STUDY PROTOCOL

A randomised controlled trial of Standard Of Care versus RadioAblaTion in Early Stage HepatoCellular Carcinoma (SOCRATES HCC)

Alan Wigg^{1,2*}, Jonathan Tibballs³, Richard Woodman², Katherine Stuart⁴, Hien Le^{5,6}, Stuart K. Roberts⁷, John K. Olynyk⁸, Simone I. Strasser^{9,10}, Michael Wallace³, Jarad Martin¹¹, Annette Haworth¹⁰, Nicholas Hardcastle^{12,13}, Kee Fong Loo¹, Colin Tang³, Yoo Young Lee⁴, Julie Chu¹², Richard De Abreu Lourenco¹⁴, Adam Koukourou¹, Diederick De Boo¹⁵, Kate McLean⁴, Jackie Buck¹⁶, Rohit Sawhney¹⁷, Amanda Nicoll¹⁷, Anouk Dev¹⁵, Marnie Wood¹⁸, Alicia Braund¹⁹, Martin Weltman²⁰, Richard Khor²¹, Miriam Levy²², Tim Wang²³, Michael Potter²⁴, James Haridy²⁵, Ashok Raj²⁵, Oliver Duncan⁸, Amany Zekry²⁶, Natalie Collier²⁷, James O'Beirne²⁸, Catherine Holliday²⁹, Yuvnik Trada³⁰, Jaw Tronidjaja²⁴, Jacob George^{10,31} and David Pryor⁴

Abstract

Background Therapeutic options for early-stage hepatocellular carcinoma (HCC) in individual patients can be limited by tumor and location, liver dysfunction and comorbidities. Many patients with early-stage HCC do not receive curative-intent therapies. Stereotactic ablative body radiotherapy (SABR) has emerged as an effective, non-invasive HCC treatment option, however, randomized evidence for SABR in the first line setting is lacking.

Methods Trans-Tasman Radiation Oncology Group (TROG) 21.07 SOCRATES-HCC is a phase II, prospective, randomised trial comparing SABR to other current standard of care therapies for patients with a solitary HCC \leq 8 cm, ineligible for surgical resection or transplantation. The study is divided into 2 cohorts. Cohort 1 will compromise 118 patients with tumors \leq 3 cm eligible for thermal ablation randomly assigned (1:1 ratio) to thermal ablation or SABR. Cohort 2 will comprise 100 patients with tumors > 3 cm up to 8 cm in size, or tumors \leq 3 cm ineligible for thermal ablation, randomly assigned (1:1 ratio) to SABR or best other standard of care therapy including transarterial therapies. The primary objective is to determine whether SABR results in superior freedom from local progression (FFLP) at 2 years compared to thermal ablation in cohort 1 and compared to best standard of care therapy in cohort 2. Secondary endpoints include progression free survival, overall survival, adverse events, patient reported outcomes and health economic analyses.

Discussion The SOCRATES-HCC study will provide the first randomized, multicentre evaluation of the efficacy, safety and cost effectiveness of SABR versus other standard of care therapies in the first line treatment of unresectable, early-stage HCC. It is a broad, multicentre collaboration between hepatology, interventional radiology and radiation oncology groups around Australia, coordinated by TROG Cancer Research.

Trial registration anzctr.org.au, ACTRN12621001444875, registered 21 October 2021.

*Correspondence: Alan Wigg alan.wigg@sa.gov.au Full list of author information is available at the end of the article

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.gr/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.gr/licenses/by/4.0/.

Keywords Early-stage hepatocellular carcinoma, Stereotactic ablative radiotherapy, SABR, SBRT, Thermal ablation, Transarterial therapies, Treatment stage migration

Background

Liver cancer is the second leading cause of cancerrelated death globally, mainly accounted for by hepatocellular carcinoma (HCC) [1]. It is the only low survival cancer with a rapidly rising incidence. Survival rates for advanced disease are poor and treatment options for early-stage disease can be limited. The treatment strategy in patients with HCC is based on tumour stage, underlying liver function and performance status [2]. The Barcelona Clinic Liver Cancer (BCLC 0/A) staging system is commonly used to guide prognostication and treatment of patients with HCC [3]. For early-stage HCC (BCLC stage 0/A, curative surgical therapies such as liver transplantation and liver resection are recommended to achieve the best survival outcomes, however, less than 30% of patients are candidates for surgery upon diagnosis [2-5].

Thermal ablation using microwave ablation (MWA) or radiofrequency ablation (RFA) is the current standard curative therapy for non-surgical candidates with earlystage HCC \leq 3 cm [6]. Larger tumour size (>3 cm) and certain anatomical locations (subphrenic, subcapsular, in close proximity to large vessels or central biliary structures) have been associated with higher local failure rates and increased complication rates [7–9]. Furthermore, many patients with a single HCC nodule are not suitable for thermal ablation and undergo so called "treatment stage migration" [10, 11]. For these patients the current standard of care migrates to transarterial therapies traditionally considered as non-curative, such as transarterial chemoembolization (TACE) or transarterial radioembolization (TARE).

Stereotactic ablative body radiotherapy (SABR) has emerged as a highly effective, non-invasive treatment option for early-stage HCC and has the advantage of being able to treat larger tumours and those abutting the diaphragm, liver capsule, major blood vessels and bile ducts [9, 12, 13]. However, its use is not uniformly supported in clinical guidelines due to a lack of randomized evidence. Non-randomized studies and systematic reviews have reported high local control rates for SABR (>90% at 3 years), with low rates of grade \geq 3 toxicities (<5%), and similar survival outcomes to thermal ablation [13–16]. One randomized study has demonstrated non-inferior 2-year local progression free survival for proton beam radiotherapy compared to RFA for recurrent HCC, however, no study has evaluated SABR against thermal ablation in the first line setting [17]. The Dutch TRENDY study aimed to evaluate SABR against TACE in a treatment stage migration cohort (predominantly solitary HCC not suitable for resection or thermal ablation), however, this study closed due to slow accrual [18]. For the 28 evaluable patients a post-hoc analysis reported 2-year local control of 100% for SBRT and 43.6% for TACE (p=0.019), a promising finding that warrants investigation in a larger study.

The Trans-Tasman Radiation Oncology Group (TROG) 21.07 SOCRATES-HCC study aims to address this evidence gap in non-surgical, early-stage HCC. For patients with tumours \leq 3 cm and deemed suitable for percutaneous thermal ablation (Cohort 1), SOCRATES-HCC aims to prospectively evaluate the efficacy, toxicity, health related quality of life and cost-effectiveness of SABR compared to modern thermal ablation techniques. For the population of patients with HCC>3 cm or HCC \leq 8 cm but ineligible for ablation (Cohort 2), SOCRATES-HCC will evaluate the efficacy of SABR compared to modern transarterial therapies (including the option of combined TACE-ablation) in the first line setting.

Methods/design

Study design

TROG 21.07 SOCRATES-HCC is a phase II, prospective, randomised, parallel and open-label, multi-institutional superiority trial comparing SABR to other current standard of care therapies for patients with newly diagnosed early stage (BCLC 0/A), solitary ≤ 8 cm nodule HCC, ineligible for surgical resection or transplantation. The trial schema is represented in Fig. 1.

Patients with tumours ≤ 3 cm and eligible for percutaneous thermal ablation comprise cohort 1 and will be randomly assigned (1:1 ratio) to percutaneous thermal ablation (MWA or RFA) or SABR. Patients with tumours ≤ 3 cm assessed as ineligible for thermal ablation or patients with tumours > 3 cm up to 8 cm in size comprise cohort 2 and will be randomly assigned (1:1 ratio) to SABR or best other standard of care therapy comprising any transarterial therapy (TACE or TARE). For patients in cohort 2 with tumours > 3 cm considered suitable for percutaneous thermal ablation or combined procedures, thermal ablation is allowed.

Study objectives and hypotheses

The primary hypothesis of this study is that SABR will result in higher rates of freedom from local progression (FFLP) at 2 years compared to percutaneous thermal

Fig. 1 TROG 21.07 SOCRATES HCC study schema

ablation in cohort 1 and compared to best standard of care therapy in cohort 2. The primary endpoint is 2-year FFLP according to the modified Response Evaluation Criteria in Solid Tumours (mRECIST) [19]. To account for differences in arterial enhancement patterns following radiation-based therapies (SABR and TARE), progression on RECIST v1.1 criteria will also be counted as a progression event [20]. Key secondary endpoints include progression (at any site) free survival (PFS), overall survival (OS), adverse events (CTCAE v5), patient reported outcomes (including EORTC QLQ-C30, QLQ-HCC18), a qualitative assessment of treatment experience and health economic analyses.

Rationale for choice of primary endpoint

The aim of any local therapy is to maximise local control whilst minimising toxicity and any impact on functional reserve. This study is powered to detect a clinically relevant improvement in the primary endpoint of 2-year FFLP. Whilst overall survival is considered the most robust efficacy endpoint for an intervention it can be confounded by the multitude of effective downstream therapies available and their subsequent effects on progression of tumour and underlying liver dysfunction [21, 22]. This is particularly the case when evaluating therapies in early stage HCC. Demonstration of a significant improvement in local control within the context of a randomised trial would provide evidence to support the inclusion of SABR as an initial treatment option for single nodule HCC (BCLC-O/A).

Study setting

SOCRATES-HCC will be conducted across 21 Australian centres including both metropolitan and regional tertiary care public hospitals. The study is a collaboration between hepatologists, radiation oncologists and interventional radiologists and is coordinated by TROG (trial sponsor) and endorsed by the Gastroenterological Society of Australia (GESA), the Abdominal Radiology Group of Australia and New Zealand (ARGANZ) and the Australian Gastrointestinal Trials Group (AGITG).

Characteristics of participants

The target population includes any newly diagnosed, early stage (BCLC 0/A) HCC with solitary ≤ 8 cm nodule, ineligible for or declined liver resection, not planned for transplantation and with clinically compensated cirrhosis (Child–Pugh score \leq B7).

Eligibility criteria

Patients must meet all the inclusion criteria and none of the exclusion criteria below to be eligible for this trial. Inclusion criteria

- 1) Histological or radiological diagnosis of single, new HCC with largest diameter ≤ 8 cm (BCLC stage 0 or A).
 - a) If prior history of HCC, the prior HCC must have been:
 - Early stage, solitary HCC, ≤ 5 cm in size and,
 - Have arisen within a different liver segment to the current HCC and,
 - Treated with curative intent therapy>2 years prior with no evidence of active disease at the site.
- As per local multidisciplinary HCC meeting consensus patient is suitable for percutaneous thermal ablation and/or transarterial therapies and not suitable

for or declined liver resection and not planned for liver transplantation.

- Child–Pugh score ≤ B7 with no or diuretic-controlled ascites
- 4) ECOG performance status ≤ 2
- 5) Platelets ≥ 50×10⁹/L, Haemoglobin ≥ 80 g/L, Neutrophils ≥ 1.0×10.⁹/L, INR < 1.8 (except if on therapeutic anticoagulation)
- 6) 18 years of age or older and able to provide written consent

Exclusion criteria

- 1) Presence of multifocal HCC, macrovascular invasion or extrahepatic disease
- 2) Prior treatment for any HCC within last 2 years.
- 3) Clinically evident ascites or hepatic encephalopathy
- 4) Prior abdominal radiation therapy that would preclude the delivery of protocol defined SABR to the tumour
- 5) Untreated Hepatitis B or C
- 6) Known additional invasive malignancy (excluding non-melanoma skin cancer) that is progressing or required treatment within the last 2 years.
- 7) Pregnancy

Randomization and blinding

Randomization is conducted centrally via a secure web-based platform using blocks of size 4 to help ensure minimal imbalance in the size of treatment groups for each cohort. Participants in each cohort will be stratified for Child–Pugh classification (A vs. B7) and BCLC stage (0 vs. A). Participant and treating clinicians will not be blinded to the treatment assignment after the randomization process. Given the distinct post-treatment imaging appearances of the treated area following different therapies, it is also not feasible to reliably blind the local radiologists or central independent radiological review to treatment assignment.

Treatment interventions

All primary therapy interventions are to commence within 28 days of randomization and must be completed within 42 days of randomization. This time window allows for additional percutaneous thermal ablation procedures (if initial ablation incomplete) or repeat TACE procedures or combination therapy (e.g., TACE-RFA for HCC>3 cm) as part of the first line standard of care therapy.

Percutaneous thermal ablation

MWA or RFA will utilise CT or ultrasound guidance aiming for an ablation margin of >5 mm. An adequate ablation margin must be confirmed on a post-ablation contrast-enhanced CT, preferably immediately postablation or within 24 h. In the event of initial incomplete ablation, further attempts at complete ablation are recommended. Documentation of procedures and adequacy of ablation margin are required to be submitted to TROG for all cases. In addition, central review of the post-ablation CT and verification of ablation margin will be conducted for each centre's first treatment. Once each centre has passed the central quality assurance (QA) review, subsequent real time reviews will be sampled in a 1:5 ratio.

MWA or RFA may be used in cohort 2 for tumours > 3 cm if this represents standard of care therapy at the institution. It may be combined with transarterial therapies. All therapy is required to be completed within the primary therapy window of within 42 days from randomisation. However, MWA or RFA alone is not allowed for tumours \leq 3 cm in cohort 2 as this is a specific exclusion criterion for cohort 2. These patients are eligible for cohort 1.

Transarterial therapy

Transarterial therapy may include TACE or TARE and can be administered as per local practice. TARE should aim to deliver a mean tumour dose of \geq 120 Gy. Multiple TACE procedures are allowed to attain the best response; however, treatments should be completed within the primary therapy window of within 42 days of randomization.

Stereotactic Radiotherapy

SABR must commence within 28 days of randomisation and be completed within 42 days of randomisation. The local investigator has discretion over the prescription dose and fractionation schedule, within the ranges stipulated in Table 1. The aim is to deliver the highest possible

Ta	ble	21	Recommend	led SABI	R dosing	schedules
----	-----	----	-----------	----------	----------	-----------

Criteria	Dose	Fractions	Bed ₁₀
CP-A no dose limiting OAR ^a	50 or	5	100
	42–45	3	100–112
CP-B7 no dose limiting OAR ^a	40–50	5 (preferred)	72–100
	36	3	79
Dose limiting OAR ^a	35–40	5	60-72

Abbreviations: BED biologically effective dose, CP Child–Pugh, OAR organ at risk, SABR stereotactic ablative body radiotherapy

* Including meeting liver dose constraints

biological dose to the planning target volume (PTV) from the protocol defined dose schedules, whilst adhering to the organ at risk (OAR constraints (Table 2). For participants with well compensated liver function (Child–Pugh A) and with tumours not abutting dose limiting organs, a schedule delivering \geq 100 Gy BED10 is recommended. This corresponds to 42-45 Gy in 3 fractions or 50 Gy in 5 fractions delivered to \geq 95% of the PTV. Treatment fractions are recommended to be delivered on 2–3 non-consecutive days per week, over a period of \leq 15 days.

Table 2	Organ	at risk	(OAR)	constraints
---------	-------	---------	-------	-------------

Standardised name	Constraint	Per protocol	Minor variation	Major variation
a: OAR Dose Constraints for 5	Fraction Schedules			
Esophagus	D0.1 cc	≤33Gy	>33Gy but ≤ 35Gy	>35 Gy
Stomach	D0.1 cc	≤32Gy	>32Gy but≤35Gy	>35 Gy
	D10cc	≤25 Gy	>25Gy	-
Duodenum	D0.1 cc	≤32Gy	> 32Gy but ≤ 35Gy	>35 Gy
	D5cc	≤25 Gy	>25Gy	-
SmallBowel	D0.1 cc	≤32Gy	>32Gy but ≤ 35Gy	>35 Gy
	D10cc	≤25 Gy	>25Gy	-
LargeBowel	D0.1cc	≤34Gy	> 34Gy but ≤ 38Gy	>38 Gy
Heart	D0.1cc	≤34Gy	> 34 but ≤ 38Gy	>38Gy
	D30cc	≤30Gy	>30Gy	-
SpinalCord_PRV	D0.035cc	≤25.3Gy	-	>25.3 Gy
Kidneys	Dmean	≤10Gy	>10Gy	-
	D≥200cc*	≤15Gy	>15Gy but≤17.5Gy	>17.5Gy
Kidney_R; Kidney_L*	V10Gy	≤10%	>10% but≤45%	>45%
BileDuct_Common	D0.1cc	≤50Gy	>50Gy	-
Gallbladder	D0.1cc	≤55Gy	>55Gy	-
Chestwall	D0.5cc	≤50Gy	>50Gy	-
Skin	D0.1cc	≤39.5Gy	>39.5Gy	-
b: OAR Dose Constraints for 3	Fraction Schedules			
Esophagus	D0.1 cc	≤23Gy	>23Gy but≤25.2Gy	>25.2 Gy
Stomach	D0.1 cc	≤20Gy	>20Gy but≤22.2 Gy	>22.2 Gy
	D10cc	≤16.5Gy	-	>16.5Gy
Duodenum	D0.1 cc	≤20Gy	>20Gy but≤22.2 Gy	>22.2 Gy
	D10cc	≤11.4Gy	-	>11.4Gy
SmallBowel	D0.1 cc	≤23Gy	>23Gy but≤25.2Gy	>25.2 Gy
	D5cc	≤17.7Gy	-	>17.7Gy
LargeBowel	D0.1cc	≤26Gy	>26Gy but≤28.2Gy	>28.2 Gy
Heart	D0.1cc	≤26Gy	>26Gy but≤30Gy	>30Gy
SpinalCord_PRV	D0.035cc	≤20.3Gy	-	>20.3 Gy
Kidneys	Dmean	≤8.5Gy	>8.5Gy	-
	D≥200cc**	≤14Gy	>14Gy but≤16Gy	>16Gy
Kidney_R; Kidney_L**	V10Gy	≤10%	>10% but≤33%	>33%
BileDuct_Common	D0.1cc	≤36Gy	>36Gy but≤39 Gy	>39Gy
Gallbladder	D0.1cc	≤42 Gy	>42Gy	-
Chestwall	D0.1cc	≤36.9Gy	>36.9Gy	-
	D30cc	≤30Gy	>30Gy	-
Skin	D0.1cc	≤33Gy	>33Gy	-

This constraint is described as the minimum critical volume of the organ that must receive a specified threshold dose or lower (i.e. be spared from receiving a dose higher than the threshold dose) and may be termed a 'cold' constraint. For example, for a combined kidney volume of 250 cc, at least 200 cc should receive a dose of 14Gy (3 fraction schedule) or lower ($D \ge 200 cc \le 14$ Gy, used as a 'cold' constraint; or D50 cc \le 14Gy, used as a 'hot' constraint). Some treatment planning systems allow the user to record 'cold' constraints directly. However, many do not and therefore these require adjusting into a 'hot' (standard) constraint format

**This constraint is applicable for participants with solitary kidney or where Kidney_L or Kidney_R Dmean >10Gy

Each centre will undergo pre-trial credentialing with specific focus on images used for treatment planning, image spatial registration and respiratory motion management to minimise geometric uncertainty in treatment delivery. Documentation of procedures and adherence to protocol defined treatment are required to be submitted to TROG for each case. In addition, each centre's first case will undergo central QA review prior to commencing therapy including an assessment of the adequacy of target volume delineation, verification of motion management strategy and on-treatment imaging verification. After passing the first case, subsequent cases will be sampled in a 1:5 ratio.

Assessments

Participant assessments are tabulated in Table 3. Radiological progression is defined as per mRECIST. Given the potential for more complex vascular changes following radiation-based therapies, local progression events will also include progression on RECIST v1.1 criteria. For cohort 1, local progression will include any recurrence within 10 mm of the ablation zone for MWA/RFA or within 15 mm of the target lesion for SABR [17]. For SABR treatments this will equate to a > 10 mm margin on the high dose region, i.e. the PTV which itself is a \geq 5 mm margin on the target lesion. Central, independent radiological review will be undertaken for progression events with equivocal findings or non-consensus regarding progression requiring interval imaging to confirm progression (backdated to the previous imaging time point).

New intrahepatic and extrahepatic lesions are defined as per mRECIST. For extrahepatic progression mRECIST criteria excludes ascites and pleural effusion unless cytologically confirmed but otherwise retains the RECIST v1.1 criteria for measurable disease.

Management of disease progression

After per-protocol progression has been confirmed by central radiological review, treatment will be according to local institutional standard of care. Crossover therapy is permitted. Relevant data (subsequent treatments, further progressions, survival status) will continue to be collected post progression events.

Statistical analysis and sample size

For cohort 1 (HCC \leq 3 cm and eligible for thermal ablation) the accrual target is 118 participants. A 20% difference in 2-year FFLP was considered clinically significant for this surrogate endpoint given the potential for local salvage and multiple subsequent lines of therapy. We estimated a 2-year FFLP of 75% in the thermal ablation arm. Assuming a 2-sided type 1 error rate of alpha = 0.05, 47 evaluable patients per arm will provide 80% power to

detect an absolute difference in 2-year FFLP of 20% (95% SABR versus 75% thermal ablation). The required sample size will be inflated to N=47/0.80=59 per arm to allow for a drop-out rate of 10% and a 2-year mortality rate of 10%.

For cohort 2 (HCC>3 cm or ineligible for thermal ablation if ≤ 3 cm) the accrual target is 100 participants. We estimated a 2-year FFLP for the standard of care (SOC) therapies of 65%. Assuming a 2-sided type 1 error rate of alpha=0.05, a sample size of 40 patients per arm will provide 80% power to detect an absolute difference in event rates at 2 years of 25% (90% SABR versus 65% SOC) [23–25]. Assuming a 10% drop-out rate and 10% mortality rate at 2 years the estimated number of patients per treatment arm is N=40/0.80=50 per arm.

All analyses will be performed according to an intention-to-treat protocol, with a per-protocol analysis performed as a sensitivity analysis. For the FFLP, PFS, time to tumor progression, tumor objective response rate and OS endpoints, analysis will be performed comparing 2-year estimates from cumulative incidence (FFLP) and Kaplan-Meier survival curves (PFS and OS). The comparisons between groups (SABR vs. MWA/RFA and SABR vs. SOC) will be analysed separately. Secondary analysis using Gray and log-rank tests will be performed to evaluate differences in overall time to event distributions. Fine-Gray, Cox proportional hazards regression will be used to estimate hazard ratios with 95% confidence intervals. Secondary outcomes including the EORTC QLQ-C30 and QLQ-HCC18 (presented as mean scores over time) will be assessed using linear mixed-effects models to account for repeated measures. Additionally, time to deterioration of combined global health status/quality of life will be analysed. Time to deterioration will be defined as the time to first onset of $a \ge 10$ point decrease from baseline. A 2-sided type-1 error rate of alpha=0.05 will be used for all hypothesis testing. All analyses will be performed using Stata software (version 17).

Cost-effectiveness will be estimated as the incremental cost-effectiveness ratio for the use of SABR relative to the relevant comparator for each of the patient cohorts separately (percutaneous ablation eligible and stage migration patients, respectively and for an overall weighted analysis based on the proportion of early inoperable HCC patients in Australia anticipated to fall into these two groups). Outcomes for the cost-effectiveness analysis include the difference in the proportion of patients with FFLP at two years, and the difference in quality adjusted life years (QALYS) observed over the study period. In the first instance, outcomes will be expressed based on the primary outcome, the two-year FFLP rate, and the cost-effectiveness expressed as the cost per additional

Assessment	PeR -	End	Follow up										Progression ¹²
	Randomisation	oftreatment	Post treatment	Post ra	ndomisa	tion							
			4 wks	3 mo	6 m o	9 mo	12 mo	15 mo	18 mo	21 mo	24 mo	30+mo ¹	1
Eligibility confirmation	>												
Informed consent	>												
Medical History	>												
Clinical assessment ^{2,3}	>	>	>	>	>	>	>	>	>	>	>	>	
Concomitant Medications ⁴	>	>	>	>	>	>	>	>	>	>	>	>	
Bloods ⁵	>		>	>	>	>	>	>	>	>	>	>	
Hepatitis status ⁶	>												
Abdominal Imaging ^{7,8}	>			>	>	>	>	>	>	>	>	>	
Chest Imaging ⁹	>												>
Pregnancy Test ¹⁰	>												
Patient Reported Outcomes ¹¹	>		>		>		>		>		>	>	
Adverse Event Reporting (CTCAE v5)		>	>	>	>	>	>	>	>	>	>	>	
Participant experience interview			×13										
Key													
¹ Subsequent follow up every 6 month	is thereafter until study	completion											
² To include: ECOG Performance status	, presence of ascites or	encephalopathy, v	veight, body mass inde	X									
³ To confirm absence of uncontrolled a	ascites or encephalopath	hy only (ECOG, we	ight, BMI not required)										
⁴ After disease progression confirmed,	only subsequent regim	iens of anti-cancer	therapy will be record	ed									
⁵ Includes FBC (Hb, platelets, WCC, neu	utrophils, lymphocytes),	INR, PT/APTT, AST	, ALT, ALP, GGT, total bi	lirubin, all	oumin, cre	atinine, so	dium and A	AFP					
⁶ Documentation of hepatitis B & C virc	ological status and need	d for treatment											
⁷ Multiphase contrast-enhanced CT or	MRI of the liver. See Apl	pendix 3 Imaging	Guidelines for recomm	iended CT	and MRI s	ednences							
⁸ For thermal ablation treatments in cc	ohort 1 only, a contrast ∈	enhanced CT is red	quired to verify the abl	ation marg	gin within	24 h of ab	lation. See S	Sect. 6.1.1	Quality As:	surance (Q	A) measure	es for MWA/RFA	
9 CT chest (\pm pelvis)													
¹⁰ Women with childbearing potential	only. Testing as per inst	itutional protocol											
¹¹ EORTC QLQ-C30, QLQ-HCC18													
¹² Follow-up should continue beyond _l	progression to allow for	collection of subs	sequent therapies, QoL	, and seco	nd sites of	progressi	on						
13 If consented, the interview will be $lpha$	onducted by a central d	esignated intervie	wer within 4 weeks of	treatment	completic	u							

Table 3 Schedule of assessments

patient with local control at two years. QALYs, the combined impact of the impact of HCC and its treatment on survival and quality of life, will be assessed using patient completed information from the EORTC QLQ-C30. The base case analysis will adjust for the effect on OS of crossover post-progression. The potential for costs and outcomes to extend beyond the duration of the trial, and the resulting impact on the cost per QALY, will be explored in a modelled analysis.

Research funding and governance

The trial is funded by an Australian Medical Research Future Fund (MRFF) grant, with no role in of study design, data collection, management, analysis, interpretation of data, writing of the report and publications. The trial is sponsored by TROG with oversight of study design, data collection, management, analysis, interpretation of data, writing of the report and publications. A trial management committee of key investigators and trial coordinators will meet 2-weekly to manage the study and monitor recruitment. A trial executive committee of all key investigators, site principal investigators and coordinators will meet 3-monthly during trial. The TROG Independent Data Safety Monitoring Committee, separate to the trial management committee, will independently monitor the conduct of the trial to ensure its ethical and scientific integrity.

Trial status

The study is approved under the Australian national mutual acceptance ethical review framework by Peter MacCallum Cancer Centre Human Research Ethics Committee (HREC/86417/PMCC) and is registered in the anzctr.org.au trial database: ACTRN12621001444875. Accrual commenced in December 2022. It is estimated it will take 3 years to complete accrual with a further 2 years minimum follow-up for participants.

Discussion

Current standard of care management of unresectable, early-stage HCC has limitations with variable local control rates and frequent treatment stage migration. Promising non-randomized evidence suggests a role for SABR as primary therapy in this setting, however, a lack of randomized evidence has hampered its incorporation into clinical guidelines with resultant considerable variation in practice. The SOCRATES-HCC study will provide a randomized, multicentre evaluation of the efficacy, safety, cost-effectiveness and patient acceptability of SABR versus other SOC therapies in this setting. Such randomized studies have yet to be successfully completed but have the potential to change current treatment algorithms. A significant strength of our study lies in its broad national, multisite collaboration led by hepatology units around the country in conjunction with radiation oncology and interventional oncology colleagues, coordinated by an experienced collaborative trials group (TROG) and support from other professional and trial groups (GESA, ARGANZ and AGITG).

Abbreviations

AGITG	Australian Gastrointestinal Trials Group
ARGANZ	Abdominal Radiology Group of Australia and New Zealand
BED	Biologically effective dose
BCLC	Barcelona Clinic Liver Cancer staging
CT	Computerised Tomography
CTCAE	Common Terminology Criteria for Adverse Events
ECOG	Eastern Co-operative Oncology Group
FFLP	Freedom from local progression rate
GESA	Gastroenterological Society of Australia
Gy	Gray
HCC	Hepatocellular Carcinoma
HREC	Human Research Ethics Committee
MWA	Microwave ablation
OAR	Organ at Risk
OS	Overall survival
PFS	Progression free survival
PTV	Planning Tumour Volumes
QA	Quality Assurance
QALY	Quality-adjusted life year
RECIST	Response evaluation criteria in solid tumours
RFA	Radiofrequency ablation
SABR	Stereotactic ablative body radiotherapy
SOC	Standard of Care
TACE	Transarterial chemoembolisation
TARE	Transarterial radioembolisation
TROG	Trans-Tasman Radiation Oncology Group

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12885-024-12504-2.

```
Supplementary Material 1.
Supplementary Material 2.
Supplementary Material 3.
```

Trial Sponsor

The trial sponsor is the Trans-Tasman Radiation Oncology Group and contact email for the study is SOCRATES_HCC@trog.com.au.

Authors' contributions

AW and DP prepared the initial manuscript draft. AW prepared final draft and submitted. JT, AH, NH, RDAC contributed to second draft of manuscript. JB produced Tables and figures. KS, HL, SR, JO, SS, MW, JM, KL,CT, YL, JC, AK, DDB, KM, RS, AN, AD, MW, AB, MW, RK, ML, TW, MP, JH, RA, OD, AZ, NC, JO, CH, YT, JT and JG all reviewed the manuscript.

Funding

The study is funded by NHMRC Medical Research Future Fund (Rare Cancers and Unmet Needs, Application ID 2014627) grant. This funding source will have no role in the design or execution of this study, analyses, interpretation of the data, or decision to submit results.

Availability of data and materials

No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate

Ethical approval has been obtained from the Peter MacCallum Cancer Centre Human Research Ethics Committee (HREC/86417/PMCC) under the national mutual acceptance scheme. Written informed consent will be obtained from individual study participants by study investigators at each participating institution. The study adheres to CONSORT guidelines with a checklist provided.

Consent for publication

Not applicable.

Competing interests

Nicholas Hardcastle receives research grant funding from Varian Medical Systems and is a paid consultant of SeeTreat Medical.

Author details

Southern Adelaide Local Health Network, Adelaide, Australia. ²Flinders University of South Australia, Adelaide, Australia. ³Sir Charles Gardiner Hospital, Perth, Australia. ⁴Princess Alexandra Hospital, Brisbane, Australia. ⁵Central Adelaide Local Health Network, Adelaide, Australia. ⁶University of South Australia, Adelaide, Australia. ⁷The Alfred Hospital, Melbourne, Australia. ⁸Fiona Stanley Hospital, Perth, Australia. ⁹Royal Prince Alfred Hospital, Sydney, Australia. ¹⁰University of Sydney, Sydney, Australia. ¹¹University of Newcastle, Newcastle, England. ¹²Peter MacCallum Cancer Centre, Melbourne, Australia. ¹³Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia. ¹⁴University of Technology Sydney, Sydney, Australia. ¹⁵Monash Health, Melbourne, Australia. ¹⁶Trans-Tasman Radiation Oncology Group, Waratah, Australia.¹⁷Eastern Health, Melbourne, Australia.¹⁸Royal Brisbane and Women's Hospital, Brisbane, Australia.¹⁹Gold Coast University Hospital, Gold Coast, Australia.²⁰Nepean Hospital, Sydney, Australia.²¹Austri Health, Melbourne, Australia.²²Liverpool Hospital, Sydney, Australia.²³Westmead Hospital, Sydney, Australia.²⁴ John Hunter Hospital, Newcastle, Australia. ²⁵Royal Melbourne Hospital, Melbourne, Australia. ²⁶St George Hospital, Sydney, Australia.²⁷Wollongong Hospital, Wollongong, Australia.²⁸Sunshine Coast University Hospital, Sunshine Coast, Australia.²⁹Centre for Community-Driven Research, Sydney, Australia. ³⁰Calvary Mater, Newcastle, Australia. ³¹Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, Sydney, Australia.

Received: 30 April 2024 Accepted: 11 June 2024 Published online: 08 July 2024

References

- Petrick JL, Braunlin M, Laversanne M, Valery PC, Bray F, McGlynn KA. International trends in liver cancer incidence, overall and by histologic subtype, 1978–2007. Int J Cancer. 2016;139(7):1534–45.
- European Association for the Study of the Liver, Electronic address eee, European Association for the Study of the L. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.
- Reig M, Forner A, Rimola J, Ferrer-Fábrega J, Burrel M, Garcia-Criado A, et al. BCLC strategy for prognosis prediction and treatment recommendation Barcelona Clinic Liver Cancer (BCLC) staging system. The 2022 update. J Hepatol. 2022;76(3):681–93. https://doi.org/10.1016/j.jhep.2021. 11.018.
- Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American association for the study of liver diseases. Hepatology. 2018;68(2):723–50.
- Devaki P, Wong RJ, Marupakula V, Nangia S, Nguyen L, Ditah IC, et al. Approximately one-half of patients with early-stage hepatocellular carcinoma meeting Milan criteria did not receive local tumor destructive or curative surgery in the post-MELD exception era. Cancer. 2014;120(11):1725–32.
- Wu X, Lokken RP, Mehta N. Optimal treatment for small HCC (<3 cm): Resection, liver transplantation, or locoregional therapy? JHEP Rep. 2023;5(8):100781.

- Lu DS, Raman SS, Limanond P, Aziz D, Economou J, Busuttil R, et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol. 2003;14(10):1267–74.
- Kuvshinoff BW, Ota DM. Radiofrequency ablation of liver tumors: influence of technique and tumor size. Surgery. 2002;132(4):605–11; discussion 11-2.
- Jeong Y, Lee KJ, Lee SJ, Shin YM, Kim MJ, Lim YS, et al. Radiofrequency ablation versus stereotactic body radiation therapy for small (</= 3 cm) hepatocellular carcinoma: A retrospective comparison analysis. J Gastroenterol Hepatol. 2021.
- Loo K, Woodman RJ, Bogatic D, Muller KR, Chandran V, Chinnaratha MA, et al. Treatment stage migration for early HCCs and its impact on outcomes- a multi-centre study. Hepatology. 2020;72(S1):655A-A.
- Roberts SK, Gazzola A, Lubel J, Gow P, Bell S, Nicoll A, et al. Treatment choice for early-stage hepatocellular carcinoma in real-world practice: impact of treatment stage migration to transarterial chemoembolization and treatment response on survival. Scand J Gastroenterol. 2018;53(10–11):1368–75.
- Dobrzycka M, Spychalski P, Rostkowska O, Wilczyński M, Kobiela P, Grąt M, et al. Stereotactic body radiation therapy for early-stage hepatocellular carcinoma - a systematic review on outcome. Acta Oncol. 2019;58(12):1706–13.
- Rim CH, Kim HJ, Seong J. Clinical feasibility and efficacy of stereotactic body radiotherapy for hepatocellular carcinoma: a systematic review and meta-analysis of observational studies. Radiother Oncol. 2019;131:135–44.
- Dobrzycka M, Spychalski P, Rostkowska O, Wilczynski M, Kobiela P, Grat M, et al. Stereotactic body radiation therapy for early-stage hepatocellular carcinoma - a systematic review on outcome. Acta Oncol. 2019;58(12):1706–13.
- Wahl DR, Stenmark MH, Tao Y, Pollom EL, Caoili EM, Lawrence TS, et al. Outcomes after stereotactic body radiotherapy or radiofrequency ablation for hepatocellular carcinoma. J Clin Oncol. 2016;34(5):452–9.
- 16. Kim N, Cheng J, Jung I, Liang J, Shih YL, Huang WY, et al. Stereotactic body radiation therapy vs. radiofrequency ablation in Asian patients with hepatocellular carcinoma. J Hepatol. 2020;73(1):121–9.
- 17. Kim TH, Koh YH, Kim BH, Kim MJ, Lee JH, Park B, et al. Proton beam radiotherapy vs. radiofrequency ablation for recurrent hepatocellular carcinoma: a randomized phase III trial. J Hepatol. 2021;74(3):603–12.
- Mendez Romero A, van der Holt B, Willemssen F, de Man RA, Heijmen BJM, Habraken S, et al. Transarterial chemoembolization with drug-eluting beads versus stereotactic body radiation therapy for hepatocellular carcinoma: outcomes from a multicenter, randomized, phase 2 trial (the TRENDY Trial). Int J Radiat Oncol Biol Phys. 2023;117(1):45–52.
- Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30(1):52–60.
- 20. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.
- Llovet JM, Lencioni R. mRECIST for HCC: Performance and novel refinements. J Hepatol. 2020;72(2):288–306.
- Llovet JM, Villanueva A, Marrero JA, Schwartz M, Meyer T, Galle PR, et al. Trial design and endpoints in hepatocellular carcinoma: AASLD consensus conference. Hepatology. 2021;73(Suppl 1):158–91.
- Roberts SK, Gazzola A, Lubel J, Gow P, Bell S, Nicoll A, et al. Treatment choice for early-stage hepatocellular carcinoma in real-world practice: impact of treatment stage migration to transarterial chemoembolization and treatment response on survival. Scand J Gastroenterol. 2018;53(10–11):1368–75.
- 24. Sapir E, Tao Y, Schipper MJ, Bazzi L, Novelli PM, Devlin P, et al. Stereotactic body radiation therapy as an alternative to transarterial chemoembolization for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2018;100(1):122–30.
- Baek MY, Yoo JJ, Jeong SW, Jang JY, Kim YK, Jeong SO, et al. Clinical outcomes of patients with a single hepatocellular carcinoma less than 5 cm treated with transarterial chemoembolization. Korean J Intern Med. 2019;34(6):1223–32.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.