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Abstract
Background Oral Squamous Cell Carcinoma (OSCC) presents significant diagnostic challenges in its early and late 
stages. This study aims to utilize preoperative MRI and biochemical indicators of OSCC patients to predict the stage of 
tumors.

Methods This study involved 198 patients from two medical centers. A detailed analysis of contrast-enhanced 
T1-weighted (ceT1W) and T2-weighted (T2W) MRI were conducted, integrating these with biochemical indicators 
for a comprehensive evaluation. Initially, 42 clinical biochemical indicators were selected for consideration. Through 
univariate analysis and multivariate analysis, only those indicators with p-values less than 0.05 were retained for model 
development. To extract imaging features, machine learning algorithms in conjunction with Vision Transformer (ViT) 
techniques were utilized. These features were integrated with biochemical indicators for predictive modeling. The 
performance of model was evaluated using the Receiver Operating Characteristic (ROC) curve.

Results After rigorously screening biochemical indicators, four key markers were selected for the model: cholesterol, 
triglyceride, very low-density lipoprotein cholesterol and chloride. The model, developed using radiomics and deep 
learning for feature extraction from ceT1W and T2W images, showed a lower Area Under the Curve (AUC) of 0.85 in 
the validation cohort when using these imaging modalities alone. However, integrating these biochemical indicators 
improved the model’s performance, increasing the validation cohort AUC to 0.87.

Conclusion In this study, the performance of the model significantly improved following multimodal fusion, 
outperforming the single-modality approach.
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Introduction
Oral Squamous Cell Carcinoma (OSCC) is a major global 
health challenge, ranking as one of the top ten most com-
mon cancers worldwide [1]. This malignancy is known 
for its aggressive nature and propensity for early lym-
phatic spread [2, 3]. Early stage OSCC typically presents 
with a favorable prognosis, with early surgical inter-
vention being the common treatment approach, offer-
ing a higher likelihood of successful outcomes. Studies 
indicate that patients diagnosed with early stage OSCC 
have an 80% chance of surviving beyond five years [4]. 
In contrast, late stage OSCC often poses more challeng-
ing scenarios, necessitating more aggressive treatment 
strategies such as a combination of surgery, radiotherapy, 
chemotherapy, and immunotherapy, with a lower post-
treatment survival rate. Therefore, determining whether 
a patient’s tumor is in an early or late stage at the time of 
presentation is crucial for physicians in devising appro-
priate treatment plans.

In management of OSCC, physicians primarily rely on 
Magnetic Resonance Imaging (MRI) and readily avail-
able biochemical indicators, which are the most acces-
sible sources of patient information. In early stages of 
OSCC, MRI provides detailed assessment of tumor size 
and depth, which is crucial for surgical planning [5]. As 
tumor advances, MRI helps evaluate tumor invasive-
ness, lymph node involvement, and possible metastasis, 
thereby informing treatment strategies [6]. However, 
effective interpretation of MRI requires physicians to 
possess extensive experience in reading scans to discern 
changes within or surrounding the tumor and lymph 
nodes. The ability of physicians to visually identify the 
stage of a tumor-early or late-demands technical sen-
sitivity. Beyond the reliance on imaging modalities, it is 
imperative for physicians to consider the implications 
of alterations in specific clinical biochemical indicators. 
Routinely included in blood tests, these indicators offer 
critical insights into the body’s inflammatory response 
and metabolic shifts, serving as potential harbingers 
of tumor presence and progression [7, 8]. At the same 
time, changes in the body’s immunity, metabolism, and 
endocrine also affect the occurrence and development of 
tumors. Consequently, they often present with a variety 
of biochemical indicator changes. However, the specific-
ity of these indicators is influenced by numerous other 
factors, placing high demands on clinical physicians 
when using them as adjunct diagnostic measures.

The machine learning and deep learning algorithms, 
harnessing the power of large datasets, are increasingly 

being applied to enhance the accuracy and efficiency of 
tumor diagnostic processes [9]. Khanfari et al.’s study 
showed that using radiomics and deep features from 
multiparametric MRI can be used to evaluate grade sta-
tus cancer [10]. In addition to disease diagnosis, genera-
tive adversarial networks (GANs) in deep learning can 
facilitate the conversion between T2 weighted (T2W) 
fluid attenuation inversion recovery (FLAIR) and T2W 
MRI images, helping clinical decision-making when 
alternative sequences or rescanning are not feasible [11]. 
A particularly promising development in this field is the 
application of Vision Transformer (ViT) models. Origi-
nally designed for tasks in natural image processing, ViTs 
have shown remarkable success in medical imaging [12]. 
These models, which use self-attention mechanisms, are 
adept at handling the complexity and variability inherent 
in medical images [13]. By learning contextual relation-
ships within the data, ViTs can provide nuanced insights 
that are critical for the early detection and staging of 
diseases [14]. In the application of deep learning and 
machine learning, employing data from other hospitals 
as an external validation cohort can effectively verify the 
robustness and generalizability of the model.

This research employs contrast-enhanced T1-weighted 
(ceT1W) and T2W MRI from patients with OSCC as 
the primary data source. By applying machine learning 
and ViT techniques, it effectively extracts key imaging 
features. These features, when combined with clinical 
biochemical indicators, form the basis of a logistic regres-
sion model designed to accurately predict OSCC at both 
early and late stages. This study exemplifies the advance-
ment in patient-centered oncology care, highlighting the 
use of non-invasive, yet highly informative, diagnostic 
techniques.

Materials and methods
Patients
The participant recruitment and study procedures for 
this retrospective analysis adhered strictly to the ethi-
cal guidelines outlined in the 1964 Helsinki Declaration. 
Ethical clearance was granted by the Ethics Committee 
(approval number: 2023 − 598). This study incorporated 
160 patients diagnosed with OSCC at the First Affiliated 
Hospital of Fujian Medical University from January 2021 
to October 2023, serving as the training cohort. Addi-
tionally, 38 patients diagnosed with OSCC at National 
Regional Medical Center of Binhai Campus of the First 
Affiliated Hospital, Fujian Medical University (Huashan 
Hospital Fujian Campus, Fudan University), between 
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January 2022 and April 2024 were included as the vali-
dation cohort (Fig.  1). The clinical demographics of the 
patients, encompassing age, gender, and body mass index 
(BMI), were methodically documented. Tumor staging 
was assessed according to the 8th Edition of the Union 
for International Cancer Control (UICC) Tumor, Node, 
and Metastasis (TNM) Staging System Manual. The 
interpretation of TNM staging is based on postoperative 
pathological reports by two pathologists with more than 
five years of professional experience and two oral and 
maxillofacial surgeons with more than five years of clini-
cal experience. Patients were categorized based on their 
TNM staging: those within stages I-II were classified as 
early stage, whereas individuals presenting with stages 
III-IV were designated as late stage patients.

Analysis of inflammation indices and biochemical 
indicators
Preoperative assessment involves the measurement of 
Platelet-to-Lymphocyte Ratio (PLR), Neutrophil-to-
Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte 
Ratio (LMR), and Systemic Immune-Inflammation Index 
(SIRI). Concurrently, preoperative evaluation of bio-
chemical indicators in the patient’s blood is performed.

The biochemical tests encompass a comprehensive 
array of indicators, including: Total Bilirubin (TBIL), 
Direct Bilirubin (DBIL), Indirect Bilirubin (IBIL), Total 
Protein (TP), Albumin (ALB), Globulin (GLOB), Albu-
min/Globulin Ratio (A/G), Alanine Aminotransferase 
(ALT), Aspartate Aminotransferase (AST), ALT/AST 
Ratio, Gamma-Glutamyl Transferase (GGT), Lactate 
Dehydrogenase (LDH), Alkaline Phosphatase (ALP), 
Creatine Kinase (CK), Creatine Kinase MB Isoenzyme 
(CK-MB), Urea, Creatinine (CREA), Urea/Creatinine 
Ratio (URE/CREA), Uric Acid (UA), Glucose (GLU), 
Cholesterol (CHOL), Triglyceride (TG), High-Density 
Lipoprotein Cholesterol (HDL-C), High-Density Lipo-
protein/Total Cholesterol Ratio (HDL-TC), Low-Density 
Lipoprotein Cholesterol (LDL-C), Very Low-Density 
Lipoprotein Cholesterol (VLDL-C), Apolipoprotein A1 
(APOA1), Apolipoprotein B (APOB), APOA1/B Ratio, 
Calcium (Ca), Inorganic Phosphorus (IP), Magnesium 
(Mg), Bicarbonate (HCO3), Potassium (K), Sodium (Na), 
Chloride (Cl), Anion Gap (AG), and Glomerular Filtra-
tion Rate (GFR).

Image acquisition and processing
All participants underwent MRI using a 3T supercon-
ducting magnetic resonance scanner (Siemens, Germany) 

Fig. 1 Flow diagram of the study population. OSCC: Oral Squamous Cell Carcinoma; MRI: Magnetic Resonance Imaging
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equipped with a head and neck array coil. The ceTIW and 
T2W MRI sequences acquired in this study both incor-
porate fat suppression techniques. The MRI acquisition 
parameters were as follows: for T2W images, the repeti-
tion time (TR) and echo time (TE) were set at 4000 ms 
and 79 ms, respectively, with a field of view (FOV) of 
220 × 220 mm and a slice thickness of 4 mm. For ceT1W 
images, the parameters were TR/TE of 400 ms/2.4 ms, an 
identical FOV of 220 × 220  mm, and a slice thickness of 
4 mm.

Regions of interest (ROI) segmentation and mask dilation
Figure 2 illustrates the model construction process. The 
initial step involved applying N4 bias field correction to 
MRI scans [15], resizing voxels to 1 mm × 1 mm × 1 mm, 
and standardizing the images [16]. Lesion-targeted ROIs 
were delineated slice-by-slice in these scans using ITK-
SNAP software (version 3.8.0, www.ITK-SNAP.org). This 
task was performed by an experienced oral and maxillo-
facial surgeon, who was blinded to the patients’ clinical 
data, and the results were verified by a senior oral and 
maxillofacial surgeon. Using Pyradiomics (version 2.2.0, 
http://pyradiomics.readthedocs.io) [17], quantitative 
radiomic features were extracted from the MRI. In total, 
the study extracted 1,666 radiomics features, compris-
ing 833 features from T2W images and an equal number 
from ceT1W images. We calculated intraclass correla-
tion coefficients (ICCs) to evaluate the feature extraction 

consistency by the two specialists. Features showing 
intra- or inter-observer ICCs under 0.75 were omitted, 
considering their relative lack of robustness [18].

Radiomics and deep learning feature extraction
The machine learning features hand-crafted for analysis 
are broadly divided into three categories: (1) Geometric 
Features, (2) Intensity Features, and (3) Texture Features. 
These extracted features include a range of first-order fea-
tures, as well as several matrix-based features: Gray-Level 
Co-occurrence Matrix (GLCM), Gray-Level Depen-
dence Matrix (GLDM), Gray-Level Run Length Matrix 
(GLRLM), Gray-Level Size Zone Matrix (GLSZM), and 
Neighboring Gray Tone Difference Matrix (NGTDM) 
features. Additionally, shape features were also consid-
ered. For detailed methods on radiomics, please refer to 
Supplementary Methods.

Deep learning model was trained to predict patient 
risk scores using segmented tumor volumes derived from 
preprocessed ceT1W and T2W MRI. The segmentation 
focused on the ROI specifically centering on the larg-
est cross-section of the tumor, along with an additional 
10-pixel margin encompassing the outer edge of the 
tumor (Fig.  3). An adaptive moment estimation opti-
mizer was implemented with a learning rate of 0.1 for 30 
epochs using a batch size of 32. For detailed methods on 
deep learning, please refer to Supplementary Methods. 
For this purpose, we utilized a pretrained deep learning 

Fig. 2 Workflow of the study
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(DenseNet121, GoogLeNet, ResNet18, ResNet34 and 
ViT) models, which had been initially trained on the Ima-
geNet-21 K dataset.

Feature selection
Prior to detailed analysis, all extracted radiomics and 
deep learning features underwent standardization to a 
normal distribution, achieved through z-score normal-
ization. For features exhibiting a normal distribution, 
Student’s t-tests were applied, with a threshold set to 
include only those features demonstrating a p-value less 
than 0.05 for subsequent analyses. Spearman’s rank cor-
relation coefficient was employed to ascertain the cor-
relation among features with notable repeatability [19]. 
In efforts to reduce redundancy, we opted to retain a 
single feature from each pair that presented a correla-
tion coefficient exceeding 0.9 [20]. Furthermore, a stra-
tegic approach of greedy recursive deletion was adopted 
for feature filtering, aimed at enhancing the informative 
value of the selected features.

The development of a predictive signature from the 
discovery dataset employed the Least Absolute Shrink-
age and Selection Operator (LASSO) regression model, 
renowned for its ability to compress regression coeffi-
cients towards zero, thereby often reducing coefficients 
of uncorrelated features to zero. The selection of the opti-
mal regularization parameter, λ, involved using a crite-
rion based on minimization in combination with 10-fold 
cross-validation. Features with non-zero coefficients, as 
determined by the LASSO model, were incorporated to 

construct the regression model and subsequently to for-
mulate the radiomics and deep learning signature. For 
detailed methods on feature selection results, please 
refer to Supplementary Methods. The Python scikit-learn 
package [21] was the tool of choice for conducting the 
LASSO regression modeling.

Prediction model development
In the analysis of clinical and blood test result variables, 
univariate logistic regression was employed to assess 
their association with the differentiation of early and 
late stage tumors. Variables demonstrating a statistically 
significant correlation (p-value < 0.05) were then incor-
porated into a multivariate logistic regression analysis. 
Subsequently, three distinct models were developed: (1) 
the ceT1W-clinical model, integrating ceT1W radiomics 
and deep learning features with clinical data, (2) the 
T2W-clinical model, combining T2W radiomics and 
deep learning features with clinical data, and (3) the com-
bined model, which encompassed both ceT1W and T2W 
radiomics, deep learning features, and clinical data. Each 
of these models was constructed using logistic regression 
to create a predictive framework.

Statistical analysis
For data adhering to a normal distribution, we applied 
the Student’s t-test. Categorical variables were analyzed 
using the chi-square test. Additionally, the effective-
ness of three distinct models was evaluated through the 
generation of Receiver Operating Characteristic (ROC) 

Fig. 3 Diagram shows the deep learning model structure. MLP: multilayer perceptron
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curves. This involved computing the Area Under the 
Curve (AUC), and determining the balanced sensitiv-
ity and specificity at the cut-off point that maximized 
the Youden index. To enhance the reliability of our find-
ings, we calculated the 95% confidence interval (CI) for 
the AUC using the bootstrap method, incorporating 1000 
iterations for greater accuracy. The AUC values ranged 
from 0.5 to 1.0. A test with an AUC of 1.0 was considered 
perfect. An AUC between 0.8 and 1.0 indicated a good 
discriminant test, while a range of 0.6 to 0.8 suggested a 
moderate test. An AUC from 0.5 to 0.6 was regarded as 
poor [22]. All statistical analyses were executed utilizing 
SPSS software (version 21.0), with a p-value threshold of 
0.05 or less set for determining statistical significance.

Results
Patient characteristics
A total of 364 patients were initially collected from two 
centers. Exclusions were made for patients lacking an 
MRI scan (n = 83), missing clinical data (n = 19), the 
patient has undergone surgical treatment due to OSCC 
(n = 34), absence of blood biochemical indices (n = 9), and 
indiscernible tumor areas preventing delineation (n = 21) 
(Fig.  1). Consequently, the final training cohort com-
prised 160 patients (103 males and 57 females; mean age 
not specified), including 101 early stage and 59 late stage 
patients. The validation cohort consisted of 38 patients 

(31 males and 7 females), with 25 diagnosed at an early 
stage and 13 at a late stage of the condition (Table 1 and 
Supplementary Table S1).

Univariate analysis and multivariate analysis
This study incorporated a total of 45 indicators (as shown 
in Supplementary Figure S1 and Supplementary Table 
S2). Univariate analysis revealed significant associations 
between several indicators and the early and late stages in 
the training cohort.

Further, the multivariate analysis identified CHOL 
(OR, 0.83 [95% CI:0.72, 0.96]; p-value = 0.04), TG (OR, 
1.16 [95% CI:1.08, 1.28]; p-value < 0.01), VLDL-C (OR, 
1.16 [95% CI:1.08, 1.24]; p-value < 0.01) and Cl (OR, 0.87 
[95% CI:0.78, 0.97]; p-value = 0.04) as independent pre-
dictors for both early and late stage outcomes (Fig. 4 and 
Supplementary Table S3).

Performance evaluation of prediction models constructed 
using radiomics and deep learning features
After comparing multiple deep learning models (Supple-
mentary Table S4), we ultimately chose ViT as the final 
deep learning model for the construction of the fusion 
model. The filtered features of ceT1W model, T2W 
model and ceT1W + T2W model are as follows. A set of 
features with nonzero coefficients were selected to con-
struct radiomics scores using a LASSO logistic regression 

Table 1 Characteristics of patients in training and validation cohorts
Variable Training cohort p-value Validation cohort p-value

Early stage Late stage Early stage Late stage
Age, y (%) 0.04 0.60
 ≤ 63 78(77.23) 36(61.02) 20(80.00) 12(92.31)
 > 64 23(22.77) 23(38.98) 5(20.00) 1(7.69)
Gender, n (%) 0.06 0.43
 Male 71(70.30) 32(54.24) 19(76.00) 12(92.31)
 Female 30(29.70) 27(45.76) 6(24.00) 1(7.69)
BMI 0.02 0.40
 ≤ 18.5 4(3.96) 10(16.95) 1(4.00) 0(0.00)
 18.5–24 65(64.36) 31(52.54) 12(48.00) 9(69.23)
 ≥ 24 32(31.68) 18(30.51) 12(48.00) 4(30.77)
PLR 0.19 0.73
 ≤ 150.02 65(64.36) 31(52.54) 20(80.00) 9(69.23)
 > 150.02 36(35.64) 28(47.46) 5(20.00) 4(30.77)
NLR 0.18 0.60
 ≤ 3.16 84(83.17) 43(72.88) 20(80.00) 12(92.31)
 > 3.16 17(16.83) 16(27.12) 5(20.00) 1(7.69)
LMR 0.15 0.49
 ≤ 5.81 59(58.42) 42(71.19) 15(60.00) 10(76.92)
 > 5.81 42(41.58) 17(28.81) 10(40.00) 3(23.08)
SIRI 0.08 1.00
 ≤ 0.98 73(72.28) 34(57.63) 19(76.00) 10(76.92)
 > 0.98 28(27.72) 25(42.37) 6(24.00) 3(23.08)
PLR: platelet-lymphocyte ratio; NLR: neutrophils-lymphocytes ratio; LMR: lymphocytes-monocytes ratio; SIRI: systemic inflammation response index; BMI: body 
mass index
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model, as depicted in Supplementary Figure S2. The dis-
tribution of the feature scores was visualized through his-
tograms, shown in Supplementary Figure S3 and S4. In 
discriminating between early and late stages, the ceT1W 
model demonstrated AUC values of 0.81 [95% CI: 0.67, 
0.95] in the validation cohort. The T2W model recorded 
AUCs of 0.82 [95% CI: 0.64, 0.99]in the validation cohort. 
The combined ceT1W and T2W model (ceT1W + T2W) 
achieved AUCs of 0.85 [95% CI: 0.72, 0.97] in the valida-
tion cohort, as shown in Fig.  5. These findings demon-
strate that utilizing MRI for radiomics and deep learning 
analysis can effectively diagnose the staging of a patient’s 
tumor, early or late, thereby aiding physicians in formu-
lating surgical plans.

Performance evaluation of prediction models constructed 
using radiomics, deep learning and clinical features
Furthermore, the integration of clinical variables with 
radiomics and deep learning features resulted in an 

enhanced predictive performance of the combined 
model. Specifically, the ceT1W-clinical model dem-
onstrated AUC scores of 0.86 [95% CI: 0.74, 0.98] in 
the validation cohort. Meanwhile, the T2W-clinical 
model recorded AUCs of 0.86 [95% CI: 0.71, 1.00] in 
the validation cohort. Notably, the combined model 
(ceT1W + T2W-clinical model) achieved AUCs of 0.87 
[95% CI: 0.76, 0.98] in the validation cohort, as depicted 
in Fig.  6. When we incorporated extracted clinical and 
biochemical indicators into the model construction, the 
diagnostic efficacy of the model improved, with AUCs in 
the validation cohort increasing from 0.85 to 0.87.

Discussion
OSCC is an aggressive malignant tumor. Due to its rapid 
progression, there is a significant difference in treatment 
protocols between early and late stage patients [23]. 
Furthermore, early determination of the tumor stage 
is crucial for patient prognosis and survival rates [24]. 

Fig. 4 Multivariate analysis. SIRI: systemic inflammation response index; ALB: albumin; GLOB: globulin; A/G: white bulb ratio; AST: aspartate aminotrans-
ferase; CK: creatine kinase; CREA: creatinine; UA: uric acid; GLU: glucose; CHOL: cholesterol; TG: triglyceride; HDL-C: high density lipoprotein cholesterol; 
LDL-C: low density lipoprotein cholesterol; VLDL-C: very low density lipoprotein cholesterol; K: potassium; Cl: chlorine; AG: anion gap; GFR: glomerular 
filtration rate
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Therefore, identifying the stage of a patient’s tumor upon 
admission is vital for physicians in choosing appropri-
ate treatment strategies. Our study offers a novel diag-
nostic approach based on radiomics and the ViT model, 
enabling rapid diagnosis of early or late stages of OSCC. 
Through univariate and multivariate analyses, we identi-
fied four biochemical indicators highly associated with 
OSCC. Finally, by integrating these extracted features 
into the model, we improved the diagnostic AUC, pro-
viding valuable assistance to physicians.

Our study reveals that combining biochemical analysis 
of lipid metabolites with radiomics and deep learning fea-
tures in OSCC patients enhances the efficacy in predict-
ing tumor stages, both early and late, compared to relying 
solely on radiomics and deep learning. Biochemical indi-
cators have been proven to be of significant importance 
in various cancer studies. They can reflect the metabolic 
status, inflammatory response, and overall physiological 
status of tumors [25]. This study identified four mark-
ers associated with early and late diagnosis of OSCC 

Fig. 6 A: ROC curve constructed based on radiomics, deep learning and clinical features of training cohort; B: ROC curve constructed based on radiomics, 
deep learning and clinical features of validation cohort; AUC: area under ROC curve; ROC: receiver operating characteristic; CI: confidence interval; com-
bined-mode: ceT1W + T2W-clinical model; ceT1W: contrast-enhanced T1-weighted; T2W: T2-weighted

 

Fig. 5 A: ROC curve constructed based on radiomics and deep learning features of training cohort; B: ROC curve constructed based on radiomics and 
deep learning features of validation cohort; AUC: area under ROC curve; ROC: receiver operating characteristic; CI: confidence interval; ceT1W: contrast-
enhanced T1-weighted; T2W: T2-weighted
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patients through univariate and multivariate analysis, of 
which three were associated with lipid metabolism. This 
finding underscores the pivotal role of lipid metabolites 
in discerning OSCC progression stages. There is sub-
stantial evidence indicating that obesity is a risk factor 
for various cancers [26]. Research by Halczy-Kowalik 
and colleagues [27] found a correlation between lipid 
metabolism and the tumor microenvironment and grad-
ing of OSCC. Studies by Dickinson et al. [28] also pointed 
to elevated cholesterol levels in OSCC tissues, suggest-
ing a disruption in the typically tightly regulated cho-
lesterol homeostasis. Furthermore, having a BMI in the 
obese range is an independent risk factor for T1/2N0M0 
OSCC and is associated with prognosis [27, 29]. Takasu 
et al. [30] pointed out that lipoprotein lipase (LPL) may 
regulate triglyceride levels from blood to tissue, and a 
decrease in LPL activity can lead to hypertriglyceridemia. 
And hypertriglyceridemia is associated with the risk of 
colorectal adenoma and colorectal cancer. The multivari-
ate analysis revealed that serum TG levels (OR, 1.16 [95% 
CI:1.08, 1.28]) are associated with an increased likelihood 
of advanced tumor stages in patients. Emerging research 
suggests that hyperlipidemia, particularly elevated 
TG and VLDL-C levels, might contribute to a chronic 
inflammatory state [31], a well-documented risk factor 
for diverse cancers [32]. Lu et al. found that VLDL pro-
motes breast cancer cell aggregation through enhanced 
migration/invasion, angiogenic activity, and anchorage-
independent growth, providing a survival advantage in 
these conditions and promoting lung metastasis in vivo 
[33]. While the current evidence is insufficient to cat-
egorize TG and VLDL-C as an autonomous risk factors 
for OSCC, they appear to synergize with established risk 
factors. The multivariate analysis delineates that elevated 
serum VLDL-C levels (OR, 1.16 [95% CI:1.08, 1.24]) 
are associated with an increased likelihood of advanced 
tumor stages in patients, underscoring the potential role 
of VLDL-C in OSCC progression.

The pathogenesis of OSCC, is intricately connected to 
metabolic pathways. OSCC cells exhibit significant alter-
ations in lipid metabolism. These cells augment fatty acid 
synthesis, which is crucial for the construction of new 
cellular membranes [34], energy storage [27], and signal-
ing mechanisms [35] essential for rapid cellular growth. 
The multivariate analysis revealed that serum CHOL 
levels (OR, 0.83 [95% CI:0.72, 0.96]) are inversely asso-
ciated with tumor progression in OSCC. Elevated levels 
of CHOL in the cell membrane have been observed in 
OSCC and various other tumors [36, 37]. Cholesterol-
lowering drugs could play a role in inhibiting OSCC 
progression through multiple mechanisms [38]. This 
suggests that higher serum CHOL levels correlate with a 
decreased risk of late stage tumors. Furthermore, exist-
ing studies indicate that serum CHOL levels in OSCC 

patients are lower than those in healthy controls [39, 
40]. Recent research by Kei et al. [41] has highlighted the 
complex biological interplay between blood chloride ion 
levels and tumor development. Their findings specifically 
point to the role of Cl channel dysfunction in facilitating 
epithelial-mesenchymal transition in OSCC. However, 
the exact nature of the interaction between chloride ions 
and OSCC remains elusive, underscoring the need for 
further investigation in this area. Our research findings 
reveal that serum CHOL levels and Cl exhibit a negative 
correlation with the stage of the patient’s tumor, whereas 
TG and VLDL-C levels are positively correlated with the 
tumor stage.

Ren and colleagues [42] conducted research solely 
using radiomics for predicting the early and late stages 
of head and neck squamous cell carcinoma. Zheng et 
al. [43] have tackled the classification issue of histologi-
cal differentiation grades in patients with head and neck 
squamous cell carcinoma. They employed a combination 
of deep learning and radiomics to construct a model that 
demonstrates commendable predictive capabilities. This 
study lays a foundational groundwork for the application 
of radiomics and deep learning in predicting the staging 
and differentiation of head and neck tumor. Our study 
demonstrates significant predictive performance, with 
the radiomics and ViT models achieving an AUC of 0.88 
[95% CI: 0.81, 0.94] in the training cohort and 0.85 [95% 
CI: 0.72, 0.97] in the validation cohort.

The ViT, as a relatively novel deep learning model, cap-
tures global image information through a self-attention 
mechanism, significantly enhancing its understanding of 
contextual relationships compared to traditional Convo-
lutional Neural Networks (CNNs) [44]. Demonstrating 
strong generalization capabilities, ViT is suitable for a 
wide range of image tasks, including classification, object 
detection, and segmentation, showcasing its versatility 
across different scenarios [45]. While ViTs have outper-
formed traditional CNNs in such tasks, their application 
in medical image classification is still relatively novel [46]. 
In our research results, it was also shown that the ViT 
model has better predictive performance than other deep 
learning models. Compared to CNNs that require the 
design of complex convolutional kernels and pooling lay-
ers, ViT learns features directly from images through self 
attention mechanisms, reducing prior assumptions about 
image structure and being able to simultaneously process 
image features of different scales [47, 48]. However, the 
implementation of ViT models in clinical practice faces 
challenges such as large data requirements, high compu-
tational resources, and insufficient interpretability.

Moreover, the research delves into the exploration of 
multimodal methods, integrating biochemical indica-
tors as clinical features. This comprehensive approach 
has yielded a combined model that outperforms the 
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individual radiomics and deep learning models. The per-
formance of this combined model is evidenced by its 
AUC of 0.92 [95% CI: 0.88, 0.96] in the training cohort 
and 0.87 [95% CI: 0.76, 0.98] in the validation cohort. 
Combining radiomics and deep learning with biochemi-
cal indicators to construct a model for predicting the 
staging of OSCC patients is currently an unexplored 
approach. This integration enhances the understanding 
of the pathophysiology of OSCC by identifying key bio-
chemical indicators related to tumor progression and 
staging, thereby aiding in early diagnosis. By analyzing 
individual biochemical indicators, personalized treat-
ment plans can be developed to tailor treatment strate-
gies. Dynamic monitoring of these indicators during the 
treatment process can evaluate the treatment effect in 
real time and adjust it accordingly, ultimately improving 
patient management and achieving better treatment out-
comes [49].

The research, while presenting promising avenues in 
the diagnosis of OSCC, has several limitations that war-
rant consideration. Firstly, the data utilized in our study 
was retrospectively collected from a multicenter cohort. 
Despite the multi-institutional nature of the data, the ret-
rospective design and relatively small sample sizes of the 
training and validation cohorts may introduce inherent 
biases and hidden confounding factors. Additionally, the 
current scope of our model is confined to distinguishing 
between the early and late stages of OSCC. It does not 
extend to predicting patient prognosis or survival out-
comes. In the future, we should include large-scale omics 
studies to discover more tumor related biomarkers. And 
improve the interpretability of the model, develop mod-
els that are easy to understand and interpret, and ensure 
their application in clinical practice. Solving these prob-
lems also faces many challenges. For example, obtaining 
sufficient and diverse data requires collaborating with 
multiple medical centers and coordinating data standards 
among different institutions. To ensure data diversity, 
radiomics data, biochemical indicators, genomic data, 
etc., should be included in the multimodal model. Addi-
tionally, technicians need to continuously optimize and 
adjust model parameters to improve the accuracy and 
stability of the model when dealing with large and com-
plex data. If the research model reaches a high AUC after 
extensive testing, it can be used in clinical practice to 
infer disease status based on MRI and blood biochemical 
indicators of patients upon admission, helping physicians 
develop surgical and treatment strategies. In summary, 
our study has successfully developed and validated a 
preoperative lipid metabolite analysis with MRI-based 
model for the non-invasive prediction of tumor stages in 
OSCC patients. This model represents a significant step 
forward in the field of radiological image analysis, sug-
gesting that transformer-based models, such as the ViT, 

could be a viable and promising alternative to traditional 
CNNs.

Conclusions
In conclusion, our study has successfully developed 
and validated a novel preoperative MRI-based model 
for accurately predicting the stages of tumors in OSCC 
patients. A notable aspect of our research is the appli-
cation of transformer-based models in radiomics analy-
sis. Our findings particularly emphasize the role of lipid 
metabolism in OSCC progression evaluation. By enhanc-
ing the accuracy and reducing the invasiveness of OSCC 
stages diagnosis, our model has the potential to signifi-
cantly advance the field of precision medicine.
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