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Abstract
Backgrounds  A growing number of expression quantitative trait loci (eQTLs) have been found to be linked with 
tumorigenesis. In this article, we employed integrated Mendelian randomization (MR) analyses to identify novel 
susceptibility genes in renal cancer (RC) and reveal their potential mechanisms.

Methods  Two-sample MR analyses were performed to infer causal relationships between eQTLs, metabolites, and RC 
risks through the “TwoSampleMR” R package. Sensitivity analyses, such as heterogeneity, pleiotropy, and leave-one-
out analysis, were used to assess the stability of our outcomes. Summary-data-based MR (SMR) analyses were used to 
verify the causal relationships among cis-eQTLs and RC risks via the SMR 1.3.1 software.

Results  Our results provided the first evidence for AFF3 eQTL elevating RC risks, suggesting its oncogenic roles (IVW 
method; odds ratio (OR) = 1.0005; 95% confidence interval (CI) = 1.0001–1.0010; P = 0.0285; heterogeneity = 0.9588; 
pleiotropy = 0.8397). Further SMR analysis validated the causal relationships among AFF3 cis-eQTLs and RC risks 
(P < 0.05). Moreover, the TCGA-KIRC, the ICGC-RC, and the GSE159115 datasets verified that the AFF3 gene was more 
highly expressed in RC tumors than normal control via scRNA-sequencing and bulk RNA-sequencing (P < 0.05). Gene 
set enrichment analysis (GSEA) analysis identified six potential biological pathways of AFF3 involved in RC. As for the 
potential mechanism of AFF3 in RC, we concluded in this article that AFF3 eQTL could negatively modulate the levels 
of the X-11,315 metabolite (IVW method; OR = 0.9127; 95% CI = 0.8530–0.9765; P = 0.0081; heterogeneity = 0.4150; 
pleiotropy = 0.8852), exhibiting preventive effects against RC risks (IVW method; OR = 0.9987; 95% CI = 0.9975–0.9999; 
P = 0.0380; heterogeneity = 0.5362; pleiotropy = 0.9808).

Conclusions  We concluded that AFF3 could serve as a novel eQTL-mediated susceptibility gene in RC and reveal its 
potential mechanism of elevating RC risks via negatively regulating the X-11,315 metabolite levels.
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Introduction
Renal cancer (RC) is a highly vascularized neoplasm in 
the urinary system. Its incidence and mortality have been 
steadily rising globally in 2020, with 431,288 new cases 
and 179,368 new deaths [1]. Currently, surgical resec-
tion is still the foremost therapy option for early-stage 
RC [2]. Based on reported data, the 5-year survival rate 
for patients with early-stage RC can be as high as 95%. 
However, many patients are diagnosed at later stages 
when this cancer has already metastasized, leading to 
poorer prognoses of less than 10% [3, 4]. Although vari-
ous advancements have been made in characterizing the 
genetic landscape of RC, our understanding of the molec-
ular mechanisms driving tumorigenesis and progres-
sion remains incomplete [5]. Recently, the identification 
of novel gene signatures or biomarkers associated with 
RC development and progression represents a promis-
ing avenue to improve early detection, prognosis, and 
personalized therapy for this disease [6, 7]. Hence, criti-
cal needs were required to uncover new genomic and 
transcriptomic markers in RC that can serve as diagnos-
tic, prognostic, and predictive biomarkers to ultimately 
improve these patients’ survivals.

Due to the principle that the allocation of genetic 
variants occurs randomly during meiosis, Mendelian 
randomization (MR), as a powerful epidemiological 
technique, utilizes genetic variants as instrumental vari-
ables (IVs) to infer causal relationships between modi-
fiable exposures and disease outcomes, generally free 
from biases that hamper observational studies [8, 9]. 
Expression quantitative trait loci (eQTLs) were crucial 
in cancer research for linking genetic variants to gene 
expression changes, aiding in identifying cancer sus-
ceptibility genes and understanding tumor biology [10, 
11]. They integrated GWAS data with gene expression 
profiles to pinpoint risk alleles affecting relevant tissues 
[12]. Applications of MR with eQTLs have been widely 
used in various tumor and non-tumor diseases [13–15]. 
Meng et al. shed light on the fact that the PLK4 cis-eQTL 
genetic variant rs3811741 could confer hepatocellu-
lar carcinoma high risks [16]. Dominguez-Alonso et al. 
highlighted nine novel susceptibility genes (KANSL1, 
CRHR1, MAPT, MANBA, NKX2-2, MMP12, PTPRE, 
WNT3, and SRPK2) in autism spectrum disorders via 
eQTL colocalization analysis [17]. These insights were 
vital for developing targeted therapies and improving 
diagnostic strategies for tumors, highlighting the impor-
tance of eQTLs in uncovering the genetic mechanisms 
driving cancer. However, eQTLs were seldomly studied 
in RC. In this article, we also integrated MR analyses to 
identify novel susceptibility genes and reveal their poten-
tial mechanisms in RC, providing promising prognostic 
biomarkers or therapeutic targets.

Materials and methods
Study design
This article strictly adhered to the standards for Strength-
ening the Reporting of Observational Studies in Epide-
miology (STROBE) checklist [18] and three basic MR 
assumptions [19]. The whole study design was detailed in 
Fig. 1, including three steps: Step 1 (19,942 gene eQTLs 
as exposure and RC as outcome); Step 2 (1,400 metabo-
lites as exposure and RC as outcome); and Step 3 (AFF3 
eQTL as exposure and 51 metabolites as outcome).

Data sources
19,942 gene eQTLs genetic data were obtained from the 
online IEU OpenGWAS project website (https://gwas.
mrcieu.ac.uk/), with GWAS IDs of eqtl-a-Ensembl IDs. 
Therein, the AFF3 eQTL genetic data included 26,609 
samples and 17,880 single nucleotide polymorphisms 
(SNPs). 1,400 metabolite genetic data were obtained 
from the online GWAS Catalog website (https://www.
ebi.ac.uk/gwas/), with the IDs GCST90199621 to 
GCST90201020 [20]. Therein, the X-11,315 metabolite 
with ID of GCST90200458 included 8,139 samples. RC 
genetic data was derived from the online IEU OpenG-
WAS project website (https://gwas.mrcieu.ac.uk/), with 
a GWAS ID of ukb-b-1316, containing 463,010 samples 
and 9,851,867 SNPs. The cis-eQTLs genetic data were 
obtained from the eQTLGen online website (https://
www.eqtlgen.org/cis-eqtls.html). All the study popula-
tions involved in this article were European.

Selection of IVs
If eQTLs were exposures, SNPs were selected as IVs 
when P value thresholds were below 5e-8; the default 
linkage disequilibrium (LD) thresholds were set at 
clumped kb = 10,000 as well as r2 = 0.001; and F-statis-
tic thresholds were above 10 [21]. If RC or metabolites 
were exposures, SNPs were selected as IVs when P value 
thresholds were below 1e-5; the default linkage disequi-
librium (LD) thresholds were set at clumped kb = 10,000 
as well as r2 = 0.001; and F-statistic thresholds were above 
10. All these selection criteria ensured the MR corre-
lation assumption. Additionally, phenotype scanning 
(http://www.phenoscanner.medschl.cam.ac.uk/) was 
used to lessen the impact of confounding variables and 
ensure the MR independence assumption [22].

MR analysis and sensitivity analyses
Two-sample MR analyses were applied in this article to 
infer causal relationships between modifiable exposures 
and disease outcomes through the “TwoSampleMR” 
R package [23]. During the analysis, the inverse vari-
ance weighted (IVW) approach was deemed the main 
outcome of this study, compared with the others (the 
MR Egger method, the weighted median method, the 
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weighted mode method, and the simple mode method) 
[24]. P values below 0.05 were set as cut-off values and 
deemed to be statistically significant. In addition, we also 
applied sensitivity analyses in this study, such as hetero-
geneity, pleiotropy, and leave-one-out analysis, to assess 
the stability of our outcomes [25, 26]. Sensitivity analyses 
ensured the MR exclusivity assumption.

Summary-data-based MR (SMR) analyses, single-cell RNA-
sequencing (scRNA-seq) and bulk RNA-seq analyses
SMR analyses were used to verify the causal relationships 
among cis-eQTLs and RC risks via the SMR 1.3.1 soft-
ware with default settings and cut-off values of P < 0.05 in 
the eQTLGen dataset. The heterogeneity in dependent 
instruments (HEIDI) test was used for sensitivity analy-
sis [27]. Bulk RNA-seq data from the TCGA-KIRC and 
the ICGC-RC datasets were utilized to verify the AFF3 
gene expression levels in RC tissues compared with nor-
mal controls, with the help of the R “limma” package and 
cut-off values of P < 0.05. ScRNA-seq data of RC were 
obtained from the GSE159115 dataset (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159115) 
[28], and it was used to verify the AFF3 gene single-cell 
expression levels in RC tissues compared with normal 
controls, with the help of the R “seurat” package and cut-
off values of P < 0.05.

Gene set enrichment analysis (GSEA)
Based on the median expression of AFF3 in the TCGA-
KIRC datasets, the AFF3-high and AFF3-low subgroups 
were identified. GSEA analysis was conducted to seek 
AFF3-related pathways in these two groups with the 
help of the GSEA 4.0.0 software and the gene set of 
“c2.cp.kegg.v7.1.symbols.gmt” downloaded from the 
MSigDB website (https://www.gsea-msigdb.org/gsea/
msigdb/). The absolute values of the normalized enrich-
ment score (NES) above 1.5 and the nominal p-value 
below 0.05 were set as cut-off values.

Statistical analysis
The “TwoSampleMR” R package as well as the R 4.2.1 
version software (http://www.Rproject.org) were applied 
in this article to evaluate the causal relationships between 
modifiable exposures and disease outcomes. Besides, 
P values below 0.05 were deemed to be statistically 
significant.

Results
MR analysis identified AFF3 as a novel susceptibility gene 
in RC
The whole study design was detailed in Fig. 1, including 
three steps: Step 1 (19,942 gene eQTLs as exposure and 
RC as outcome); Step 2 (1,400 metabolites as exposure 
and RC as outcome); and Step 3 (AFF3 eQTL as exposure 

Fig. 1  The whole study design
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and 51 metabolites as outcome). Based on the results 
of step 1, we found that genetic susceptibility to AFF3 
eQTL was able to increase the risks of RC (IVW method; 
odds ratio (OR) = 1.0005; 95% confidence interval 
(CI) = 1.0001–1.0010; P = 0.0285; heterogeneity = 0.9588; 
pleiotropy = 0.8397; Fig. 2). Its detailed forest plot, scatter 
plot, and leave-one-out analysis were presented in Fig-
ure S1. Taken together, MR analysis identified AFF3 as a 
novel susceptibility gene in RC.

SMR analysis verified AFF3 as a novel susceptibility gene 
in RC
SMR analyses were used to verify the causal relation-
ships among AFF3 cis-eQTL and RC risks via the SMR 
1.3.1 software with default settings and cut-off values of 
P < 0.05 in the eQTLGen dataset. Our results showed that 
genetic susceptibility to AFF3 cis-eQTL was also able to 
increase the risks of RC (OR = 1.00067; 95% CI = 1.00004-
1.00131; P = 0.038; HEIDI = 0.992; Fig.  3A). The SMR 

locus plot was detailed in Fig.  3B. The SMR correlation 
plot presented that they had a positive correlation among 
the AFF3 cis-eQTL and the RC GWAS data (Fig. 3C).

ScRNA-seq and bulk RNA-seq analyses validated the AFF3 
expressions in RC
Bulk RNA-seq data from the TCGA-KIRC and the 
ICGC-RC datasets were utilized to verify the AFF3 gene 
expression levels in RC tissues compared with normal 
controls, with the help of the R “limma” package and 
cut-off values of P < 0.05. Our results showed that the 
AFF3 gene had higher expression levels in RC tumors 
than normal control, in the whole TCGA-KIRC dataset 
(N = 72; T = 539; P < 0.001; Fig. 4A), in the paired TCGA-
KIRC dataset (N = 72; T = 72; P < 0.001; Fig.  4B), and in 
the ICGC-RC dataset (N = 45; T = 91; P < 0.001; Fig.  4C). 
ScRNA-seq data from the GSE159115 dataset was used 
to verify the AFF3 gene single-cell expression levels in 
RC tissues compared with normal controls, with the help 

Fig. 3  SMR analysis verified that genetic susceptibility to AFF3 cis-eQTL could increase the risks of RC; (A) The SMR forest plot; (B) The SMR locus plot; (C) 
The SMR correlation plot

 

Fig. 2  MR analysis revealed that genetic susceptibility to AFF3 eQTL could increase the risks of RC
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of the R “seurat” package and cut-off values of P < 0.05. 
Our results also presented that the AFF3 gene was more 
highly expressed in RC tumor cells than in normal cells 
(P < 0.001; Fig.  4D). Taken together, the AFF3 had a 
higher expression in RC tumors than normal control via 
scRNA-seq and bulk RNA-seq analyses.

GSEA analysis identified AFF3-related pathways in RC
With the help of the GSEA 4.0.0 software and the gene 
set of “c2.cp.kegg.v7.1.symbols.gmt”, GSEA analysis was 
conducted to seek AFF3-related pathways in the AFF3-
high and AFF3-low subgroups based on the median 
expression. As detailed in Fig. 5, we found that AFF3 was 
markedly linked with the ERBB, the GNRH, the Insulin, 
the MAPK, the MTOR, and the TGF beta pathways (all 
the absolute values of NES were above 1.5 and the nomi-
nal p-values were below 0.05). All of these indicated the 
potential biological pathways of AFF3 involved in RC.

MR analysis revealed the potential mechanism of AFF3 in 
RC
To reveal the potential mechanism of AFF3 in RC, steps 
2 and 3 were further conducted. Based on their results, 
the X-11,315 metabolite levels were finally identified. We 
found that genetic susceptibility to AFF3 eQTL could 
decrease the risks of the X-11,315 metabolite levels (IVW 
method; OR = 0.9127; 95% CI = 0.8530–0.9765; P = 0.0081; 
heterogeneity = 0.4150; pleiotropy = 0.8852; Fig.  6). Its 
detailed forest plot, scatter plot, and leave-one-out analy-
sis were presented in Figure S2. Moreover, genetic sus-
ceptibility to the X-11,315 metabolite levels could also 
decrease the risks of RC (IVW method; OR = 0.9987; 95% 
CI = 0.9975–0.9999; P = 0.0380; heterogeneity = 0.5362; 
pleiotropy = 0.9808; Fig.  7). Its detailed forest plot, scat-
ter plot, and leave-one-out analysis were presented in 
Figure S3. Taken together, we concluded that AFF3 eQTL 
increased the risks of RC via regulating the X-11,315 

Fig. 4  ScRNA-seq and bulk RNA-seq analyses validated the AFF3 expressions in RC; (A) the whole TCGA-KIRC bulk RNA-seq dataset (N = 72; T = 539); (B) 
the paired TCGA-KIRC bulk RNA-seq dataset (N = 72; T = 72); (C) the ICGC-RC bulk RNA-seq dataset (N = 45; T = 91); (C) the GSE159115 scRNA-seq dataset; 
*** means P < 0.05
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Fig. 7  MR analysis revealed that genetic susceptibility to the X-11,315 metabolite levels could decrease the risks of RC

 

Fig. 6  MR analysis revealed that genetic susceptibility to AFF3 eQTL could decrease the risks of the X-11,315 metabolite levels

 

Fig. 5  GSEA analysis identified AFF3-related pathways in RC; (A) the ERBB; (B) the GNRH; (C) the Insulin; (D) the MAPK; (E) the MTOR; and (F) the TGF beta 
pathways; NES: normalized enrichment score;
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metabolite levels and its sketch map was detailed in 
Fig. 8.

Discussion
RC represents one of the most prevalent malignancies of 
the urinary system, with its incidence and mortality con-
tinuously rising globally, which severely compromises 
patients’ prognosis [29]. Identifying novel pathogenic 
mechanisms and therapeutic targets shows great prom-
ise to improve early diagnosis and precision treatment 
for RC [30, 31]. MR analysis, as an instrumental variable 
approach, determines causality between exposures and 
outcomes by leveraging the natural random assortment 
of alleles during conception [32]. Hence, in this article, 
we applied MR analysis associated with eQTL analysis to 
identify novel susceptibility genes and reveal their poten-
tial mechanisms in RC, providing promising prognostic 
biomarkers or therapeutic targets for these patients.

Based on our study design, a total of three steps were 
conducted sequentially, including Step 1 (19,942 gene 
eQTLs as exposure and RC as outcome); Step 2 (1,400 
metabolites as exposure and RC as outcome); and Step 3 
(AFF3 eQTL as exposure and 51 metabolites as outcome). 
Our results showed that genetic susceptibility to AFF3 
eQTL was able to increase the risks of RC, indicating 
AFF3 as a novel susceptibility gene in RC. Further SMR 
analysis validated the causal relationships among AFF3 
cis-eQTLs and RC risks. Moreover, the TCGA-KIRC, the 
ICGC-RC, and the GSE159115 datasets verified that the 
AFF3 gene was more highly expressed in RC tumors than 
normal control via scRNA-seq and bulk RNA-seq. GSEA 
analysis identified six potential biological pathways of 
AFF3 involved in RC. To further reveal the potential 
mechanism of AFF3 in RC, steps 2 and 3 were conducted, 
and the X-11,315 metabolite levels were identified. Our 

results finally concluded that AFF3 eQTL could increase 
the risks of RC through regulating the X-11,315 metab-
olite levels. This logical workflow not only discovered 
multiple novel genes and metabolites associated with RC 
risk, but also informed future functional analyses to focus 
on these positive findings, thereby improving research 
efficiency. More importantly, it laid the groundwork for 
elucidating the molecular mechanisms connecting gene 
expression, metabolic activities, and cancer development. 
Further in-depth investigations were warranted based on 
the clues uncovered here.

ALF transcription elongation factor 3 (AFF3), also 
known as MLLT2-like, LAF4, and KINS, belonged to the 
AF4/FMR2 family and encoded a nuclear protein involv-
ing multiple biological processes, including autoimmune 
diseases, tumorigenesis, intellectual disability, horseshoe 
kidney, and so on [33–35]. Zeng et al. found that AFF3 
could serve as a new therapeutic target for gastric can-
cer immunotherapy [35]. Cen et al. revealed that the 
significant associations among AFF3 rs10865035 poly-
morphisms and systemic lupus erythematosus in Chinese 
[36]. Shi et al. shed light on the fact that upregulation 
of AFF3 could mediate the resistance of tamoxifen in 
breast cancer [37]. However, little was currently known 
about the roles of AFF3 in RC. Our study provided the 
first evidence for AFF3 eQTL elevating RC risks, suggest-
ing its oncogenic roles. Further SMR analysis validated 
the causal relationships among AFF3 cis-eQTLs and 
RC risks. Further biological investigations are required 
to depict how AFF3 mechanistically contributed to RC 
onset and development. More efforts were also war-
ranted to assess the potential of AFF3 as a biomarker or 
therapeutic target for the precision diagnosis and treat-
ment of RC patients.

Fig. 8  Sketch map of the potential mechanism of AFF3 in RC via regulating the X-11,315 metabolite levels
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To reveal the potential biological pathways of AFF3 
involved in RC, GSEA analysis was conducted, and the 
ERBB, the GNRH, the Insulin, the MAPK, the MTOR, 
and the TGF beta pathways were identified. Most of these 
pathways had been reported to play vital roles in RC. Yao 
et al. reported that the ERBB and MAPK pathways were 
significantly enriched in RC via bioinformatics analysis in 
2016 [38]. Solarek et al. showed that insulin and insulin-
like growth factors could serve as the intratumoral regu-
lators of RC [39]. Roldán-Romero et al. revealed that the 
loss of the deubiquitinase gene USP9X could sensitize 
RC cells to mTOR inhibition [40]. Nam et al. shed light 
on that the TGF-β/HDAC7 pathway would suppress the 
metabolism of the TCA cycle in RC [41]. Taken together, 
our results revealed the potential biological pathways 
of AFF3 involved in RC, which deserved to be further 
explored.

A growing number of metabolites had been found 
to act as critical effector molecules to influence various 
malignant properties and serve as important biomarkers 
reflecting tumor metabolic phenotypes for cancer detec-
tion and surveillance [42, 43]. Boyland et al. revealed that 
the metabolites of 7,12-dimethylbenz(a)anthracene could 
induce adrenal damage and tumorigenesis [44]. Yang et 
al. summarized the correlations among gut microbiota-
derived metabolites and cancer progression or therapy 
[45]. Nagel et al. investigated the associations between 
metabolic factors and small intestine cancer risks, show-
ing that interacted metabolic factors and elevated tri-
glycerides would lead to increased small intestine cancer 
risks in women [46]. In this article, our study revealed the 
preventative effects of X-11,315 against RC, implying the 
metabolite’s modulation as a potential anti-RC strategy. 
As reported by Talmor-Barkan et al., they discovered a 
Clostridiaceae family bacterium species that was previ-
ously unidentified, indexing SGB 4712. X-11,315 was 
thought to originate from diet and was positively linked 
with SGB 4712 [47]. Other information regarding the 
properties and functions of X-11,315 remained largely 
unknown. Further deciphering the connections between 
gene regulation, metabolic reprogramming, and RC 
pathogenesis would pave the way for these patients’ novel 
diagnostic and therapeutic developments.

As for the potential mechanism of AFF3 in RC, we con-
cluded in this article that AFF3 eQTL could negatively 
modulate the levels of the X-11,315 metabolite, exhib-
iting preventive effects against RC risks. Although the 
exact identity and functions of X-11,315 remain unclear 
at the current stage, this finding undoubtedly provides 
clues guiding future developments of metabolic bio-
marker-based diagnostic tests and therapies for RC. Sim-
ilar mechanisms could be found in other diseases, such 
as asthma [48], multiple sclerosis [49], and so on. Deeper 
investigations into the interplay between AFF3 and 

metabolic networks could yield more fruitful outcomes 
moving forward.

Certain limitations also existed in our study. Firstly, 
since MR analysis was merely a technique used to exam-
ine the causal links between exposures and outcomes, it 
cannot be utilized as a substitute for clinical trials in the 
objective world [50]. Further studies or experiments were 
needed to validate AFF3’s role in RC. Secondly, base-
line characteristics among controls and cases remained 
unclear, which might introduce residual confounding and 
cannot further stratify the study population [23]. Finally, 
all the study populations involved in this article were 
European, which was linked to sample selection bias [24]. 
The results in other populations should be interpreted 
with caution. Future studies were needed to conduct in-
depth experiments based on the current study results to 
further explore the role of AFF3 in RC and possible inter-
vention strategies.

Conclusions
In this article, our study provided the first evidence for 
AFF3 eQTL elevating RC risks, suggesting its oncogenic 
roles. Further SMR analysis validated the causal relation-
ships among AFF3 cis-eQTLs and RC risks. Moreover, 
the TCGA-KIRC, the ICGC-RC, and the GSE159115 
datasets verified that the AFF3 gene was more highly 
expressed in RC tumors than normal control via scRNA-
seq and bulk RNA-seq.  GSEA analysis identified six 
potential biological pathways of AFF3 involved in RC. 
As for the potential mechanism of AFF3 in RC, we con-
cluded in this article that AFF3 eQTL could negatively 
modulate the levels of the X-11,315 metabolite, exhibit-
ing preventive effects against RC risks. The outcomes 
of us laid the groundwork for elucidating the molecu-
lar mechanisms connecting gene expression, metabolic 
activities, and cancer development. Further in-depth 
investigations were warranted based on the clues uncov-
ered here.
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