a and other factors in (B) L858R and (D) 19DEL patients

diagnosing LC and is associated with its progression [14, 22]. Still, no one has explored the expression and diagnostic efficacy of eHSP90a in different subtypes of EGFR mutations in LUAD. Our previous study found that in SCLC, the diagnostic efficacy of eHSP90 as a prognostic evaluation and diagnostic marker is better than NSE, a biomarker of classical SCLC [15]; In this study, we found a positive correlation between eHSP90 α and CEA. In the evaluation of diagnostic efficacy, we found that among the patients with L858R mutation, eHSP90 α had the best diagnostic efficacy (AUC=0.765) among all the indicators we included in the evaluation and was only slightly inferior to CEA in a single specific index; In the data of patients with 19DEL mutation, we found that the performance of eHSP90 α is somewhat insufficient, and the biological indicator with the highest diagnostic efficacy is CEA (AUC = 0.734), despite this, CEA is still not as sensitive as eHSP90a. Another study also found that eHSP90a is a valuable predictor of response to early chemotherapy and positively correlated with tumor remission after chemotherapy in NSCLC [23]. This study found that high eHSP90 α was closely related to short OS, PFS, and progression after treatment in L858R mutation patients. Among 19DEL mutation patients, high eHSP90 α can only predicted poor treatment response. eHSP90 α is a highly sensitive pan-cancer marker; its specificity may not be enough, so this paper for two different mutation types, using eHSP90 α as the basis, combined with other markers to construct their corresponding prognostic models.

This study also found that high Th cells were closely related to poor OS in 19DEL and L858R mutation patients. Previous works of literature found that NSCLC patients in the advanced group were evidently lower in the expression of CD4+but markedly higher in the expression of CD8+in peripheral blood than in the early group [24]. Another study found that LUAD has higher CD4+expression than other subtypes in NSCLC [24, 25]. Moreover, high expression of CD4+may indicate a better immune response and should indicate better patient survival. Thus, the mechanism still needs to be explored.

In summary, this study found that patients with L858R mutation had worse OS than those with 19DEL mutation. In patients with L858R mutation, eHSP90 α is closely related to short OS, PFS, and progression after treatment. As a new biomarker, eHSP90 α is highly valued in evaluating its prognosis. However, in patients with 19DEL mutation, the indicative value of eHSP90 α is relatively limited, and it only has a specific, meaningful value for the response to treatment. However, this study also had some limitations. First, this is a single-center study; the data may had some selection bias. Second, the accuracy of our nomogram should be evaluated through external validation, which will help to assess whether

Fig. 4 The predictive value of eHSP90a in treating patients with L858R and 19DEL mutations in LUAD. Established (A) L858R and (E) 19DEL mutation response evaluation nomogram with eHSP90a. Receiver operating characteristic curve of (B) L858R and (F) 19DEL model. The decision curve analysis of (C) L858R and (G) 19DEL models showed a response evaluation nomogram. The X-axis is the risk threshold probability that changes from 0 to 1, and the Y-axis is the calculated net profit for a given threshold probability. Calibration curves of (D) L858R and (H) 19DEL nomogram. Notes: The x-axis represents the predicted probability of progression. The y-axis represents the actual progression of small-cell lung cancer. The diagonal dotted line represents a perfect prediction by an ideal model. The solid line represents the performance of the nomogram, of which a closer fit to the diagonal dotted line means a better prognosis

our nomogram applies to new Populations. Large-scale clinical trials are needed to illustrate and improve the model's effectiveness in determining prognosis in L858R and 19DEL mutant patients. Finally, we will refine the diagnostic models and cost-effectiveness analyses and improve their clinical utility.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12885-024-12573-3.

Supplementary Material 1

Acknowledgements

This work was supported by the Guangxi Cancer Hospital Biological Resource Bank for providing the samples.

Author contributions

HZ Liu, JL Li, and LT Zhang designed the study. JL Huang, ZR Feng, and YY Lin collected the data. HZ Liu and YZ Bian analyzed the data. YZ Bian and HZ Liu wrote the manuscript. All authors approved the final version of the manuscript.

Funding

This study was supported by grants from the Key R&D Program of Scientific Research and Technology Development Project of Nanning, Guangxi (Grant No. ZC20213009), the Technology Development Program Project, and the Key R&D Program of Scientific Research and Technical Development Project of Qingxiu District, Nanning, Guangxi (Grant No. 2021015). The Guangxi Zhuang Autonomous Region Health Commission Self-funded Research Project (Z-A20230756).

Data availability

This published article and its supplementary information files include all data generated or analyzed during this study. The corresponding author can provide all possible assistance to the requester of the original data.

Declarations

Ethics approval and consent to participate

The Guangxi Medical University Cancer Hospital Ethics Committee reviewed and approved the studies involving human participants. The patients/ participants provided written informed consent to participate in this study.

Consent for publication

All authors agree to the publication of this article.

Competing interests

The authors declare no competing interests.

Received: 29 May 2023 / Accepted: 27 June 2024 Published online: 12 July 2024

References

- Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49.
- Meza R, Meernik C, Jeon J, Cote ML. Lung cancer incidence trends by gender, race and histology in the United States, 1973–2010. PLoS ONE. 2015;10:e0121323.
- Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu Y-L, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311.
- 4. Epidermal G. Factor Receptor Role in Human Cancer.pdf.

- Wei W-E, Mao N-Q, Ning S-F, Li J-L, Liu H-Z, Xie T, et al. An analysis of EGFR mutations among 1506 cases of non-small cell lung cancer patients in Guangxi, China. PLoS ONE. 2016;11:e0168795.
- Pan X-B, Liang F-S, Tang Q-Y, Liang H-W, Zhu X-D. Comparison of the efficacy of EGFR-TKIs Combined with antiangiogenic agents between patients with exon 19 deletion and patients with Exon 21 Leu858 arg mutation: a systematic review and meta-analysis. J Oncol. 2022;2022:1–9.
- Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18:345–60.
- Hoter A, El-Sabban M, Naim H. The HSP90 Family: structure, regulation, function, and implications in Health and Disease. JJMS. 2018;19:2560.
- Sima S, Richter K. Regulation of the Hsp90 system. Biochim et Biophys Acta (BBA) - Mol Cell Res. 2018;1865:889–97.
- 11. Saini J, Sharma PK. Clinical, prognostic and therapeutic significance of heat shock proteins in cancer. CDT. 2018;19:1478–90.
- Yuan Z, Wang L, Chen C. Analysis of the prognostic, diagnostic and immunological role of HSP90α in malignant tumors. Front Oncol. 2022;12:963719.
- Han Y, Zhang Y, Cui L, Li Z, Feng H, Zhang Y, et al. Plasma heat shock protein 90alpha as a biomarker for the diagnosis of liver cancer: in patients with different clinicopathologic characteristics. World J Surg Onc. 2021;19:228.
- Shi Y, Liu X, Lou J, Han X, Zhang L, Wang Q, et al. Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses. Clin Cancer Res. 2014;20:6016–22.
- Huang B, Pan J, Liu H, Tang Y, Li S, Bian Y, et al. High expression of plasma extracellular HSP90α is associated with the poor efficacy of chemotherapy and prognosis in small cell lung cancer. Front Mol Biosci. 2022;9:913043.
- Guan J, Chen M, Xiao N, Li L, Zhang Y, Li Q, et al. EGFR mutations are associated with higher incidence of distant metastases and smaller tumor size in patients with non-small-cell lung cancer based on PET/CT scan. Med Oncol. 2016;33:1.
- Akamatsu H, Toi Y, Hayashi H, Fujimoto D, Tachihara M, Furuya N, et al. Efficacy of osimertinib plus bevacizumab vs osimertinib in patients with *EGFR* T790M–Mutated non–small cell lung cancer previously treated with epidermal growth factor receptor–tyrosine kinase inhibitor: West Japan oncology group 8715L phase 2 randomized clinical trial. JAMA Oncol. 2021;7:386.
- Sheng M, Wang F, Zhao Y, Li S, Wang X, Shou T, et al. Comparison of clinical outcomes of patients with non-small-cell lung cancer harbouring epidermal growth factor receptor exon 19 or exon 21 mutations after tyrosine kinase inhibitors treatment: a meta-analysis. Eur J Clin Pharmacol. 2016;72:1–11.
- Liu H, Zhang Z, Huang Y, Wei W, Ning S, Li J, et al. Plasma HSP90AA1 predicts the risk of breast cancer onset and distant metastasis. Front Cell Dev Biol. 2021;9:639596.
- Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu Y, et al. Heat shock proteins in hepatocellular carcinoma: molecular mechanism and therapeutic potential: heat shock proteins in hepatocellular carcinoma. Int J Cancer. 2016;138:1824–34.
- 21. Wei W, Zhou J, Chen L, Liu H, Zhang F, Li J, et al. Plasma levels of heat shock protein 90 alpha associated with colorectal cancer development. Front Mol Biosci. 2021;8:684836.
- Wan X, Fang Y, Du J, Cai S, Dong H. GW4869 can inhibit epithelial-mesenchymal transition and extracellular HSP90α in gefitinib-sensitive NSCLC cells. OTT. 2023;16:913–22.
- Zhong B, Shen J, Zhang C, Zhou G, Yu Y, Qin E et al. Plasma heat shock protein 90 alpha: a valuable predictor of early chemotherapy effectiveness in advanced non-small-cell lung cancer. Med Sci Monit. 2020;27.
- 24. Yu D-P, Han Y, Zhao Q-Y, Liu Z-D. CD3 ⁺ CD4 ⁺ and CD3 ⁺ CD8 ⁺ lymphocyte subgroups and their surface receptors NKG2D and NKG2A in patients with non-small cell Lung Cancer. Asian Pac J Cancer Prev. 2014;15:2685–8.
- Stankovic B, Bjørhovde HAK, Skarshaug R, Aamodt H, Frafjord A, Müller E, et al. Immune cell composition in human non-small cell lung cancer. Front Immunol. 2019;9:3101.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.