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Introduction
According to the American Cancer Society, approxi-
mately 106,970 individuals were diagnosed with CC in 
the United States in 2023 [1]. Despite advancements 
in diagnosis and therapy, the prognosis of CC remains 
unfavorable due to its high rates of metastasis and post-
intervention recurrence [2]. Surgical removal does not 
guarantee a favorable outcome, as approximately 30–40% 
of patients with stages II and III CC develop recurrence, 
which is the primary cause of mortality associated with 
this disease [3]. Consequently, an urgent need exists to 
identify additional biomarkers for diagnosis and prog-
nosis as well as therapeutic targets to improve long-term 
outcomes in patients with CC.

The tumor microenvironment (TME)—consisting 
of malignant cells, infiltrating immune cells, the extra-
cellular matrix, resident mesenchymal cells and other 
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Abstract
Background Colon cancer (CC) is a malignancy associated with significant morbidity and mortality within the 
gastrointestinal tract. Recurrence and metastasis are the main factors affecting the prognosis of CC patients 
undergoing radical surgery; consequently, we attempted to determine the impact of immunity-related genes.

Result We constructed a CC risk model based on ZG16, MPC1, RBM47, SMOX, CPM and DNASE1L3. Consistently, 
we found that a significant association was found between the expression of most characteristic genes and tumor 
mutation burden (TMB), microsatellite instability (MSI) and neoantigen (NEO). Additionally, a notable decrease in 
RBM47 expression was observed in CC tissues compared with that in normal tissues. Moreover, RBM47 expression 
was correlated with clinicopathological characteristics and improved disease-free survival (DFS) and overall survival 
(OS) among patients with CC. Lastly, immunohistochemistry and co-immunofluorescence staining revealed a clear 
positive correlation between RBM47 and CXCL13 in mature tertiary lymphoid structures (TLS) region.

Conclusion We conclude that RBM47 was identified as a prognostic-related gene, which was of great significance to 
the prognosis evaluation of patients with CC and was correlated with CXCL13 in the TLS region.
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constituents—plays a crucial role in influencing cancer 
progression and therapeutic outcomes [4]. Typically, the 
immune system serves as a defense mechanism against 
neoplasia development. However, mounting evidence 
suggests that immune cell [5, 6] infiltration is closely asso-
ciated with the prognosis of CC patients. Specifically, the 
presence of cytotoxic CD8+ T cells within the central or 
peripheral regions of the tumor is indicative of a reduced 
risk of recurrence in patients with CC [7]. Additionally, 
constructing prognostic predictive models for patients 
with CC relies on the quantification of tumor-associated 
neutrophils (TANs) [8], regulatory T cells (Tregs) [9] and 
tumor-associated macrophages (TAMs) [10], rendering 
them more dependable than conventional indicators for 
prognostic evaluation. Furthermore, higher densities of 
tumor-infiltrating dendritic cells (DCs) have been linked 
to prolonged survival in individuals with CC, suggesting 
a novel prognostic determinant [11]. Moreover, a higher 
density of TLS was closely correlated with an improved 
prognosis in patients with colorectal cancer (CRC) [12]. 
Consequently, a better understanding of immune cell 
biology within the CC microenvironment facilitates the 
elucidation of potential tumorigenic mechanisms.

In the current investigation, using single-cell and bulk 
transcriptome sequencing analysis enabled the identifica-
tion of six immune-related differentially expressed genes 
(DEGs) that exhibited a significant association with DFS 
and OS in the context of CC. Notably, our findings indi-
cate a significant decrease in RBM47 expression in CC 
tissues compared with that in adjacent normal tissues. 
RBM47 primarily functions as an RNA-binding pro-
tein (RBP) and may potentially exert regulatory effects 
on DNA, thereby influencing gene regulatory functions 
[13]. Various cancer types can be affected by the aber-
rant expression of RBM47, which can affect transcrip-
tional and post-transcriptional regulation. Furthermore, 
RBM47 exhibits tumor-suppressive effects in various 
solid tumors, including lung [14], breast [15], hepato-
cellular [16] and colorectal cancers [17]. However, it is 
worth noting that RBM47 may present malignant signifi-
cance on nasopharyngeal carcinoma and non-small cell 
lung cancer survival. These findings indicate that RBM47 
exerts double-edged functions in cancer development 
in a specific disease context. Nevertheless, it is unclear 
exactly how RBM47 contributes to cancer cell immunity 
and CC development.

In this context, we investigated the relationship 
between RBM47 expression levels and the clinicopatho-
logical features and prognosis of patients with CC. We 
also probed insight into TMB, MSI and neoantigen medi-
ated by RBM47. Moreover, CXCL13 and RBM47 expres-
sion levels were correlated. Additionally, hematoxylin 
and eosin (H&E) and co-immunofluorescence showed 
RBM47 expression in TLS. Overall, this study enhances 

our knowledge of how the TME affects CC outcomes, 
providing valuable insights for clinical management and 
targeted therapy.

Materials and methods
Data sources and processing
RNA sequencing (RNA-seq) data, somatic mutation data 
and clinical information of 41 normal colon tissue sam-
ples and 448 CC tissue samples with survival information 
were obtained from TCGA database (TCGA-CC, https://
portal.gdc.cancer.gov/). The scRNA-seq data for 10 nor-
mal colon tissue samples and 23 CC tissue samples from 
the GSE132465 dataset, the RNA-seq data for 566 CC 
tissue samples and 19 normal colon tissue samples from 
the GSE39582 dataset, and the survival data for 121 CC 
patients from the GSE41258 dataset were all obtained 
from the GEO database. (https://www.ncbi.nlm.nih.
gov/).

Patients
Tissue specimens from 118 patients with CC (Table  1) 
who underwent surgery between 2018 and 2020 were 
obtained from the Nanjing Drum Tower Hospital. All 
patients were followed up until January 2024. OS was cal-
culated from the date of surgery until death or the date 
of the last follow-up. We calculated DFS from the date of 
surgery to the date of any diagnosis of progression. Fresh 
tumor tissue samples were obtained from 20 patients 
with CC during surgery at our hospital. Histopathological 
and clinical findings were scored according to the Ameri-
can Joint Committee on Cancer guidelines (8th Edition). 
The basic information and clinicopathological features of 
the patients are collected in Supplementary Table S1.

Screening of differential immune cells
We analyzed the proportion of 22 immune cells in CC 
and normal colon tissue samples in GSE39582 and 
TCGA-CC datasets using the CIBERSORT algorithm 
and the differential immune cells between CC and nor-
mal colon tissue samples using the Wilcoxon test [18].

Weighted gene co-expression network analysis (WGCNA)
Differential immune cell-associated module genes 
were screened using WGCNA [19] in all samples of 
the TCGA-CC datasets based on common differential 
immune cells in GSE39582 and TCGA-CC datasets. First, 
the Hclust function was employed to detect the pres-
ence of outlier samples, and then a feasible soft thresh-
old β was selected. Then, by dynamic tree-cutting module 
identification, co-expression modules were obtained, 
hierarchical clustering trees were drawn, and modules 
with a correlation greater than 0.75 were merged by cor-
relation analysis [20]. The relationships between each 
module and trait data were investigated using Pearson’s 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/


Page 3 of 14Li et al. BMC Cancer          (2024) 24:758 

correlation analysis to identify the key module. The gene 
significance (GS, |GS|>0.2) and module membership 
(MM, |MM|>0.8) values of the modules were calculated, 
and the significantly-related module genes were screened 
[21].

Analyzing the scRNA-seq data
The core cells were obtained by the “Seurat” R package 
[22]. The quality criteria were as follows: first, genes with 
a detection limit of three or fewer cells were excluded 
from the analysis. Additionally, cells with mitochondrial 
expression genes of less than 5% and low-quality cells 
with less than 200 genes were removed. The top 2000 
highly variable genes with high intercellular coefficients 
of variation were screened using the Find Variable Fea-
tures function. Principal component analysis (PCA) was 
performed on all samples in the scRNA data to mini-
mize batch effects, with the top 50 principal components 
selected for overall dimensionality reduction analysis 
using the UMAP algorithm [23]. Marker genes were 

identified using FindAll Markers in the Seurat package. 
Several different cell types were annotated and visualized 
using a Single R package [24]. Cellular communication 
between different cell types was analyzed using the Cell-
chat R package [25]. DEGs were identified in the same 
type of immune cells between tumor and normal groups 
by “FindMarkers”.

Establishment and evaluation of risk model
The “DESeq2” package version and the “ggplot2” plotting 
tool were used to evaluate and version DEGs between 
the normal and CC tumor groups in TCGA-CC with 
p < 0.05 and |Log2FC| > 1 [26]. Volcano and heatmaps 
were employed to visualize DEGs. Subsequently, Venn 
diagrams were utilized to visualize the immune cell-
associated genes correlated with CC, and univariate Cox 
analysis was employed to select genes of significant value 
for patient survival based on their association with CC 
prognosis. Subsequently, the least absolute shrinkage 
and selection operator (LASSO) analysis was performed 
using the R package glmnet to screen for characteristic 
genes and construct prognostic risk models [27]. The 
prognostic model was structured using the following 
formula: Risk score = Coefgene1 × Expgene1 + Expgene2 
× Coefgene2 + Coefgene3 × Expgene3 + …… + Coef-
genen × Expgenen. TCGA-CC patients were divided into 
two risk categories (high- and low-risk category) based 
on the median risk score, and the difference in survival 
between the two categories was analyzed using Kaplan-
Meier (KM) curves. The survROC package was deployed 
to plot ROC curves to assess the ability of the risk score 
to predict CC patient survival [28]. We then validated 
the feasibility of the prognostic model using the exter-
nal validation GSE41258 dataset. The samples of patients 
with CC were grouped by optimal cut-off values for char-
acteristic gene expression, and KM survival curves were 
plotted according to DFS outcome using the R package 
survivor. Patients with CC were grouped according to the 
best cut-off value of the CIBERSORT results, and KM 
survival curves for different key immune cell groupings 
were plotted using the R package survivor (OS and DFS).

Assessment of the prognostic model
Clinicopathological features (T, N, M, age, sex and sur-
vival status) and risk scores were incorporated into chi-
square tests to analyze the distribution and differences in 
the clinical characteristics between the two risk patient 
categories (high- and low-risk categories). Besides, a 
nomogram was constructed by the “rms” package com-
bining clinicopathological characteristics with risk scores 
to predict the probability of survival at 1, 3 and 5 years for 
patients with CC in the TCGA-CC dataset [29]. The cor-
responding calibration and ROC curves were also drawn 
to assess the validity and dependability of the nomogram.

Table 1 Clinicopathological characteristics of involved colon 
cancer patients
Characteristics RBM47 expression P value

Low (N = 59) High (N = 59)
Age(years) 0.87
 Mean ± SD 60.2 ± 11.6 59.8 ± 13.9
Gender 0.57
 Male 37 34
 Female 22 25
Differentiation 0.023
 Poor 18 12
 Moderate 41 41
 Well 0 6
T stage 0.016
 T1 0 2
 T2 0 4
 T3 51 48
 T4 8 5
N stage 0.0089
 N0 15 30
 N1 31 24
 N2 13 5
AJCC stage 0.0077
 II 15 29
 III 44 30
Location 0.85
 Right 29 30
 Left 30 29
MMR status 0.018
 dMMR 4 13
 pMMR 55 46
Chemotherapy 0.62
 No 11 9
 Yes 48 50
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Gene set enrichment analysis (GSEA) analysis
To confirm the biological features of hub genes, we 
counted their correlations with other genes and sorted 
them according to the results using a package called 
GSEA [30].

Tumor mutation burden (TMB), microsatellite instability 
(MSI), neoantigen (NEO) and chemokines
TMB was calculated using somatic data from TCGA 
database as well as the MSI score. The relationship 
between hub gene expression and TMB or MSI was 
investigated using Spearman’s correlation analysis. The 
correlation between characteristic genes and chemo-
kine-related genes was assessed using the cBioPortal 
and Tumor Immune Estimation Resource databases, 
respectively.

Quantitative RT-PCR
RNA was extracted from the tumor and adjacent normal 
tissues using an RNeasy kit (Qiagen), and reverse tran-
scription was carried out using a High-capacity cDNA 
Reverse Transcription kit (Applied Biosystems). For 
qRT-PCR, 10 ng of cDNA template was mixed with 1X 
SYBR Green PCR Master Mix (Applied Biosystems). The 
primer sequences are listed ((Supplementary Table S2). 
Amplification was optimized for all primers according 
to the following instructions. The 2 –ΔΔCT method was 
applied to normalize the expression of target genes to 
that of GAPDH.

Immunohistochemistry (IHC)
Formalin-fixed, paraffin-embedded (FFPE) tissue sec-
tions underwent processes such as dewaxing, rehydra-
tion, and antigen retrieval, followed by blocking with 
secondary antibody source serum for both carcinoma and 
adjacent non-tumor sections. After blocking, the slides 
were incubated overnight with CXCL13 (1:1000; Abcam, 
ab246518) or RBM47 (1:1000; Abcam, ab167164). The 
following day, the sections were incubated with second-
ary antibodies and stained with diaminobenzidine. Sub-
sequently, based on the intensity of staining, samples 
were graded on a scale from 0 (no staining) to 3 (intense 
staining). The proportion of cells displaying positive 
staining was then determined and ranged from 0 to 
100%. The final IHC score was calculated by multiplying 
the intensity score with the percentage of positive cells, 
resulting in a score ranging from 0 to 300.

Multiplexed immunofluorescence staining
Multiplex staining was performed using a TSA 2-color 
kit (D110071-50T, Yuanxibio) in accordance with the 
manufacturer’s guidelines. Following consecutive sec-
tioning, the slides were incubated with primary antibod-
ies against CD21 (1:100; Abcam, ab315160) and CD23 

(1:100; Abcam, ab135386), followed by enzyme-labeled 
secondary antibodies (PV-6001 and PV-6002, ZSGB-
BIO) and tyramide signal amplification (M-D110051, 
WiSee Biotechnology). Following each TSA operation, 
the slides were subjected to a microwave heat treatment. 
Subsequently, the nuclei were stained with 4′,6-diamid-
ino-2-phenylindole (DAPI) (D1306, Thermo Fisher) after 
labeling with all aforementioned antigens. The stained 
slides were then scanned to generate multispectral 
images using a Pannoramic MIDI imaging system (3D 
HISTECH). These images were acquired for subsequent 
analysis using HALO Software (Indica Labs).

Pathological evaluation of TLS
TLS was analyzed in CC tissues by detecting CD21 and 
CD23 using the tyramide signal amplification (TSA) 
approach according to the manufacturer’s protocol. IHC 
staining for CXCL13 and RBM47 in the TLS region was 
performed as previously described. IHC scores were 
obtained using HALO Software.

Statistical analysis
Significant differences between the two groups were 
determined using either an unpaired or paired t-test. 
The chi-square test or Fisher’s exact test was employed 
to compare differences in categorical variables. Pear-
son’s correlation test was utilized for correlation analyses. 
Kaplan-Meier analysis and log-rank tests were deployed 
to analyze DFS and OS of patients with CC. Univariate 
and multivariate analyses were performed using Cox 
regression survival analyses. All statistical analyses were 
performed using GraphPad Prism V.8.0.0 (GraphPad 
Software). Differences were considered significant at 
*p < 0.05, **p < 0.01, or ***p < 0.001.

Results
Screening of immune cell module-associated genes
There were 15 differential immune cells between the 
tumor group and the control TCGA-CC samples 
(Fig. 1A and Supplementary Fig. S1A). Only 10 differen-
tial immune-infiltrating cells were found in GSE39582 
(Fig. 1B and Supplementary Fig. S1B). Figure 1C displays 
eight shared differential immune cells in both datasets. 
Cluster analysis using WGCNA showed no outlier sam-
ples (Supplementary Fig. S1C). β = 7 was chosen to ensure 
network accuracy (Supplementary Fig. S1D). Modules 
with a correlation greater than 0.75 were merged to 
obtain 19 modules (Supplementary Fig. S1E). The purple 
and light green modules had a strong correlation with 
immune cells, and we chose these two modules as key 
modules (Supplementary Fig. S1F). Moreover, 493 genes 
associated with immune cells were obtained in the two 
key modules based on |GS|>0.2 and |MM|>0.5 screens 
(Supplementary Fig. S1G).
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After quality control, 34,383 core cells were obtained 
(Supplementary Fig. S2A). After data normalization, 
2000 highly variable genes were identified for subsequent 
analysis (Supplementary Fig. S2B). PCA analysis was per-
formed on single-cell samples, and the data indicated no 
significant batch effects after integration (Supplementary 
Fig. S2C). Meanwhile, we selected the top 50 principal 
components for subsequent analysis (Supplementary 

Fig. S2D). The cell clusters were annotated according to 
the expression of marker genes in the clusters, and six-
cell clusters were obtained (Fig.  1D). Moreover, Fig.  1E 
depicts the abundances of these immune cells between 
normal and tumor tissues. The marker genes in each 
cluster included IL7R, TFF3 and CD79A (Supplemen-
tary Fig. S2E). Based on the scRNA-seq data, DEGs were 

Fig. 1 Screening of immune cell module-associated genes. (A) A total of 15 differential immune cells between the tumor group and control samples 
of TCGA-CC. (B) Ten differential immune infiltrating cells were in GSE39582. (C) Venn diagram analysis depicted the differentially immune cells between 
tumor group and control samples. (D) UMAP plot of six cell clusters. (E) Two-dimensional t-SNE visualization of six major cell types identified from normal 
and tumor samples
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identified in the alloimmune cells of CC tumor and nor-
mal colon tissues.

Construction and assessment of CC risk model
In the TCGA-CC dataset, there were 5448 DEGs, of 
which 2872 were up-regulated and 2576 were down-
regulated in the tumor group compared with the nor-
mal group (Fig. 2A and Supplementary Fig. S3A). Using 
the Venn diagram, we identified 53 immune cell-related 
DEGs associated with CC, which were defined as can-
didate genes (Fig.  2B). Among the candidate genes, 

seven genes associated with CC prognosis were identi-
fied using univariate Cox analysis (Fig.  2C). After filter-
ing by LASSO analysis, six characteristic genes (ZG16, 
MPC1, RBM47, SMOX, CPM and DNASE1L3) were 
obtained (Supplementary Fig. S3B). Based on the coef-
ficients of the genes, we calculated the risk score as 
follows: risk score = ZG16 *(–0.04714834) + MPC1* 
(–0.58270763) + RBM47 * (–0.80011627) + SMOX * 
0.34522437 + CPM *(–0.20786313) + DNASE1L3 * 
(–0.22272891). Accordingly, patients with TCGA-
CC were divided into high-risk (n = 224) and low-risk 

Fig. 2 Identification of an immune signature by Cox proportional hazards model. (A) A total of 5448 differential genes shown by volcano maps: (red) 
up-regulated expressed genes, (blue) down-regulated genes, and (grey) non-differentially expressed genes. (B) Venn diagram of intersection genes 
of alloimmune cells-related DEGs, TCGA differentially expressed DEGs, and immune-related DEGs. (C) Univariate Cox regression revealed seven genes 
associated with prognosis. (D) The curve of risk score. (E) Heatmap shows the expression levels of signature genes. (F) The survival analysis of the two 
subgroups stratified based on the median of risk scores calculated by the risk model. (G) ROC curve analysis for the prognostic value of the prognostic 
model for different years
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categories (n = 224) based on the calculated median risk 
score (Fig.  2D and Supplementary Fig. S3C). The heat-
map shows the differential expression of these six genes 
between the low- and high-risk groups (Fig. 2E). Interest-
ingly, KM curves demonstrated that patients in the high-
risk group had worse OS than those in the low-risk group 
(Fig. 2F). In addition, the ROC curves at 1, 3 and 5 years 
showed that the risk model had a better predictive power 
for patients (Fig. 2G). Furthermore, this risk model dem-
onstrated good stability in the external dataset GSE41258 
(Supplementary Fig. S4).

Independent prognostic and nomogram model
As presented in Fig.  3A, stage N, stage M and survival 
status were remarkably different between the high- and 
low-risk groups (p < 0.05). Nomograms constructed 
based on risk scores and clinical characteristics were 
good predictors of 1, 3 and 5-year survival in patients 
with CC (Fig.  3B). The C-index of the calibration curve 
was 0.79, indicating the feasibility of the model (Fig. 3C). 
Overall, the nomogram can serve as a reliable tool for 
predicting prognosis in patients with CC.

RBM47 is down-regulated in CC, and this down-regulation 
is linked to poor patient survival
Next, we preliminarily validated the expression levels of 
the six hub genes in the CC and adjacent normal tissues 
(n = 20). The clinical characteristics of the patients are 
listed in Table 1. Real-time quantitative PCR results dis-
closed that MPC1, ZG16, RBM47, CPM and DNASE1L3 
were expressed at higher levels in adjacent normal tissues 

than in tumor tissues, and SMOX expression was higher 
in tumor tissues than in non-tumor tissues (Fig. 4A and 
Supplementary Fig. S5A). As RBM47 is the gene with the 
most significant change, we chose it for further intensive 
study. Furthermore, we validated RBM47 expression in 
TCGA database (COAD) (Fig. 4B). We next explored the 
relationship between RBM47 and the clinical features of 
CC. A total of 118 patients with CC were enrolled, and 
their clinical characteristics are summarized in Table  1. 
IHC results revealed that RBM47 expression was signifi-
cantly reduced in CC samples (Fig. 4C, D). Furthermore, 
we explored a potential link between the expression level 
of RBM47 and MSI/MSS status of our cohort comprising 
17 dMMR and 101 pMMR-colon cancers. The RBM47 
level was positively correlated with dMMR (Table 1).

As presented in the KM survival curve, patients with 
CC in the high-RBM47 group had markedly longer DFS 
(Fig.  4E) and OS (Fig.  4F) rates than those in the low-
RBM47 group. Consistently, our clinical samples verified 
that the high RBM47 group had better DFS (Fig. 4G) and 
OS (Fig.  4H). The factors associated with OS and DFS 
were evaluated using univariate and multivariate Cox 
regression models. RBM47 expression, gender, differen-
tiation, T stage and N stage were found to correlate with 
the survival of patients with CC (Tables 2 and 3). Impor-
tantly, multivariate analysis demonstrated that RBM47 
was an independent prognostic factor for worse OS and 
DFS among patients with CC (Tables 2 and 3). Through 
GSEA, we identified and predicted the possible biological 
functions of RBM47 in CC. An evident correlation was 
found between RBM47 expression and TNFA signaling, 

Fig. 3 Establishment of the prognostic nomogram. (A) Correlation of risk group and clinical traits. (B) A predictive nomogram for predicting 1-, 3- and 
5-year OS in CC patients. (C) The calibration plots for predicting 1-, 3- and 5-year OS
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Fig. 4 Upregulation of RBM47 expression in CC is correlated with good prognosis. (A) RBM47 expression levels were decreased in human CC samples 
compared with those in the paired noncancerous tissues (n = 20). (B) RBM47 mRNA expression level in COAD tissues from TCGA database. (C-D) Repre-
sentative image of IHC staining of RBM47 in CC and paired noncancerous tissues. Scale bar: 100 μm. (E-F) Kaplan–Meier DFS and OS curve of CC patients 
correlated with RBM47 expression in TCGA dataset. (G-H) Kaplan–Meier DFS and OS curve of CC patients correlated with RBM47 expression in 118 pa-
tients with CC
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protein secrection and inflammatory response pathways 
(Supplementary Fig. S5B). Taken together, these results 
suggest an important regulatory role of RBM47 in CC.

Immune characterizations analysis
Recently, immune checkpoint inhibitors have been shown 
to play an important role in cancer treatment [31]. By 
analyzing the immune checkpoints, we found that with 
the exception of PDCD1, all seven immune checkpoints 
differed significantly between the high-risk and low-risk 
groups (p < 0.05) (Fig. 5A). Pearson’s correlation analysis 
was conducted between immune checkpoints that were 
markedly different in expression between low-risk and 
high-risk categories. Besides, the risk scores were sig-
nificantly positively correlated with PVR and adversely 
correlated with CD274, CTLA4, CD96 and TIGIT (Sup-
plementary Fig. S6A). MSI, TMB and NEOs are strongly 
linked to tumorigenesis and progression; therefore, we 
studied the relationships between hub gene expression 
and MSI, TMB and NEOs. RBM47 was positively associ-
ated with MSI, whereas ZG16 and SMOX were negatively 
correlated with MSI (Fig.  5B). ZG16, MPC1, RBM47 
and SMOX were significantly linked to TMB (Fig.  5C). 
Similarly, RBM47 was markedly positively associated 
with NEOs, SMOX was significantly negatively corre-
lated with NEOs (p < 0.05), and the other genes were not 

significantly linked to NEO (Fig.  5D and Supplemen-
tary Fig. S6B). In addition, we found that the hub genes 
were closely associated with chemokines (Fig. 5E). These 
results suggest that hub genes play an essential role in 
immunomodulatory processes in tumors.

Discovery of RBM47 expression in TLS
At the single-cell level, RBM47 was mainly expressed in 
epithelial cells and monocytes (Fig.  6A). As reported, 
monocytes are considered the definitive precursors of 
DCs [32]. RBM47 expression was significantly positively 
correlated with myeloid DCs (Fig.  6B). Recent stud-
ies have reported that follicular DCs are a major source 
of CXCL13 [33]. The TLS is formed by B cells that are 
recruited to tumors by CXCL13 [34]. In line with previ-
ous observations, CXCL13 was constitutively expressed 
in TLS (Fig.  6C). Analysis of the correlation between 
characteristic genes and chemokines demonstrated that 
CXCL13 was significantly positive with RBM47 (Fig. 5E). 
As reported, TLS maturation is an important parameter 
of tumor immune contexture and bears significant prog-
nostic and potential predictive value in CRC [35]. Mul-
tiplexed immunofluorescence staining was performed 
to validate the presence of mature TLS in the CC tissues 
(Fig. 6D). Accordingly, IHC analysis revealed that RBM47 
was preferentially presented within TLS in interstitial 

Table 2 Univariate and Multivariate analysis for DFS of CC patients
Variables Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P Hazard ratio HR (95%CI) P
RBM47 0.41 0.30–0.55 < 0.0001 0.45 0.32–0.64 < 0.0001
Gender 0.34 0.14–0.84 0.0192 0.44 0.19–1.28 0.1434
Age 1.01 0.69–1.48 0.9480 - -
Differentiation 0.44 0.23–0.86 0.0162 0.62 0.30–1.28 0.3706
T stage 2.76 1.25–6.09 0.0120 1.81 0.74–4.40 0.4535
N stage 1.81 1.06–3.06 0.0285 1.69 0.64–4.43 0.4925
AJCC stage 1.76 0.79–3.92 0.1658 0.64 0.13–3.15 0.8160
Location 1.33 0.64–2.78 0.4447 - -
MMR status 1.85 0.56–6.12 0.3148 - -
chemotherapy 0.63 0.25–1.56 0.3137 - -

Table 3 Univariate and multivariate analysis for OS of CC patients
Variables Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P Hazard ratio HR (95%CI) P
RBM47 0.31 0.2–0.49 < .0001 0.33 0.20–0.54 < 0.0001
Gender 0.72 0.22–2.41 0.5983 - - -
Age 0.91 0.52–1.59 0.7350 - - -
Differentiation 0.23 0.08–0.71 0.0103 0.39 0.10–1.47 0.163
T stage 3.06 0.94–9.99 0.0644 3.96 0.93–16.9 0.064
N stage 1.73 0.78–3.82 0.1751 0.83 0.30–2.31 0.724
AJCC stage 2.03 0.55–7.55 0.2906 - - -
Location 2.13 0.64–7.08 0.2180 - - -
MMR status 0.9913 - - -
chemotherapy 0.36 0.11–1.21 0.0986 0.28 0.07–1.22 0.0906
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regions (Fig. 6E). Surprisingly, we observed that RBM47 
was positively correlated with CXCL13 in the TLS region 
(Fig. 6F). In general, RBM47 may orchestrate TLS forma-
tion by regulating CXCL13 levels.

Discussion
Progress in identifying early diagnostic biomarkers and 
therapeutic targets for CC has been comparatively slug-
gish, impeding the achievement of favorable clinical 
outcomes [36]. Accumulating evidence indicates that 
the tumor immune contexture comprising the spatial 
arrangement, abundance, and functional orientation of 
immune cells infiltrating the tumor significantly influ-
ences the clinical prognosis of cancer patients [37].

In the present study, immune-related differential genes 
were screened using bulk and scRNA sequencing data. 
Subsequently, six prognostic DEGs were identified using 

survival and immune analyses. Additionally, a nomogram 
model was constructed and validated to predict the prog-
nosis of patients with CC. Verified by clinical samples, 
we chose RBM47 for further intensive studies. RBM47 
is an RNA-binding protein that predominantly binds to 
introns and 3′-UTRs of its target mRNAs, thereby reg-
ulating their stability [13]. In support of our findings, 
RBM47 could inhibit CRC cell proliferation, invasion and 
migration by targeting the PTEN/PI3K/AKT signaling 
pathway [38]. Furthermore, RBM47 silencing was highly 
associated with CRC progression and epithelial-mesen-
chymal transition(EMT) [17]. Previous studies have indi-
cated that RBM47 has demonstrated inhibitory effects 
on tumor progression in gastric [14], hepatocellular [16] 
and breast cancers [15]. Conversely, other studies have 
suggested that RBM47 may exhibit oncogenic proper-
ties in nasopharyngeal carcinoma via its role as a DNA/

Fig. 5 The relationship between hub gene expression and immune checkpoint genes, TMB, MSI, NEO and chemokines. (A) Different expressions of im-
mune checkpoint genes in high- and low-risk groups. (B) The association between hub gene expression and MSI. (C) Association between hub gene 
expression and TMB. (D) The relationship between RBM47, SMOX expression and NEO. (E) Correlation between hub genes and chemokines
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RNA-binding protein [39]. It is hypothesized that the 
dual nature of RBM47’s impact on tumorigenesis may be 
influenced by factors such as tumor heterogeneity, path-
ological subtypes, or molecular mechanisms, leading to 
disease-specific outcomes.

In our study, using IHC staining, we found that RBM47 
expression was significantly lower in CC tissues than in 

normal colon tissues. Subsequently, increased RBM47 
levels in cancer tissue samples were strongly linked to the 
clinicopathological characteristics of CC and served as 
independent predictors of extended OS and DFS. These 
results were consistent with the TCGA-CC dataset. IHC 
results demonstrated that RBM47 was down-regulated in 
CC. Accordingly, an increase in RBM47 was significantly 

Fig. 6 Discovery of RBM47 expression in TLS. (A) RBM47 expressed specifically in epithelial cells and monocytes clustered from integrated single-cell RNA 
sequence data. (B) Correlation coefficient plot of RBM47 and immune-infiltrating cells. (C) Representative TLS in tissues stained by H&E and CXCL13 by 
IHC. (D) Representative image of IHC staining of RBM47 in CC tissues. Arrows indicate TLS. (E) Multiplex immunofluorescence assay of CD23 (green) and 
CD21 (red). (F) The correlation between RBM47 and CXCL13 in the TLS region
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associated with good prognosis in patients with CC in 
multivariate and univariate analyses.

MSI serves as a crucial predictor of tumor initiation 
and progression [40]. TMB influences the likelihood 
of generating immunogenic peptides, thereby affecting 
the prognosis of CRC [41]. Mismatch repair deficiency 
in CRC can lead to MSI and an elevated count of NEOs 
compared with microsatellite stable (MSS) tumors [42]. 
Our study demonstrated a positive correlation between 
RBM47 expression and the presence of TMB, MSI and 
NEOs in CC. Consequently, our findings suggested that 
RBM47 expression may serve as a valuable indicator for 
predicting responses to immune regulatory processes.

Generally, tumor development and progression are 
dependent on the TME, which consists of various non-
malignant cell types and extracellular components [4]. 
Our study identified RBM47 as being enriched in mono-
cytes and epithelial cells, with a positive correlation 
between RBM47 expression and multiple immune cell 
types, particularly mast cells, DCs and B cells, indicating 
a complex infiltration pattern. Prior studies have dem-
onstrated the significance of RBM47 in the post-tran-
scriptional regulation of IL-10, thereby enhancing the 
regulatory capabilities of B cells and implicating RBM47 
in cancer immunity modulation [43]. IHC results further 
revealed RBM47 expression in various cell types, includ-
ing immune and intestinal epithelial cells.

Chemokines are recognized for their capacity to induce 
cell migration and are essential for facilitating immune 
cell infiltration [44]. The present study identified a nota-
ble positive association between RBM47 and CXCL13 
expression using bioinformatics analysis. Subsequently, 
IHC was employed to confirm the positive correlation 
between CXCL13 and RBM47 expression. Accumulating 
evidence indicates that follicular DCs and Tfh cells are 
significant producers of CXCL13, which in turn attracts 
CXCR5-expressing immune cells and promotes TLS for-
mation [45]. This process enhances the immune response 
and activates the cytotoxic effects of immune cells against 
tumors. Tumor-associated TLSs exhibit lymph node-like 
characteristics, such as a T-cell zone containing DCs and 
a germinal center with follicular DCs and proliferating B 
cells, suggesting a crucial role of these lymphoid struc-
tures in regulating adaptive anti-tumor immunity [46].

The presence of TLS surrounding tumors has garnered 
heightened interest as an immune barrier, and meta-
analyses have demonstrated that elevated TLS expres-
sion in solid tumors is correlated with extended overall 
survival, reduced risk of tumor recurrence, smaller tumor 
size, increased tumor-infiltrating lymphocytes (TILs), 
lower tumor grade and lower N stage [34]. Furthermore, 
numerous studies have demonstrated a strong correla-
tion between increased TLS density and improved prog-
nosis in patients with CRC [12]. It has been hypothesized 

that RBM47 may play a crucial role in the organization of 
TLS by modulating CXCL13 levels. Overall, our findings 
suggest that RBM47 could serve as a potential biomarker 
for the early detection of CRC, as well as a promising 
therapeutic target for the prognostic assessment and 
treatment of patients with this disease.

The current research offers robust evidence supporting 
the predictive significance of RBM47 in clinical progno-
sis and its positive association with CXCL13 within the 
TLS region. However, this study has certain limitations. 
Although the relationship between RBM47 and CXCL13 
has been extensively studied, the regulatory mechanisms 
governing their production remain unclear. Furthermore, 
understanding the specific conditions conducive to TLS 
formation is crucial to identify potential therapeutic tar-
gets. The co-localization of RBM47 and TLSs may pro-
vide insight into the formation of these structures.

Conclusion
Generally, our research revealed the direct role of RBM47 
in suppressing CC and modulating CXCL13 within TLS, 
emphasizing the significance of RBM47 in promot-
ing anti-tumor immune responses and impeding tumor 
advancement. Our results also propose that reinstating 
RBM47 could serve as a promising strategy for anti-can-
cer treatment.
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