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Abstract
Background Inflammatory factors have increasingly become a more cost-effective prognostic indicator for gastric 
cancer (GC). The goal of this study was to develop a prognostic score system for gastric cancer patients based on 
inflammatory indicators.

Methods Patients’ baseline characteristics and anthropometric measures were used as predictors, and independently 
screened by multiple machine learning(ML) algorithms. We constructed risk scores to predict overall survival in the 
training cohort and tested risk scores in the validation. The predictors selected by the model were used in multivariate 
Cox regression analysis and developed a nomogram to predict the individual survival of GC patients.

Results A 13-variable adaptive boost machine (ADA) model mainly comprising tumor stage and inflammation 
indices was selected in a wide variety of machine learning models. The ADA model performed well in predicting 
survival in the validation set (AUC = 0.751; 95% CI: 0.698, 0.803). Patients in the study were split into two sets – “high-
risk” and “low-risk” based on 0.42, the cut-off value of the risk score. We plotted the survival curves using Kaplan-Meier 
analysis.

Conclusion The proposed model performed well in predicting the prognosis of GC patients and could help 
clinicians apply management strategies for better prognostic outcomes for patients.
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Background
Gastric cancer (GC) is a global health problem that 
remains a significant contributor to the global burden of 
cancer [1]. The GLOBOCAN 2020 estimates of cancer 
incidence and mortality produced by the International 
Agency for Research on Cancer show that gastric can-
cer is the fifth most diagnosed malignancy worldwide, 
with more than 1  million incident cases annually and 
accounting for 5.6% of all cancer diagnoses [2]. Hotspots 
of incidence and mortality for gastric cancer exist in East 
Asia, Eastern Europe, and South America, with East Asia 
being the most affected region [3]. It is foreseeable that 
clinicians will encounter more and more gastric cancer 
cases in the future of China [4]. Due to its frequently 
advanced stage at diagnosis, GC has a poor prognosis [5, 
6]. In China, the financial burden on families and society 
resulting from the treatment of gastric cancer patients 
is considerable, with an average cost of approximately 
$10,000 [7].

Conventional detections of gastric cancer include ima-
geological examination, pathological diagnosis, and gas-
troscopy [8]; however, the cost of these commonly used 
clinical tests is typically higher. Examination, such as 
gastroscopy, are time-consuming and may cause minor 
discomfort to the patient. The interpretation of these 
test results is also limited by the level of the examining 
physician and is more subjective. The American Joint 
Committee on Cancer  (AJCC) tumor-node-metastasis 
(TNM) staging system has been a vital evaluation sys-
tem for guiding clinical treatment and assessing progno-
sis [9], which provides useful but imprecise prognostic 
information. However, in clinical practice, the prognosis 
is significantly different even in patients with the same 
pathological classification [10]. Consequently, there is 
an urgent need to establish a cost-effective model for 
adverse overall survival (OS) for clinicians to aggressively 
pursue early intervention and improve the prognosis of 
GC.

Tumor-related inflammation, which is regard as the 
7th hallmark of tumour [11], plays a decisive role in dif-
ferent stages of tumor development [12]. As a result, 
there has been an increased focus on systemic inflam-
matory parameters, especially those measured by sim-
ple laboratory tests (e.g., platelet, leukocyte, neutrophil, 
lymphocyte, and albumin analyses). Recent studies 
have confirmed that many inflammatory factors, such 
as peripheral blood neutrophil-to-lymphocyte ratio 
(NLR) [13], platelet-to-lymphocyte ratio (PLR) [14], 
lymphocyte-to-monocyte ratio (LMR) [15] and systemic 
immune-inflammatory index (SII) [16], are closely asso-
ciated with the prognosis of patients with gastric cancer. 
However, most current studies focus on the prognosis 
value of GC with a single inflammatory factor, and few 
studies have considered to establish a prognosis model by 

different combinations of inflammatory factors for gas-
tric cancer. Therefore, this study attempted to establish 
a prognostic scoring system by combining the common 
inflammatory factors with the basic clinical character-
istics of gastric cancer patients, and predict the survival 
rate of gastric cancer patients by nomograms.

Material and method
Study design and population
This study’s population and data were collected from 
a nation-wide program, the Investigation on Nutrition 
Status and its Clinical Outcome of Common Cancers 
(INSCOC). INSCOC was a multi-center retrospective 
cohort study conducted in China, which was registered 
online. It was registered in Chinese Clinical Trial Registry 
(ChiCTR) on December 24, 2018, with the clinical trial 
registration number ChiCTR1800020329. The complete 
protocol of this project has been described in previous 
study [17, 18]. The detailed inclusion and exclusion cri-
teria can be found in Supplemental Table 1. Ultimately, 
1,140 patients were included for the final analysis (Fig. 1 
shows the flowchart of patients inclusion), and all of them 
had complete blood biochemistry test results available to 
support the calculation of inflammatory markers. The 
study was approved by the Ethics Committee of the First 
Affiliated Hospital of the Sun Yat-sen University. Writ-
ten informed consent was obtained from all participants 
after explanation of the nature of the study. All data were 
analyzed anonymously with the removal of all identifying 
information. We followed the principles of the Declara-
tion of Helsinki in this study.

Collection of data and definition of variables
Patients’ electronic medical records were collected 
within 48 h of admission and interviewed by experienced 
medical staff using questionnaires developed in previ-
ous studies [17, 19]. These included age, gender, lifestyle 
(smoking; alcohol intake; tea intake), tumor-related data 
(tumour stage; therapy), nutritional-related metrics [the 
Nutrition Risk Screening 2002 (NRS 2002) score and 
Scored Patient-Generated Subjective Global Assessment 
(PG-SGA) tool], body mass index (BMI), quality of life 
and performance status assessment [European Organ-
isation for Research and Treatment of Cancer Quality of 
Life Questionnaire-Core 30 (EORTC QLQ-C30) and the 
Karnofsky Performance Status (KPS)], and indicators for 
laboratory blood tests.

Clinical features recorded during hospitalization, 
including the family history, clinicopathologic staging, 
and blood biochemistry tests, were retrospectively col-
lected from electronic medical records. Laboratory blood 
test indicators included pre-albumin levels, total protein 
levels, C-reactive protein levels, albumin levels, total cho-
lesterol levels, hemoglobin levels, blood glucose levels 
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and blood cell counts(including leukocyte, erythrocyte, 
lymphocyte, neutrophil and platelet). All of the blood 
tests were performed within 48  h of initial hospitaliza-
tion, prior to antineoplastic therapy, and participants 
fasted for at least 9 h before blood collection. Information 
on lifestyle habits (including smoking, alcohol, and tea 
intake) was obtained through the administration of a life-
style questionnaire. The American Joint Committee on 
Cancer TNM staging system (8th edition) was used for 
pathologic staging [9]. Supplemental Table 2 shows the 
formulas used to obtain the indexes required. We have 
established a unified endpoint determination committee 
for the primary study endpoints, and all study endpoints 
are reviewed and determined by this committee. The 

members of the committee were blinded to the concrete 
tasks of the research group.

Outcomes
Overall survival (OS) was defined as the time from tumor 
diagnosis to death, loss to follow-up, or last confirmed 
follow-up date, which was the primary endpoint of this 
study. All patients were followed until June 2022.

Machine learning models
The total population in this study was 1,140. We shuffled 
the data and divided the population into two sets 70% vs. 
30%. We developed the model in “training ones” (n = 798) 
and used “validation ones” (n = 342) to estimate the 
model performance. We defined baseline characteristics 

Fig. 1 Workflow of patients inclusion
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and biochemical indices as input variables. The binary 
response variable was the survival status (survival or 
death). Several machine learning (ML) algorithms devel-
oped by current researchers were independently used 
to predict status of GC patients, including decision tree 
(DT), adaptive boost machine (ADA), random forest 
(RF), logistic regression (LR), support vector machine 
(SVM), and neural network (NNET). The algorithms 
were selected for their accessibility and prevalence in var-
ious cancer studies [18, 20, 21], especially gastric cancer 
[22, 23].

Initially, we employed a pretraining approach, utilizing 
all available variables to train models. The major param-
eters and program details for these models are indicated 
in Supplemental Table 3. In order to derive optimized 
models with fewer features and enhance the clinical 
application, we used the R package “Caret” for feature 
selection [18], which was performed with 10-fold cross-
validation. In a subsequent step, the top 13 most essential 
factors were picked for training predigested models. The 
performance of the models was evaluated using receiver 
operating characteristic (ROC) curves. We calculated the 
area under the receiver operating characteristic curve 
(AUC) and 95% confidence interval (CI). Then we sta-
tistically compared them to identify the best machine 
learning algorithm. In the event that multiple algorithms 
exhibited comparable optimal performance, the “white 
box” algorithm would be selected as the preferred option, 
given its interpretability and ease of implementation [18]. 
Harrell’s concordance index (C-index), decision curve 
analysis (DCA), net reclassification improvement (NRI) 
and integrated discrimination improvement (IDI) met-
rics were used for model assessment to select the appro-
priate combination of variables.

Statistical analysis
The predictors selected by the model were utilized for 
multivariate Cox regression analysis. When conduct-
ing the analysis, variables that met the Proportional 
Hazards Assumption were retained, and those that did 
not were replaced by the variables ranked 14th in the 
order of importance of the variables, in that order, until 
all 13 variables were consistent with the assumption. 
We calculated the cut-off values of the risk score by the 
Cox model, which was obtained using the R platform’s 
“survminer” package. Patients were divided into low-
risk group and high-risk group based on the risk score. 
We used the Log-rank test to compare the survival rates, 
and Kaplan-Meier analysis was utilized to plot the sur-
vival curves. We performed univariate and multivariate 
analyses with Cox proportional risk models to identify 
independent prognostic features. We employed Hazard 
Ratio (HR) and 95% CI to estimate the risk of mortality 
in GC patients. We developed adjustment models in the 

multivariate adjustment model and then conducted sen-
sitivity analysis.

Based on the results obtained from machine learn-
ing algorithms, we conducted a nomogram with cho-
sen variables to predict the individual survival of gastric 
cancer patients. By comparing the survival probabilities 
predicted by the nomogram with the observed actual 
survival probabilities, we performed a calibration curve 
analysis with internal bootstrap correction to verify the 
nomogram’s discriminatory and calibration properties. 
A consistency index was also calculated to quantify the 
discriminatory performance of the nomogram. In order 
to facilitate more flexible applications of clinicians, we 
further simplified the model. We developed a nomogram 
using selected features on the basis and exported the best 
model as a Predictive Model Markup Language (PMML) 
file to support cross-platform deployment [18].

Continuous variables exhibited as median with supe-
rior and inferior quartiles were compared utilizing the 
nonparametric Wilcoxon’s rank-sum test. Categoric vari-
ables exhibited as number (%) were compared by the χ 2 
test. We utilized the DeLong test to compare the AUC of 
different models. All tests were two-sided and a P-value 
of less than 0.05 was regarded as statistically significant. 
All analyses were implemented using the open-source 
software R, version 4.2.2 (The R Foundation: https://
www.r-project.org/).

Result
Basic characteristics
We indicate extensive baseline characteristics of the 
patients in the Table 1. A total of 1,140 patients included 
in this study with a median age of 65.0 years, accounting 
for 798 males and 342 females. The predominant clinical 
stages were III (44.65%) and IV (22.90%). Family history 
of tumor was found in 177 patients. All participants were 
randomized into a training cohort (n = 798) and a valida-
tion cohort (n = 342) to further investigate the predictive 
value of machine learning based models in GC can-
cer patients. Table  1 demonstrated the comparison and 
revealed no significant differences in clinical and demo-
graphic characteristics between the two groups (Table 1).

Feature selection and Model Development
We severally trained models in the training cohort by 
defining all attainable baseline features as the input vari-
ables and regarding survival status as the response vari-
able. The complete models were consequently estimated 
in the validation cohort. The estimation results are illus-
trated in Fig. 2A, the RF model performed excellent with 
an AUC of 0.752 (95% CI: 0.697, 0.807). Setting the RF 
model as the reference, we statistically compared the 
models’ efficiency. The performance of ADA and SVM 
were similar with the RF (P = 0.150; P = 0.087), while the 

https://www.r-project.org/
https://www.r-project.org/
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Characteristics Overall patients(n = 1,140) Training cohort(n = 798) Validation cohort(n = 342) P value
gender(%) 0.632
Male 798(70.00) 562(70.43) 236(69.01)
Female 342(30.00) 236(29.57) 106(30.99)
Age(%) 0.990
age, <65 543(47.63) 380(47.62) 163(47.66)
age, ≥65 597(52.37) 418(52.38) 179(52.34)
Age 65.00(57.00-72.00) 65.00(57.00-72.00) 65.00(57.00-72.00) 0.951
BMI(%) 0.951
underweight(<18.5) 254(22.28) 170(21.30) 78(22.80)
normal(18.5-23.9) 650(57.02) 462(57.89) 194(56.73)
overweight(24-27.9) 207(18.16) 146(18.30) 61(17.84)
obesity(≥28) 29(2.54) 20(2.51) 9(2.63)
BMI 21.00(18.80-23.50) 21.00(18.90-23.53) 20.80(18.78-23.43) 0.539
Smoking, yes(%) 497(43.60) 360(45.11) 137(40.06) 0.115
Alcohol, yes(%) 265(23.25) 194(24.31) 71(20.76) 0.193
Tea, yes(%) 262(22.98) 179(22.43) 83(24.27) 0.499
Diabetes, yes(%) 83(7.28) 52(6.52) 31(9.06) 0.129
Hypertension, yes(%) 179(15.70) 124(15.54) 55(16.08) 0.817
History, yes(%) 177(15.53) 122(15.29) 55(16.08) 0.735
TNM(%) 0.119
I 134(11.75) 91(11.40) 43(12.57)
II 236(20.70) 164(20.55) 72(21.05)
III 509(44.65) 373(46.75) 136(39.77)
IV 261(22.90) 170(21.30) 91(26.61)
Therapy(%) 0.740*
Surgery 621(54.47) 444(55.64) 177(51.75)
Chemotherapy 427(37.46) 291(36.47) 136(39.77)
Radiotherapy 3(0.26) 2(0.25) 1(0.29)
Chemoradiotherapy 5(0.44) 3(0.37) 2(0.59)
Others 84(7.37) 58(7.27) 26(7.60)
PG-SGA 7.00(4.00-10.00) 7.00(4.00-11.00) 7.00(4.00-10.00) 0.984
NRS2002 2.00(1.00-4.00) 2.00(1.00-4.00) 3.00(1.00-4.00) 0.119
KPS(%) 0.640
Cholesterol, mmol/L 4.28(3.68-5.00) 4.23(3.67-4.95) 4.38(3.72-5.04) 0.196
CRP, mg/L 3.50(2.00-10.00) 3.50(1.98-10.10) 3.30(2.07-10.00) 0.722
Blood glucose, mmol/L 5.16(4.67-5.85) 5.15(4.69-5.90) 5.21(4.69-5.90) 0.496
Hemoglobin, g/L 119.00(102.25-136.00) 119.00(102.00-136.00) 120.00(103.78-136.00) 0.727
White Blood Cell, *109/L 5.73(4.50-7.21) 5.70(4.48-7.22) 5.81(4.55-7.22) 0.483
Neutrophil, *109/L 3.19(2.11-4.67) 3.16(2.10-4.64) 3.29(2.22-4.91) 0.093
Lymphocyte, *109/L 1.46(1.00-1.90) 1.43(1.00-1.87) 1.50(1.03-1.90) 0.318
Red Blood Cell, *109/L 4.16(3.67-4.65) 4.16(3.68-4.64) 4.15(3.67-4.65) 0.838
Platelet, *109/L 223.00(168.00-283.00) 223.00(164.00-283.00) 224.00(172.75-285.10) 0.493
NLR 2.16(1.42-3.57) 2.17(1.42-3.45) 2.14(1.40-3.87) 0.725
PLR 154.35(109.73-237.24) 156.68(108.24-241.15) 150.94(110.98-223.08) 0.470
GLR 3.64(2.71-5.53) 3.65(2.73-5.64) 3.59(2.68-5.32) 0.296
ALI 38.75(22.60-60.37) 38.76(23.02-61.17) 38.74(20.99-60.15) 0.657
SII 486.72(273.87-862.13) 484.70(272.98-839.79) 503.26(274.37-875.18) 0.465
CAR 0.09(0.05-0.28) 0.09(0.04-0.29) 0.09(0.05-0.26) 0.796
Nutritional Risk Index 84.83(79.01-91.12) 84.82(78.99-91.13) 84.86(79.02-91.04) 0.755
AGR 1.43(1.22-1.67) 1.45(1.23-1.68) 1.39(1.20-1.64) 0.040
PGR 7.08(5.15-9.13) 7.11(5.19-9.22) 7.01(5.11-8.92) 0.353
PNI 46.63(42.11-50.89) 46.53(42.14-50.65) 46.80(42.10-51.30) 0.537
LCR 3440.97(1143.21-7053.73) 3377.93(1075.58-7058.65) 3510.31(1320.75-7073.92)

Table 1 Baseline characteristics of the study population
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other models displayed significantly inferior efficiency 
(P < 0.05).

The Caret framework has an internal function to 
appraise variables’ importance; thus, we calculated our 
models with the function. DT, SVM, and ADA used 
the AUC as the model metric, different from those 
models(LR, t statistic; RF, mean decrease accuracy; 
NNET, connection weights). Supplemental Fig. 1 depicts 
the comparative importance of the input variables of the 
complete models. The input variables for each model 
were ranked in order of importance, and the top 13 vari-
ables (top 30%; Supplementary Table 4) for each model 
were selected for model reconstruction. In the validation 
sets, the RF model still performed better with an AUC of 
0.763 (95% CI: 0.711, 0.815). The RF was set as the refer-
ence model; the ADA (P = 0.137) and DT (P = 0.099) were 
statistically comparable with the RF, while other models 
displayed inferior performance (P < 0.05) (Supplemental 
Fig. 2).

Since the purpose of this study was to assess the prog-
nosis of gastric cancer using inflammatory indicators, 
the variables in the simplified model were evaluated 
separately for the Proportional Hazards Assumption (PH 
Assumption) before building the Cox regression model. 
LCR (P < 0.0001), LCS (P = 0.007), GLR (P = 0.021), and 
PLR (P = 0.012) did not satisfy the PH Assumption. After 
the replacement, the variables in the new simplified 
model were all consistent with the PH Assumption, and 
we listed the 13 variables utilized to construct the novelty 
model in Supplemental Table 5.

In the retrained streamlined models, ADA model dis-
played the most excellent performance, with an AUC of 
0.751 (95% CI: 0.698, 0.803). The DT (P = 0.224), SVM 
(P = 0.093), and RF (P = 0.921) models were statistically 
comparable with the ADA, while other streamlined 

models performed worse (P < 0.05) (Fig.  2B). We evalu-
ated the influence of selecting feature on the efficiency 
of diff ML algorithms (Table  2). Reducing the number 
of input variables from 43 to 13 strikingly decreased the 
performance of DT and NNET (all P < 0.05), while the 
effects on ADA, RF, SVM, and LR were not significant (all 
P > 0.05).

We compared the better-performing ADA and RF 
models, one of them for future use. The combinations 
of variables in the ADA and RF models were incorpo-
rated into the Cox regression models separately. The final 
model was selected by comparing the calculated C-index, 
IDI, NRI, and DCA curves in the training and validation 
datasets (Fig.  2C and D). The ADA model had a higher 
C-index value than the RF model in the both training and 
validation sets, but the differences were not statistically 
significant. The NRI and IDI metrics displayed that the 
ADA rarely improved regarding discrimination com-
pared with the RF. Observed the curve of DCA, we found 
the ADA and RF model displayed comparable perfor-
mance when the threshold probability for predicting 1-, 
or 3-, 5-year survival in GC patients was > 0.05 or 0.10. 
Clinicians who utilized either model to predict the prob-
ability of survival could gain more benefits than those 
who chose the strategy of treating all patients or none 
patients. The ADA displayed lightly better performance 
than the RF in partial intervals. Therefore, we selected 
the ADA for future use.

Subsequently, we made a comparison between the 
complete ADA model with 43 variables and the sim-
plified ADA model with 13 variables in terms of their 
clinical usefulness and discrimination (Fig. 2E). By com-
paring the metrics of NRI and IDI, we observed that the 
complete model barely improved regarding discrimi-
nation compared to the streamlined model. Although 

Characteristics Overall patients(n = 1,140) Training cohort(n = 798) Validation cohort(n = 342) P value
mGPS(%) 0.656
Score 0 862(75.61) 598(74.94) 264(77.20)
Score 1 159(13.95) 116(14.53) 43(12.57)
Score 2 119(10.44) 84(10.53) 35(10.23)
mGPS 0.00(0.00-0.00) 0.00(0.00-1.00) 0.00(0.00-0.00) 0.456
LCS(%) 0.885
Score 0 264(23.16) 184(23.06) 80(23.39)
Score 1 724(63.51) 505(63.28) 219(64.04)
Score 2 152(13.33) 109(13.66) 43(12.57)
LCS 1.00(1.00-1.00) 1.00(1.00-1.00) 1.00(1.00-1.00) 0.724
CONUT(%) 0.195*
0-1 185(16.20) 5(0.63) 1(0.29)
2-4 686(60.20) 424(53.13) 205(59.94)
5-8 260(22.80) 340(42.61) 126(36.84)
9-12 9(0.80) 29(6.63) 10(2.93)
CONUT 4.00(3.00-6.00) 4.00(3.00-6.00) 4.00(3.00-5.00) 0.055

Table 1 (continued) 
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Fig. 2 Model performance in the data (AUCs were compared using DeLong’s test). (A) Performance of the full ML models. (B) Performance of the 
simplified ML models after feature selection. (C) Comparison of the ADA and RF in training set. (D) Comparison of the ADA and RF in validation set. (E) 
Comparison of the full ADA and simplified ADA
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the differences between the two models were out of sig-
nificance, the DCA curve displayed that using either the 
ADA or the streamlined model still gained more benefits 
in predicting the probability of survival.

Validation of the Survival Prediction ability of Prognostic 
Model
The predictors in the simplified ADA model were 
included in the final prognostic Cox model. Supple-
mental Table 6 displays the HRs (95% CIs) and P-value 
of the factors in the prognostic model. The complete 
equation of the prognostic model is demonstrated in 
Supplemental Table 6’s footnote. According to the cal-
culated cut off score of the risk classification (0.75), the 
participants were split into two groups–“high-risk ones” 
and “low-risk ones” (Supplemental Table 7), and the 
Kaplan-Meier analysis was used to plot a survival curve 
(Supplemental Fig. 3A-3B). The sensitivity analyses indi-
cated a consistent result (Supplemental Table 8). Further-
more, the results of the ROC curve demonstrated better 
performance for 1-, 3-, and 5-year both in the training 
and validation datasets (Supplemental Fig.  3C-3D). The 
calibration curve’s plot displayed excellent consistency 
between the observed actual probability and the OS 
predicted by the prognostic model in the validation set. 
Next, we performed 1,000 internal cross-validations of 
this model using the bootstrap method. Supplemental 
Fig. 3E showed the C-index of 1-, 3-, 5-year.

Nomogram Model for clinicians after Simplification
We screened out independent predictors on the very 
borderline of significance in the multivariate Cox 

analysis, including TNM(P < 0.001), ALI(P = 0.009), and 
AGR(P = 0.058). Through literature review, we found 
that NLR and PNI, two inflammatory indicators, are also 
commonly used to predict the prognosis of patients with 
gastric cancer. Combined with this study, we found that 
NLR and PNI also had relatively small P values (P < 0.2) in 
the multivariate Cox analysis. After completing the two-
step simplification process, we reduced the indicators 
involved in establishing the prognosis model to TNM, 
ALI, AGR, NLR, and PNI. After further simplification 
of the prognostic model, we screened for five indepen-
dent predictors. The final nomogram model incorpo-
rated these five predictors to predict patient survival 
(Fig. 3). The complete equation of the prognostic model 
is displayed in Table 3’s footnote. The OS of GC patients 
was positively related to tumor stage II, III, and IV (all 
HRs > 1, all P < 0.05). However, it was negatively related to 
the AGR and the ALI (all HRs < 1, all P < 0.05).

Table 2 Comparison of the model performance before and after feature selection
Full models (43 variables) Simplified models(13 variables) P

Decision Tree 0.665(0.606–0.725) 0.729(0.676–0.781) 0.0032
Adaptive boost machine 0.728(0.673–0.783) 0.751(0.698–0.803) 0.1861
Random Forest 0.752(0.697–0.807) 0.749(0.695–0.802) 0.8683
Support vector machine 0.722(0.665–0.779) 0.718(0.660–0.776) 0.8626
Logistic Regression 0.705(0.649–0.762) 0.703(0.646–0.759) 0.8155
Neural network 0.581(0.530–0.631) 0.500(0.500–0.500) 0.0017

Table 3 Cox analysis results of Nomogram Model
Characteristics HR (95%CI) P
TNM
I Reference (HR = 1)
II 1.984 (1.426, 2.541) 0.016
III 3.317 (2.801, 3.833) < 0.001
IV 8.303 (7.782, 8.824) < 0.001
AGR 0.643 (0.475, 0.811) < 0.001
ALI 0.994 (0.990, 0.998) 0.003
NLR 0.985 (0.960, 1.009) 0.213
PNI 1.001 (0.995, 1.007) 0.709
Notes Risk score of the Cox model: 0.6849 × tumor stage II (yes = 1, no = 0) + 1.1991 
× tumor stage III (yes = 1, no = 0) + 2.1166 × tumor stage IV (yes = 1, no = 0) − 0.4418 
× AGR − 0.0059 × ALI − 0.0156 × NLR + 0.0012 × PNI

Fig. 3 The nomogram for overall survival prediction in GC patients
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The Nomogram model showed better performance 
than the classical American Joint Committee on Can-
cer TNM staging system (P = 0.094), with AUC values of 
0.753, 0.774, 0.755 at 1, 3, 5 years (Fig. 4A and C). In the 
subgroups of the population using different treatment 
modalities, the column-line diagram model also outper-
formed the classical TNM staging system (Supplemental 
Figs. 4–6). In particular, for the population receiving sur-
gical treatment and chemotherapy, the AUC value of the 

column-line diagram was higher than that of the TNM 
system in predicting the 3-year prognosis (P = 0.121; 
P = 0.200), with AUC values of 0.769 (Supplemental 
Fig. 4B) and 0.726 (Supplemental Fig. 5B). We performed 
predictive analysis on the established risk score of the 
Nomogram model, and survival analyses showed that the 
cohort’s high-risk group had a significantly lower level 
of OS than the low-risk group (Table  4). The sensitivity 
analysis showed a similar result (Supplemental Table 9). 

Table 4 The univariate and multivariate analysis of risk score in total patients
Variables OS (model 0) OS (model 1) OS (model 2)

Crude HR (95%CI) Crude P Adjusted HR (95%CI) Adjusted P Adjusted HR (95%CI) Adjusted P
Total patients
Risk Score 2.718 (2.363–3.126) < 0.001 2.751 (2.385–3.172) < 0.001 2.646 (1.842-3.800) < 0.001
Low risk group Reference (HR = 1) Reference (HR = 1) Reference (HR = 1)
High risk group 3.820 (3.115–4.463) < 0.001 3.904 (3.171–4.807) < 0.001 1.470 (1.254–1.724) < 0.001
Model 0: non-adjustment model

Model 1:adjusted for age, gender, alcohol, history

Model 2: adjusted for age, gender, TNM, BMI, smoking, alcohol, KPS, therapy, diabetes, hypertension, history, PG-SGA, NRS2002, EORTC QLQ-C30

Fig. 4 Nomogram Model performance in total patients (AUCs were compared using DeLong’s test). (A) Comparison of 1-year prognostic ROC for Risk 
Score calculated by Nomogram Model, Cox Model and TNM Model in total patients. (B) Comparison of 3-year prognostic ROC for Risk Score calculated by 
Nomogram Model, Cox Model and TNM Model in total patients. (C) Comparison of 5-year prognostic ROC for Risk Score calculated by Nomogram Model, 
Cox Model and TNM Model in total patients. (D) The Kaplan-Meier survival curves of Risk Score calculated by Cox Model in total patients
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Patients were stratified based on the risk score cut-off 
value (0.42), and subsequently, Kaplan-Meier survival 
curves were generated (Fig. 4D). The Cox model was con-
sequently applied as a web-based risk calculator (https://
gcnomogram2023.shinyapps.io/dynnomapp/), likewise 
an offline risk calculation nomogram.

Discussion
This study was part of a prospective multi-center cohort 
study that included patients with gastric cancer from 
several regions in China. The study aims to establish a 
new inflammation-related score system that can more 
precisely predict the OS of gastric cancer patients. We 
tackle this challenging problem with the machine learn-
ing approach based on inflammatory indicators and 
traditional clinical characteristics. This study may help 
clinicians decide how to treat high-risk patients and 
guide them in developing management strategies to 
improve patient outcomes.

Gastric cancer is a malignant tumor characterized by 
high morbidity and mortality, which has been widely 
reported in East Asia [3]. TNM staging, as an impor-
tant evaluation system for guiding clinical treatment and 
assessing prognosis, are not yet adequate for the needs 
of individualized and accurate treatment for GC patients 
[22]. Some studies have demonstrated that the prognos-
tic model constructed by machine learning method and 
Cox regression analysis has a significantly better evalua-
tion performance than TNM staging [24–26]. Therefore, 
the selection of more representative and easier-to-access 
metrics for constructing model to accurately appraise the 
prognosis of gastric cancer patients is a major concern 
for researchers.

In the prognostic model constructed by the machine 
learning method, the prognosis of gastric cancer patients 
was closely related to intermediate and advanced cancer. 
Inflammatory factors were ranked high in relative impor-
tance for the diagnosis of malignant disease. The con-
sequences of multifactorial Cox analysis displayed that 
AGR, ALI and TNM stage were independent prognostic 
indicators for GC patients. Several studies have shown 
that reduced pretreatment ALI is an independent risk 
factor for OS in cancer patients, particularly GC patients 
[27–30]. These findings are consistent with this research. 
The results of Nomogram Model in this study showed 
that the HR of ALI was 0.994, indicating that high lev-
els of ALI have a protective effect on the prognosis of 
patients with GC. AGR was deemed to be a valid combi-
nation of the two predictive indices. Previous meta-anal-
yses have shown that a lower level of AGR is related to 
lower survival rates in digestive system cancers [31]. The 
investigators concluded that AGR can be a valid prog-
nostic indicator for GC, which may help clinicians find 
GC patients with high-risk who require pre-treatment 

interventions in their clinical practice [32–34]. In this 
study, the P < 0.05 of AGR after multifactorial Cox analy-
sis, and the HR was 0.643. Combined with previous stud-
ies, AGR can be considered as a protective factor for 
GC prognosis. Previous studies have indicated that the 
remaining inflammatory factors such as NLR and PNI 
can also be utilized as independent prognostic factors in 
gastric cancer patients [35–37]. However, since this study 
included them as continuous variables in the multifacto-
rial Cox analysis, the results indicated that the P-values 
all exceeded 0.05, and further studies can be conducted 
after finding the appropriate cut-off values to classify 
them in subsequent studies.

Despite the extensive global adoption of the TNM stage 
system, it still has some limitations. Until now, TNM 
staging has always been evaluated on the basis of ana-
tomical factors. However, tumor diagnosis and treatment 
have entered the era of precision therapy, and there is a 
particular need to incorporate markers related to inflam-
matory response into the prognostic assessment [38, 39]. 
To alleviate the perceived limitations, several research-
ers have derived new tools or nomograms [40, 41]. Many 
studies have correlated systemic inflammation with the 
development and progression of malignancy and patient 
prognosis [42, 43]. The tumor inflammatory microen-
vironment is complex and dynamic, involving cross-
talk between various immune cells and tumor cells [44]. 
This phenomenon not only promotes the development 
and progression of cancer, but also significantly affects 
patient prognosis [45]. Compared to other assays, blood 
biochemical tests are easier and more convenient, and 
their price is relatively low; therefore, inflammatory fac-
tor indices obtained by this method are gradually coming 
into the limelight. Inflammatory prognostic scores calcu-
lated using inflammatory factors and related parameters 
have shown promise in a variety of tumor types. Accord-
ingly, the nomogram based on the systemic immune 
and inflammation indicator is superior to the available 
systems for predicting survival in patients with gastric 
cancer. Facing multiple metrics, how to choose the right 
combination of metrics to build a model is also an essen-
tial conundrum. To solve this problem, ML algorithms 
have become the first-line [46–48]. Several studies have 
exhibited the efficacy of machine learning algorithms in 
selecting indicators to construct predictive models [24, 
25, 49]. Turkki R [50] developed support vector machines 
and artificial neural networks to predict breast cancer 
prognosis and obtained good efficiency of the model. 
Wang et al. used five classifiers [51] to sort the postop-
erative clinical characteristics of colon cancer patients by 
importance. In this way, we can develop survival predic-
tion models suitable for the survival prediction of gastric 
cancer patients in China.

https://gcnomogram2023.shinyapps.io/dynnomapp/
https://gcnomogram2023.shinyapps.io/dynnomapp/
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A distinguishing characteristic of the prognostic 
model used in this study is the incorporation of various 
inflammatory factors and the associated inflammatory 
prognostic scores. We selected variables from the best-
performing models in the machine learning method as 
predictors to construct the column line graph model 
and used the training set to predict OS in GC patients. 
1,000 replicate bootstraps showed good model accuracy 
as evidenced by a C-index value of 0.724. Compared with 
TNM Model, 1, 3 and 5-year OS AUC values indicated 
the high diagnostic effectiveness of our model in predict-
ing OS in GC patients. In order to mitigate the potential 
confounding effects of diverse treatment modalities on 
the prognosis of patients with GC, we also compared the 
performance of our Nomogram Model and the TNM 
Model within subgroups receiving different treatments. 
The findings revealed that our Nomogram Model out-
performed the traditional TNM staging system, with 
significantly higher AUC values in predicting 3- and 
5-year prognosis, particularly among patients undergoing 
surgery and chemotherapy. The simplified Nomogram 
model, which was facilitated to be easier for clinicians to 
use, also showed superior performance compared to the 
TNM model. We separated patients into high and low 
groups by the risk score calculated simplification model 
and found that this risk-based stratification also signifi-
cantly differentiated patient OS.

The primary strength of this study lies in its prospec-
tive multicenter design, which employs multiple machine 
learning approaches to screen metrics and compare/
validate the constructed models. The metrics used to 
build the Nomogram Model are readily available in clini-
cal practice and offer greater convenience for stratifying 
clinical prognosis and optimizing treatment strategies. 
Currently, patients with gastric cancer are more likely to 
undergo surgery or chemotherapy, and our constructed 
Nomogram Model demonstrates significant superiority 
over TNM staging in these two groups, warranting its 
clinical application.

There are several potential limitations in this study. 
Firstly, because of the study’s retrospective design, the 
sample may suffer from selection bias. Besides, the prog-
nosis of the gastric cancer patients is intricate and vul-
nerable to physical and environmental elements. Other 
confounding elements that may influence patients’ prog-
noses need to be considered. Third, despite the DCA 
results supporting the clinical utility of the final model, 
we still need more assessment of patients under treat-
ment-specific data to prove our consequence. Fourthly, 
among the 1,140 participants included in the study, only 
7 received immunotherapy. Due to the small number of 
participants, the analysis was not possible, the subgroup 
analysis of the prognosis and efficacy of immunotherapy 
patients was not supplemented in this study. In addition, 

the inflammatory indices and their dynamic changes with 
treatment response also need to be explored. However, it 
is regrettable that we do not currently gather such data. 
We will consider incorporating this section if additional 
data becomes available in the future. Finally, although we 
internally validated the predictive value of our model, the 
results were not proved by other independent datasets, 
thus we could not confirm the external validity. Future 
studies with larger sample sizes and broader clinical char-
acteristics of gastric cancer patients are warranted to 
address these issues.

Conclusion
In summary, it is effective that establish prognosis model 
developed by inflammatory indicators for gastric can-
cer patients. In this research, we developed a clinical 
prognostic model for gastric cancer using the machine 
learning approach, which performed well in predict-
ing the prognoses of gastric cancer patients combining 
conventional clinical features and inflammatory indica-
tors. The model was implemented as an online tool and 
nomogram, which can help clinicians make decisions and 
guide management strategies for better prognostic out-
comes for patients.
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