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Abstract
Background  Differentiation of glioma and solitary brain metastasis (SBM), which requires biopsy or multi-disciplinary 
diagnosis, remains sophisticated clinically. Histogram analysis of MR diffusion or molecular imaging hasn’t been fully 
investigated for the differentiation and may have the potential to improve it.

Methods  A total of 65 patients with newly diagnosed glioma or metastases were enrolled. All patients underwent 
DWI, IVIM, and APTW, as well as the T1W, T2W, T2FLAIR, and contrast-enhanced T1W imaging. The histogram 
features of apparent diffusion coefficient (ADC) from DWI, slow diffusion coefficient (Dslow), perfusion fraction 
(frac), fast diffusion coefficient (Dfast) from IVIM, and MTRasym@3.5ppm from APTWI were extracted from the tumor 
parenchyma and compared between glioma and SBM. Parameters with significant differences were analyzed with 
the logistics regression and receiver operator curves to explore the optimal model and compare the differentiation 
performance.

Results  Higher ADCkurtosis (P = 0.022), frackurtosis (P<0.001),and fracskewness (P<0.001) were found for glioma, while 
higher (MTRasym@3.5ppm)10 (P = 0.045), frac10 (P<0.001),frac90 (P = 0.001), fracmean (P<0.001), and fracentropy (P<0.001) 
were observed for SBM. frackurtosis (OR = 0.431, 95%CI 0.256–0.723, P = 0.002) was independent factor for SBM 
differentiation. The model combining (MTRasym@3.5ppm)10, frac10, and frackurtosis showed an AUC of 0.857 (sensitivity: 
0.857, specificity: 0.750), while the model combined with frac10 and frackurtosis had an AUC of 0.824 (sensitivity: 0.952, 
specificity: 0.591). There was no statistically significant difference between AUCs from the two models. (Z = -1.14, 
P = 0.25).

Conclusions  The frac10 and frackurtosis in enhanced tumor region could be used to differentiate glioma and SBM and 
(MTRasym@3.5ppm)10 helps improving the differentiation specificity.
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Background
Glioma and solitary brain metastasis (SBM) are neoplas-
tic diseases with high morbidity and mortality world-
wide [1, 2]. Different treatment strategies and clinical 
management are used for these two types of tumors. 
Maximum-safe-resection followed by chemoradio-
therapy is recommended for glioma to reduce tumor 
size and acquire tumor tissue for identifying the grade 
[3]. For SBM, surgery is considered only when the num-
ber of lesions is less than 4 or there are high-risk or 
life-threatening clinical symptoms, such as intracra-
nial hypertension, tumor apoplexy, increased edema, 
obstructive hydrocephalus, and so on. Moreover, brain 
radiotherapy is also recommended to improve the life 
quality of patients with SBM. [4]. Therefore, accurate dif-
ferentiation of glioma and SBM is of crucial importance. 
Yet, clinically, patients with glioma and SBM may pres-
ent with similar symptoms, including secondary epilepsy, 
dysfunction, and intracranial hypertension; thus, differ-
entiation remains challenging.

Magnetic resonance imaging (MRI) is commonly used 
to diagnosis and differentiate brain neoplasms. Conven-
tional MRIs such as T1, T2 weighted (T1W, T2W), and 
contrast-enhanced T1W (T1W + C) can identify well 
structural abnormalities such as mass size, shape and 
location, edema, ring-enhancing, and necrosis, as well 
as the degree of blood-brain barrier damage and so on. 
Yet, the conventional MRI approach may not be accurate 
enough when differentiating SBM from glioma, espe-
cially high-grade glioma (HGG), which presents as well-
defined spacing occupying lesions with an enhancing rim 
in T1W + C accompanied by hyperintensity peritumoral 
edema in T2W [5]. And the morphological analysis sug-
gested that the volume of tumor parenchyma, midline 
shift, and rim pattern in different conventional weighted 
MR sequences are either not optimal approaches for dif-
ferentiating glioma from SBM [6, 7].

Over the years, advanced MRI technologies such as 
diffusion-weighted imaging (DWI), intravoxel incoher-
ent motion (IVIM), and amide proton transfer-weighted 
(APTW) imaging have been developed and validated, 
and studies have shown that features extracted from 
those images can differentiate glioma from SBM [8–10]. 
DWI applies the diffusion gradient to characterize the 
mobility of water molecules in tissue when there is an 
inhibitory effect on cell membranes [11]. Intravoxel inco-
herent motion (IVIM) is a multi-b value DWI imaging 
that simultaneously measures the perfusion-associated 
microcirculation of blood capillaries at low-b values 
(b < 200  s/mm2) and the molecular water diffusion at 

high-b values. [12]. APTW imaging, as a relatively new 
noninvasive and endogenous contrast molecular imag-
ing, utilizes the effect of chemical exchange saturation 
transfer between amide protons and water protons to 
measure the concentration of mobile proteins/peptides 
and tissue pH [13]. Various studies have shown that DWI, 
IVIM, APTW, or the combination of quantitative param-
eters have a higher diagnostic value than conventional 
MRI when assessing malignant tissue; they can quantify 
tumor regions and perform differentiation of different 
tumor types or even different tumor types or subtypes 
[14–17]. The histogram analysis based on MRI imaging, 
which could extract the characteristics based on quanti-
tative tumor data distribution, was also investigated, and 
showed potential in glioma and SBM differentiation [18].

However, most current studies focused on the analysis 
of peritumoral or edema region for glioma and SBM [15, 
17, 19] with histogram analysis dedicated to the struc-
tural weighted MRI image [20, 21] or quantile of func-
tional image [22, 23]. Yet, it remains unclear whether 
the histogram features of the enhanced tumor area in 
advanced MRI can be helpful when assessing this type 
of tumor. Therefore, in this study, we used DWI, IVIM, 
and APTW imaging to investigate the differentiation of 
glioma and SBM with the parametric quantification and 
the histogram features.

Methods
Participants
The protocol was reviewed and approved by the Ethics 
Committee of Shanxi Provincial People’s Hospital /Fifth 
Hospital of Shanxi Medical University (2022 Research 
Review No. 153). The informed consent was waived. All 
methods were carried out in accordance with the Dec-
laration of Helsinki. A total of 83 patients with brain 
lesions were enrolled from December 2020 to May 2022. 
Inclusion criteria were: (1) patients with a definite diag-
nosis; (2) patients eligible for MRI, and have undergone 
MRI imaging preoperatively. Subjects who underwent 
chemotherapy or radiation therapy were excluded. All 
gliomas were diagnosed by surgical pathology (n = 54) 
according to the WHO 2016 Classification [24]; the diag-
nosis of SBM was obtained from histology (n = 29), imag-
ing follow-up of malignant tumor metastasis (n = 2), or 
tumor markers from laboratory tests (n = 4) [25]. In addi-
tion, 18 patients were excluded prior to the analysis due 
to the following reasons: incomplete imaging data (n = 10) 
and/or unsatisfied image quality (i.e., significant cys-
tic, hemorrhagic, or massive tumor necrosis; n = 8). The 
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remaining 65 patients were included in the study, and the 
study flowchart is shown in Fig. 1.

Data acquisition
MR sequences including T1W, T2W, T2 fluid-attenuated 
inversion recovery (FLAIR), IVIM, DWI, APT weighted 
imaging (APTWI), and contrast-enhanced T1W were 
conducted in a 3.0T MR scanner (Discovery MR 750 W, 
GE Healthcare, Waukesha, WI, USA) with a 24-channel 
head neck coil. Axial IVIM used 12 b-values (0, 20, 40, 
80, 110, 150, 200, 400, 800, 1200, 1500, and 2000s/mm2 
with respective averaging times 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 
2, 2, 4). The following parameters were applied: repeti-
tion time/echo time (TR/TE) = 5400ms/90ms, the field 
of view (FOV) = 220 × 220mm2, matrix size = 110 × 110, 
slice thickness = 4.0  mm, number of slices = 24, slice 
gap = 1.0 mm, acquisition time = 5:28 min. The parameters 
for axial DWI with b-values of 0 and 1000s/mm2 were: 
TR/TE = 6000ms/76ms, FOV = 240 × 240mm2, matrix 
size = 120 × 120, slice thickness = 4.0  mm, number of 
slices = 29, slice gap = 1.0 mm. acquisition time = 0:48 min. 
Diffusion gradients were applied in three orthogonal 
directions for both IVIM and DWI, and the scanning 
slices covered the area of the whole lesion. The APTWI 
was acquired using a 2D single-shot fast spin-echo-based 
sequence (TR/TE = 2950ms/27ms, FOV = 256 × 256mm2, 
matrix size = 120 × 120, slice thickness = 8  mm, number 
of slices = 1, acquisition time = 2:06  min) with phased 
cycle pulses for saturation and the water saturation 

shift reference for B0 correction [26]. The total duration 
for phase cycle pulses is 2000ms under B1 of 2µ T. The 
Z-spectra includes 52 frequencies, 49 of which offset 
from 600 to -600  Hz at an interval of 25  Hz, and three 
unsaturated images at 5000 Hz for signal normalization. 
During APTWI acquisition, we used the slice with the 
largest tumor diameter in the axial FLAIR as a reference 
while avoiding the slice with predominate hemorrhage or 
cyst. The acquisition parameters of T1W, T2W, FLAIR, 
and contrast-enhanced T1W were listed in Table S1. The 
total duration of the imaging protocol is about 30 min.

Imaging processing
The DWI apparent diffusion coefficient (ADC) was gen-
erated on the Advantage Windows 4.7 workstation (Gen-
eral Electric Medical Systems) pixel by pixel with the 
formula:

	 Sb/S0 = exp(−b × ADC)� (1)

where Sb and S0 were the signal intensities for b = 1000 s/
mm2 and b = 0  s/mm2. An in-house built program of 
IVIM bi-exponential fitting in MATLAB 2018b defined 
by (Eq. 2) was used for the calculation of slow diffusion 
coefficient (Dslow), fast diffusion coefficient (Dfast), and 
perfusion fraction (frac) within the region of interest 
(ROI).

	Sb/S0 = frac × exp (−b × Dfast) + (1 − frac) × exp (−b × Dslow)� (2)

Fig. 1  Study Flowchart
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where Sb and S0 were the signal intensities for b ranging 
from 0 to 1200  s/mm2 and b = 0  s/mm2. A linear fitting 
was first applied to the logarithm of the diffusion data 
with b ≥ 200s/mm2 to obtain the D parametric map, after 
which all the diffusion data (b = 0 ∼ 1200  s/mm2) were 
used to fit the bi-exponential model (Eq. 2) with a bound-
constrained optimization mini-search method using the 
online MATLAB code [27]. The APTWI asymmetric 
magnetization transfer ratio at 3.5 ppm is represented as 
MTRasym@3.5 ppm and calculated by:

	MTRasyam@3.5 ppm = [Ssat(−3.5 ppm) − Ssat(+3.5 ppm)]/S0� (3)

using the vendor provided post-processing program, 
where S0 is non-saturation intensity while Ssat is the sig-
nal intensity after saturation.

A neuro-radiologist with 20 years of MR imaging read-
ing experience, Y.-X.H who was blinded to the definite 
diagnosis, drew the ROI of tumor parenchyma on images 
of IVIM b = 0 s/mm2, and maps of DWI ADC and APTWI 
MTRasym@3.5 ppm with contrast-enhanced T1W image 
as the reference where the cerebrospinal fluid-filled, cal-
cification, hemorrhagic, necrotic, and cystic areas were 
avoided wherever possible in 3D-Slicer (https://www.
slicer.org/, version 4.10). Three-dimensional ROI was 
generated for IVIM parametric maps (frac, Dfast, Dslow) 
and DWI ADC while a 2-dimensional ROI was obtained 
on the only one acquired slice for APTWI. The histo-
gram features, including mean, 10th percentile, 90th 
percentile, entropy (a measure of the disorder of a dis-
tribution), kurtosis (a measure of the tailedness of a dis-
tribution), and skewness (a measure of the asymmetry 
of a distribution) for all parametric maps in tumor ROIs 
were extracted with an in-house built program in MAT-
LAB 2018b according to the formula on website (https://
pyradiomics.readthedocs.io/en/latest/features.html).

Statistical analysis
Quantitative variables were expressed as the mean ± stan-
dard deviation and were compared with the Student’s 
t-test or the Wilcoxon test (Mann-Whitney U test) 
after the normality and homogeneity of variance were 

confirmed. The binary data for clinical information were 
compared using the Chi-Squared test. Subsequently, vari-
ables exhibiting significant differences but not strong 
correlations were evaluated using both univariate and 
multivariate logistic regression. Receiver Operating 
Characteristic (ROC) analysis was then employed to 
assess the performance of individual factors and multi-
parameter combined models in differentiating glioma 
from SBM. The area under the ROC curve (AUC), sen-
sitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV) were calculated and 
compared. Nomogram and bootstrap resampling meth-
ods were used for the evaluation of the multivariate logis-
tics regression. R package (version 4.0.0) was used for all 
the statistics. A P value < 0.05 indicated a statistically sig-
nificant difference.

Results
Clinical characteristics
A number of 65 patients (44 glioma cases with age 
51.27 ± 13.09 and 21 SBM cases with age 59.05 ± 12.33) 
were finally included in this study. Demographics and 
clinical manifestation are summarized in Table  1. The 
age in the SBM group was significantly greater than that 
of the glioma group, while no significant difference was 
found for gender and clinical manifestations (second-
ary epilepsy, intracranial hypertension, and dysfunction) 
between groups.

Comparison of histogram features between glioma and 
SBM
Significant differences for ADCkurtosis (6.43 ± 5.63 vs. 
4.54 ± 3.23, P = 0.022), (MTRasym@3.5ppm)10 (0.53 ± 0.97 
vs. 1.00 ± 0.75, P = 0.045), frac10 (6.81 ± 2.07 vs. 9.34 ± 2.75, 
P<0.001), frac90 (23.90 ± 6.22 vs. 29.73 ± 6.47, P = 0.001), 
fracmean (14.67 ± 3.64 vs. 18.76 ± 4.10, P<0.001), fracentropy 
(3.72 ± 0.35 vs. 4.06 ± 0.24, P<0.001), frackurtosis (5.37 ± 2.41 
vs. 3.21 ± 0.83, P<0.001), and fracskewness (1.05 ± 0.55 vs. 
0.50 ± 0.39, P<0.001) were observed between glioma and 
SBM, while other quantitative values showed no signifi-
cant differences (Table  2). Representative images of one 
patient with glioma and another with SBM are shown in 
Fig. 2. Histograms of frac in the same patient are shown 
in Fig. 3.

The diagnostic performance of histogram features
The regression analysis showed that frac10 (OR = 1.573, 
95%CI 1.179–2.099, P = 0.002), frac90 (OR = 1.147, 95%CI 
1.048–1.256, P = 0.003), fracmean (OR = 1.304, 95% CI 
1.11–1.533, P = 0.001), fracentropy (OR = 29.620, 95% CI 
3.753–233.8, P = 0.001), frackurtosis (OR = 0.431, 95% CI 
0.256–0.723, P = 0.002), and fracskewness (OR = 0.1, 95% 
CI 0.026–0.389, P < 0.001) were the associated factors for 

Table 1  Clinical characteristics
Glioma group
(n = 44)

SBM group
(n = 21)

P

Demographics
Male (n, %) 25 (56.8%) 10 (47.6%) 0.615
Age at diagnosis (year) 51.27 ± 13.09 59.05 ± 12.33 0.019*
Clinical manifestations
Secondary epilepsy (n, %) 18 (40.9%) 4 (19.5%) 0.105
Intra-cranial hypertension (n, %) 22 (50.0%) 11 (52.4%) 1
Dysfunction (n, %) 18 (40.9%) 14 (66.7%) 0.065
* P < 0.05. Data are statistically significant

https://www.slicer.org/
https://www.slicer.org/
https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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glioma and SBM differentiation, but only the frackurtosis 
was an independent factor (Table 3, Table S2).

Better sensitivity of frackurtosis (0.952) and better 
specificity of frac10 (0.932) were found by ROC analy-
sis compared with other associated factors (Table  4; 
Fig.  4A). And frackurtosis demonstrated the best AUC 
(0.790). Improved diagnostic AUC (AUC = 0.857, accu-
racy = 0.785, sensitivity = 0.857, specificity = 0.750, 
PPV = 0.621, NPV = 0.917) can be obtained when combin-
ing the (MTRasym@3.5ppm)10, frac10 and frackurtosis. The 
model integrating the frac10 and frackurtosis was also eval-
uated, and the AUC was 0.824 (accuracy = 0.708, sensitiv-
ity = 0.952, specificity = 0.591, PPV = 0.526, NPV = 0.963) 
(Table 4; Fig. 4B).

No significant difference was found for AUC between 
these two combined models by the Delong test (Z = -1.14, 
P = 0.25), but the McNemar test revealed statistically 
significantly improved specificity (P = 0.016) for model 
including (MTRasym@3.5ppm)10. The sensitivity from 
two multivariate regression models showed no significant 
difference (P = 0.5). The Nomogram and calibration anal-
ysis showed a good correlation between apparent and 
bias-corrected multivariate logistic regression in both 
models (Figure S1).

Discussion
Histogram analysis of parameters acquired from DWI, 
IVIM, and APTWI were applied to differentiate glioma 
and SBM. Significantly lower (MTRasym@3,5ppm)10, 
frac10, frac90, fracmean, fracentropy and significantly higher 
ADCkurtosis frackurtosis and fracskewness were found in the 
parenchyma area of glioma compared to that of SBM. 
The combined model with (MTRasym@3.5ppm)10, frac10 
and frackurtosis showed the optimal AUC performance and 
superior specificity.

As a noninvasive method for tumor differentiation, 
MRI is effective but dilemmatic sometimes when dis-
criminating glioma, especially high-grade glioma, and 
SBM [28, 29]. Glioma grows infiltratingly in the brain, 
whereas SBM grows in an expansive pattern, the dif-
ferences in growth patterns may imply differences in 
microstructure and cell properties. Previous MR and 
pathology studies have shown that ADC was well corre-
lated with cell intensity [30, 31]. A more positive kurto-
sis indicates more data around the mean, while the lower 
kurtosis values in the SBM group indicate more inhomo-
geneous ADC values around the mean. The same level 
of ADC percentile and mean value between glioma and 
SBM found in the current study suggested that it may be 
challenging to differentiate them from the cell density. 
A higher ADCkurtosis in glioma also indicates more out-
liers at the ends of the ADC distribution, meaning that 

Table 2  Comparison of parametric values in the region of interest between glioma and SBM
10th percentile 90th percentile mean entropy kurtosis skewness

ADC
(×10− 3mm2/s)
  Glioma 0.85 ± 0.16 1.51 ± 0.34 1.16 ± 0.22 5.23 ± 0.52 6.43 ± 5.63 0.98 ± 0.93
  SBM 0.80 ± 0.19 1.58 ± 0.28 1.15 ± 0.21 5.37 ± 0.50 4.54 ± 3.23 0.87 ± 0.74
  p 0.253 0.454 0.784 0.164 0.022* 0.563
MTRasym@
3.5 ppm
  Glioma 0.53 ± 0.97 2.23 ± 1.31 1.40 ± 0.98 0.58 ± 0.51 3.08 ± 1.13 -0.10 ± 0.42
  SBM 1.00 ± 0.75 2.39 ± 0.85 1.66 ± 0.70 0.58 ± 0.47 3.39 ± 1.14 0.20 ± 0.62
  p 0.045* 0.622 0.465 0.725 0.238 0.057
Dfast
(×10− 3mm2/s)
  Glioma 2.80 ± 0.44 8.04 ± 1.76 5.11 ± 0.81 3.78 ± 0.38 5.97 ± 3.57 1.31 ± 0.42
  SBM 3.03 ± 0.48 7.69 ± 1.81 5.19 ± 0.79 3.75 ± 0.39 5.91 ± 2.49 1.13 ± 0.61
  p 0.056 0.369 0.884 0.717 0.972 0.229
frac (%)
  Glioma 6.81 ± 2.07 23.90 ± 6.22 14.67 ± 3.64 3.72 ± 0.35 5.37 ± 2.41 1.05 ± 0.55
  SBM 9.34 ± 2.75 29.73 ± 6.47 18.76 ± 4.10 4.06 ± 0.24 3.21 ± 0.83 0.50 ± 0.39
  p < 0.001* 0.001* < 0.001* < 0.001* < 0.001* < 0.001*
Dslow
(×10− 3mm2/s)
  Glioma 0.77 ± 0.15 1.33 ± 0.26 1.04 ± 0.20 3.92 ± 0.31 4.12 ± 2.88 0.61 ± 0.62
  SBM 0.73 ± 0.13 1.32 ± 0.25 1.00 ± 0.17 4.05 ± 0.30 3.52 ± 1.77 0.64 ± 0.62
  p 0.248 0.959 0.465 0.063 0.182 0.702
* P < 0.05. Data are statistically significant



Page 6 of 11Su et al. BMC Cancer          (2024) 24:805 

gliomas have more voxels with extremely large or small 
ADC values than SBM. Correspondingly, water diffusion 
in glioma patients is more affected by the microstructure. 
Gao et al. [23] showed that maximum fractional anisot-
ropy was significantly higher in glioblastoma than in 
SBM in the enhanced tumor area. In addition, Mao et al. 
found significantly lower isotropic volume fraction and 
orientation dispersion index from neurite orientation 
dispersion and density imaging of the contrast-enhancing 
tumors in glioma tissue in comparison with SBM [32]. 
These results suggest that glioma might have a more 

complex microstructure. Consequently, more water mol-
ecule activity is affected, which leads to higher ADC kur-
tosis in glioma.

Neovascularization is a critical mechanism in tumor 
growth and metastasis that transports nutrients and 
removes metabolic waste from tumor cells. And varied 
tumor cell distributions may result in varied angiogene-
sis. IVIM perfusion fraction is the ratio of micro-vascular 
diffusion to total micro-vascular and molecular water 
diffusion, both of which were associated with micro-
structure [33]. Smaller frackurtosis value and greater fra-
centropy in SBM were consistent with the representative 
histogram in Fig.  3. From the ADC kurtosis analysis, it 
could be inferred that the distribution of frac in glioma 
was more concentrated and less outliers at the ends of 
the frac distribution, meaning that gliomas have less vox-
els with extremely large or small frac values than SBM, 
correspondingly, smaller fracentropy in glioma. The signifi-
cant difference in fracentropy but not in ADCentropy means 
the heterogeneity of relative change in microvascular 
perfusion and water diffusion may be a more sensitive 
feature to differentiate glioma from SBM. Larger frac-
skewness in glioma means the ratio of voxels with a high 
degree of frac was larger than that of SBM, meaning that 
glioma has more micro-vascular diffusion free area. But 
lower fracmean value in glioma in our current study may 
reflect a micro-vessel perfusion restriction phenom-
enon in the whole tumor area. Study by Heynold et al. 
showed that glioblastomas have higher neovasculariza-
tion activity and metabolic rate of oxygen in enhancing 
area compared with that of brain metastasis [34], while 
microscopic intravascular thrombosis driven by the neo-
plastic overexpression of pro-coagulants could attenuate 
glioma blood supply [35], causing a perfusion-limited 
hypoxia, consequently. Furthermore, Shim et al. [14] 
investigated the differentiation of glioblastoma and brain 
metastasis with IVIM and found no significant difference 
in any of quantitative parameters between the two kinds 
of lesions. One reason for the difference may result from 
the adopted b values [36, 37], which ranged from 0  s/
mm2 to 900 s/mm2 in [14] vs. 0 s/mm2 to 1200 s/mm2 in 
the present study. On the other side, five small-size ROIs 
with the hot-spot method in enhanced areas were used in 
[14] while we delineated all the enhanced areas.

Built upon noticeable disparities in diffusion and 
micro-perfusion traits between gliomas and SBM, we 
can deduce the existence of a hypoxic tumor microenvi-
ronment specific to gliomas. Recent scholarly inquiries 
underscore the profound influence of hypoxia on cancer 
cells, intricately impacting behavior, treatment responses, 
and prognostic outcomes, and the intricate interplay 
encompasses a diverse spectrum of signaling pathways 
and gives rise to discernibly distinct protein expression 
patterns [38–40]. MTRasym@3.5ppm from APTWI 

Fig. 2  Representative images of patients with glioma or metasta-
ses. (Row A & Row B): a: T2W, b: T1W, c: contrast-enhanced T1W, d: 
MTRasym@3.5ppm, e: Dfast(×10− 3mm2/s), f: Dslow(×10− 3mm2/s), g: frac 
(%), h: ADC(×10− 3mm2/s). Row C: 3D reconstruction of tumor ROI of glio-
ma patient (a) and SBM patient (b). Row A: A 63-year-old woman patho-
logically confirmed with glioblastoma. MRI showed an irregular lesion with 
unclear margin in the right frontal lobe, presenting as a diffuse enhanced 
lesion with hyper-intensity on T2W and hypo-intensity on T1W accompa-
nied by peritumoral edema. Histogram features of the enhanced tumor 
parenchyma are as follows: ADCkurtosis:4.84. (MTRasym@3.5ppm)10: 1.5, 
frac10:7.38, frac90:18.79, fracmean:12.85, fracentropy:3.26, frackurtosis:4.92, frac-

skewness:0.90. Row B: A 34-year-old woman was pathologically confirmed 
with adenocarcinoma; a primary lesion was found in her left lung. MRI 
showed a regular lesion with a clear margin in the left frontal lobe, pre-
senting as a diffuse-enhanced lesion with iso-intensity on T2W and T1W 
accompanied by peritumoral edema. Histogram features of the enhanced 
tumor parenchyma are as follows: ADCkurtosis:2.74. (MTRasym@3.5ppm)10: 
1.9, frac10:12.62, frac90:21.94, fracmean:17.21, fracentropy:3.95, frackurtosis:3.22, 
fracskewness:0.13
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was used to quantify the percent signal generated from 
mobile proteins and peptides [41]. A two-dimensional 
APTWI study showed that the mean, 10th, 25th, 50th, 
75th, and 90th percentile of MTRasym@3.5ppm in 
enhancing areas of glioblastomas were significantly 
higher than those of SBM, and the 10th percentile was 
used to obtain the optimal AUC (0.85) for glioma and 
SBM differentiation [22]. Another study claimed that the 
maximum, minimum, and mean of MTRasym@3.5ppm 
in the tumor core did not significantly differ between the 
SBM and GBM [19]. In our study, the 10th percentile was 
significantly lower in glioma than in SBM, but the differ-
entiation performance was relatively low (AUC = 0.655, 
sensitivity = 0.714, and specificity = 0.682). And other 
histogram features showed no differences. Studies have 
revealed that the high-grade glioma has higher MTRa-
sym@3.5 ppm [42–44] and the enrollment of low-grade 
glioma in the present study may have an impact on the 
result.

Considering the distinct growth patterns of glioma 
and brain metastasis—glioma exhibits infiltrative growth 
beyond the boundaries of the enhancing tumor core, 
while brain metastasis grows expansively—the peritu-
moral edema may manifest differently in diffusion and 
perfusion characteristics. Literature review revealed 
higher perfusion values in the peritumoral edema area of 
glioma compared to brain metastasis [45–47], along with 
a decreasing gradient of relative cerebral blood volume 
values from the region adjacent to the enhancing solid 
lesion to the normal white matter in glioma; however, 
this gradient is less pronounced in brain metastasis [48–
50]. Given the limited availability of pertinent literature 
in diffusion imaging, we intend to undertake a compara-
tive investigation employing the IVIM method aiming to 
elucidate intricate details of diffusion and perfusion char-
acters between the two tumor types in our further study.

In multivariate regression analysis, models with 
frac10 and frackurtosis provided optimal differentiation 

Table 3  Univariate and multivariate regression analysis
Univariate Multivariate-1† Multivariate-2‡

OR (95% CI) P OR (95% CI) P OR (95% CI) P
ADCkurtosis 0.887 (0.741–1.062) 0.193
(MTRasym
@3.5ppm) 10

1.892 (0.954–3.754) 0.068 2.084 (0.931–4.664) 0.074

frac10 1.573 (1.179–2.099) 0.002* 1.29 (0.97–1.717) 0.081 1.279 (0.961–1.702) 0.092
frac90 1.147 (1.048–1.256) 0.003*
fracmean 1.304 (1.11–1.533) 0.001*
fracentropy 29.620 (3.753–233.8) 0.001*
frackurtosis 0.431 (0.256–0.723) 0.002* 0.492 (0.272–0.891) 0.019* 0.507 (0.289–0.889) 0.018*
fracskewness 0.1 (0.026–0.389) < 0.001*
†Multivariate-1(Multivariate regression model 1): (MTRasym@3.5ppm)10+ frac10 + frackurtosis
‡Multivariate-2(Multivariate regression model 2): frac10 + frackurtosis

* P < 0.05. Data are statistically significant

Fig. 3  Histogram of frac in the enhanced tumor region. The histogram showed that the glioma patient (A) has higher frackurtosis, and fracskewness but lower 
fracentropy, than the SBM patient (B) in the enhanced tumor parenchyma region
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performance, and (MTRasym@3.5ppm)10 did not affect 
the abilities of combined models. Though the AUC 
(0.857, 0.824) is less than the quantification with ADC 
of high b value [17] and APTWI [19] in edema and per-
itumoral region, it was comparable to the result in [22] 

with MTRasym@3.5ppm percentiles and better than 
the result in [32] with multiple advanced diffusion mod-
els in enhanced tumor core area. Multivariant 1 model 
has marginally higher AUC (P = 0.25) than Multivariant 
2 model at cost of lower sensitivity (P = 0.5) but much 

Table 4  The univariate and multivariate performance in the differentiation of glioma and metastases†

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(TN + TP)/(N + P)

PPV
(TP/P)

NPV
(TN/N)

Threshold

Univariate
(MTRasym
@3.5ppm) 10

0.655
(0.513–0.798)

0.714
(0.524–0.905)

0.682
(0.523–0.818)

0.662
(43/65)

0.481
(13/27)

0.789
(30/38)

0.905

frac10 0.788
(0.667–0.909)

0.571
(0.381–0.762)

0.932
(0.841-1)

0.815
(53/65)

0.8
(12/15)

0.82
(41/50)

9.253

frac90 0.76
(0.635–0.884)

0.952
(0.857-1)

0.5
(0.363–0.636)

0.646
(42/65)

0.476
(20/42)

0.957
(22/23)

21.913

fracmean 0.784
(0.664–0.903)

0.762
(0.571–0.952)

0.727
(0.591–0.841)

0.738
(48/65)

0.571
(16/28)

0.865
(32/40)

16.249

fracentropy 0.767
(0.65–0.885)

0.952
(0.857-1)

0.613
(0.477–0.75)

0.723
(47/65)

0.541
(20/37)

0.964
(27/28)

3.842

frackurtosis 0.790
(0.682–0.898)

0.952
(0.857-1)

0.591
(0.454–0.727)

0.708
(46/65)

0.526
(20/38)

0.963
(26/27)

4.659

fracskewness 0.784
(0.671–0.896)

0.714
(0.524–0.905)

0.750
(0.614–0.864)

0.738
(48/65)

0.577
(15/26)

0.846
(33/39)

0.728

Multivariate†

Multivariate-1‡ 0.857
(0.769–0.946)

0.857
(0.714-1)

0.750
(0.614–0.864)

0.785
(51/65)

0.621
(18/29)

0.917
(33/36)

0.304

Multivariate-2§ 0.824
(0.720–0.927)

0.952
(0.858-1)

0.591
(0.431–0.727)

0.708
(46/65)

0.526
(20/38)

0.963
(26/27)

0.192

†DeLong’s test showed no statistically significant differences between AUCs from two multivariate regression models. (Z = -1.14, P = 0.25) and McNamar’s test 
revealed statistically significant differences in specificities (P = 0.016) but not in sensitivities (P = 0.5) from two multivariate regression models
‡Multivariate-1(Multivariate regression model 1): (MTRasym@3.5ppm)10+ frac10 + frackurtosis
§Multivariate-2(Multivariate regression model 2): frac10 + frackurtosis

AUC: area under the curve; PPV: Positive predictive value; NPV: negative predictive value; P: positives; N: negatives; TP: true positives; TN: true negatives

Fig. 4  The ROC curves for univariate (A) and multivariate regression (B)

 



Page 9 of 11Su et al. BMC Cancer          (2024) 24:805 

better specificity (P = 0.016). When making surgical deci-
sions, the assessment of a patient’s suitability for the 
procedure and the potential perioperative complications 
plays a critical role. Younger patients, typically with fewer 
underlying medical conditions, tend to benefit more 
from surgical interventions. For gliomas, proactive surgi-
cal approaches can significantly extend overall survival, 
emphasizing the importance of diagnostic sensitivity. 
Conversely, older patients, often with reduced surgical 
tolerance, require a higher degree of diagnostic specific-
ity to accurately rule out a metastatic tumor diagnosis.

In our present study, IVIM bi-exponential fitting model 
with b-values between 0 and 1200  s/mm2 was used for 
analysis, for a poor fit in our initial analysis at b = 1500 
and 2000  s/mm2. And various b-value protocols have 
been used for the IVIM analysis, but there is no standard 
setting [37, 51]. Further, the IVIM signal may be affected 
by other factors. The study by Hare et al. [52]. indicated 
that when cerebrospinal fluid was nullified, Dfast values 
showed a significant decrease, and a mono-exponential 
model was sufficient to describe the diffusion signal in 
the brain. This observation suggested that IVIM is more 
sensitive to cerebrospinal fluid than to brain microvascu-
lature. In contrast, Rydhog et al. [53]. reported that both 
free water and vascular fractions are measurable in brain 
tissue. In conclusion, there are varying degrees of contro-
versy in IVIM research, spanning from sequence param-
eter settings to signal analysis and data interpretation. 
Further investigation is required in these domains.

There are some limitations in the present study. First, 
the number of enrolled subjects is relatively small, and 
only part of the subtypes was analyzed, i.e., the brain 
metastasis resulted mainly from the lung lesions, and 
the glioma in all grades was included. And the imbal-
ance between the two classes may cause bias in analysis. 
Second, we delineated tumor ROIs at multiple layers on 
the parametric maps of ADC and IVIM but only the slice 
with the largest tumor parenchyma on 2-dimensional 
APTWI. And all the ROIs were drawn by one reader. 
Both may have an impact on the analysis. And In addi-
tion, detailed pathological information such as immu-
nohistochemical staining, cell distribution density, and 
micro-vessel density was not used as the reference, which 
may help confirm these findings and should be consid-
ered in the future.

Conclusions
The frac10 and frackurtosis from IVIM MRI in 
enhanced tumor region demonstrated the differ-
ence between glioma and solitary brain metastasis and 
(MTRasym@3.5ppm)10 helps improving the differentiat-
ing specificity. And their combing model could be used as 
a useful imaging biomarker for differentiation.
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