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Abstract
Background The axillary lymph-node metastatic burden is closely associated with treatment decisions and 
prognosis in breast cancer patients. This study aimed to explore the value of 18F-fluorodeoxyglucose (18F-FDG) 
positron emission tomography (PET)/computed tomography (CT)–based radiomics in combination with ultrasound 
and clinical pathological features for predicting axillary lymph-node metastatic burden in breast cancer.

Methods A retrospective analysis was conducted and involved 124 patients with pathologically confirmed 
early-stage breast cancer who had undergone 18F-FDG PET/CT examination. The ultrasound, PET/CT, and clinical 
pathological features of all patients were analysed, and radiomic features from PET images were extracted to establish 
a multi-parameter predictive model.

Results The ultrasound lymph-node positivity rate and PET lymph-node positivity rate in the high nodal burden 
group were significantly higher than those in the low nodal burden group (χ2 = 19.867, p < 0.001; χ2 = 33.025, p < 0.001). 
There was a statistically significant difference in the PET-based radiomics score (RS) for predicting axillary lymph-node 
burden between the high and low lymph-node burden groups. (-1.04 ± 0.41 vs. -1.47 ± 0.41, t = -4.775, p < 0.001). The 
ultrasound lymph-node positivity (US_LNM) (odds ratio [OR] = 3.264, 95% confidence interval [CI] = 1.022–10.423), 
PET lymph-node positivity (PET_LNM) (OR = 14.242, 95% CI = 2.960–68.524), and RS (OR = 5.244, 95% CI = 3.16–20.896) 
are all independent factors associated with high lymph-node burden (p < 0.05). The area under the curve (AUC) of 
the multi-parameter (MultiP) model was 0.895, which was superior to those of US_LNM, PET_LNM, and RS models 
(AUC = 0.703, 0.814, 0.773, respectively), with statistically significant differences (Z = 2.888, 3.208, 3.804, respectively; 
p = 0.004, 0.002, < 0.001, respectively). Decision curve analysis indicated that the MultiP model provided a higher net 
benefit for all patients.

Conclusion A MultiP model based on PET-based radiomics was able to effectively predict axillary lymph-node 
metastatic burden in breast cancer.

Trial registration This study was registered with ClinicalTrials.gov (registration number: NCT05826197) on May 7, 
2023.
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Background
Breast cancer is the most diagnosed cancer and a lead-
ing cause of cancer death among women worldwide [1]. 
Approximately 30–40% of breast cancer patients have 
axillary lymph-node metastasis, which is closely related 
to treatment decisions and prognosis [2, 3]. The results 
of the American College of Surgeons Oncology Group 
(ACOSOG) Z0011 trial has indicated that axillary lymph-
node dissection (ALND) is necessary only when there 
are three or more positive axillary lymph nodes [4]. 
Recently, the evaluation of axillary lymph-node metas-
tasis status has shifted from predicting lymph-node 
metastasis to predicting lymph-node metastatic burden 
[5]. Patients with low lymph-node metastatic burden can 
undergo treatment such as total mastectomy or breast-
conserving therapy with whole breast radiation, avoid-
ing ALND, without compromising overall survival rates 
[4, 5]. Patients with high lymph-node metastatic burden 
benefit from axillary surgery or neoadjuvant chemother-
apy, avoiding sentinel lymph-node biopsy [4]. Therefore, 
the accurate preoperative assessment of axillary lymph-
node metastatic burden contributes to the selection of 
treatment.

Novel nuclides can also be used for breast cancer. For 
instance, fibroblast activation protein inhibitor (FAPI) 
specifically binds to fibroblast activation protein and 
demonstrates high uptake in over 20 types of tumours, 
including breast cancer. In the diagnosis of axillary 
lymph-node metastasis in breast cancer, FAPI positron 
emission tomography (PET)/computed tomography 
(CT) has exhibited high accuracy and safety [6]. Fluo-
roestradiol (FES), which is an oestrogen receptor (ER) 
imaging agent, allows FES PET/CT to be utilised for the 
diagnosis, staging, and assessment of endocrine therapy 
effectiveness in ER-positive breast cancer [7]. By using 
combined fluorodeoxyglucose (FDG) and FES PET/CT 
imaging, occult lymph-node metastases that are negative 
for glucose metabolism can be detected. However, FAPI 
and FES are not available in all hospitals, and the diag-
nosis of axillary lymph nodes in breast cancer primarily 
relies on 18F-FDG PET/CT in clinical practice.

Radiomics involves the high-throughput mining 
of quantitative image features from standard medi-
cal images and has become a rapidly advancing field of 
research in breast cancer [8]. Many radiomics studies are 
based on breast ultrasound (US) and magnetic resonance 
imaging (MRI), and some radiomics studies are based on 
18F-FDG PET/CT for breast cancer diagnosis and staging 
[9]. However, there are relatively few radiomics studies of 
axillary lymph-node metastatic load in breast cancer.

Therefore, this study categorised patients into low and 
high lymph-node burden groups based on a threshold of 
three lymph-node metastases. The radiomics research 
complied with the European Association of Nuclear 

Medicine (EANM)/ Society of Nuclear Medicine and 
Molecular Imaging (SNMMI) joint guidelines for nuclear 
medicine radiomics [10]. We investigated the feasibility 
of predicting axillary lymph-node metastatic burden in 
breast cancer using 18F-FDG PET/CT-based radiomics in 
combination with US and clinical pathological features.

Methods
Clinical data
Patients who underwent PET/CT examinations for 
breast nodules at the First Affiliated Hospital of Xi’an 
Jiaotong University between November 2016 and April 
2022 were retrospectively collected through the Picture 
Archiving and Communication System and Hospital 
Information System systems. The patient enrolment pro-
cess is depicted in Fig. 1. This study aligned with the prin-
ciples of the Helsinki Declaration and was approved by 
the ethics committee of our hospital. All data were ano-
nymized prior to analysis. Tumour staging was based on 
the Eighth Edition American Joint Committee on Can-
cer staging manual [11]. The current study was approved 
by the Ethics Committee of the First Affiliated Hospital 
of Xi’an Jiaotong University (Approval No: IRB-SOP-
AF-16), funded by the Department of Science and Tech-
nology of Shaanxi Province (grant no. 2023-YBSF-480), 
and registered with ClinicalTrials.gov (registration no. 
NCT05826197).

The inclusion criteria were as follows: patients who 
had undergone 18F-FDG PET/CT examination for breast 
nodules; adult female patients who were pathologically 
diagnosed with breast cancer (age ≥ 18 years); no sur-
gery, radiotherapy, or chemotherapy prior to the 18F-FDG 
PET/CT examination; an interval between 18F-FDG PET/
CT examination and biopsy/surgery ≤ 2 weeks; and com-
plete clinical and pathological data.

The exclusion criteria were as follows: incomplete 
or poor-quality images, multifocal or bilateral lesions, 
lesions with no increased FDG uptake, metabolic tumour 
volume (MTV) could not be segmented automatically, 
and concurrent presence of other malignancies.

PET/CT imaging methodology
All patients underwent PET/CT examinations using the 
Philips TF64 PET/CT scanner. The 18F-FDG was syn-
thesised using a GE MINItrace cyclotron and Tracerlab 
FX-FDG synthesiser, with precursor reagents purchased 
from ABX, Germany. The synthesised 18F-FDG had a 
radiochemical purity of ≥ 95%, met quality control stan-
dards, and was suitable for human injection. The patients 
fasted for at least 6 h, with a fasting blood glucose level 
of ≤ 12 mmol/L. The 18F-FDG was injected into the vein 
of the contralateral upper limb of the affected breast at a 
dose of 370 MBq/kg body weight. Patients were encour-
aged to drink water and remained at rest for 60 min. The 
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scanning range was from the skull vertex to the mid-
thigh. The CT scan parameters were as follows: tube volt-
age of 120 kV, tube current of 300 mA, slice thickness of 
5 mm, interslice gap of 5 mm, and 512 × 512 matrix. PET 
data were acquired in 3D mode for 1.5 min per bed posi-
tion covering six to seven bed positions. The PET images 
underwent attenuation correction by using co-registered 
CT data and were reconstructed using iterative recon-
struction and time-of-flight techniques. The image data 
were then transferred to the Philips Extended Brilliance 
Workspace (EBW) workstation for post-processing.

Image assessment
The PET/CT images were jointly reviewed by one chief 
radiologist and one senior attending radiologist from 
the PET/CT centre. In cases of discrepancies, a con-
sensus was reached through consultation. The lesions 
were visually assessed, and a 40% threshold was used 
to automatically delineate the lesions in a 3D region of 
interest (ROI) for measuring PET metabolic param-
eters, as shown in Fig.  2, including the mean standard 
uptake value (SUVmean), maximum standard uptake value 

(SUVmax), standard deviation of the standard uptake 
value (SUVStdDev), and MTV. The criteria for assessment 
were as follows: an area of radioisotope uptake greater 
than that in the surrounding breast tissue was indicative 
of a breast cancer lesion, whereas a lymph node of radio-
isotope uptake greater than that in the adjacent muscle 
tissue indicated a metastatic lymph node.

Radiomics
Data acquisition: Raw DICOM data were exported from 
the EBW workstation. Image segmentation: Image seg-
mentation was performed using ITK-SNAP software 
[12] (Version 3.6.0, https://itk.org/), with a circular 
brush style, a brush size of 10, and brush options of 3D. 
The entire tumour volume on the PET image was delin-
eated as an ROI for segmentation, as shown in Fig.  3. 
The lesions were marked by the attending radiologist and 
then verified by the chief radiologist.

An open-source Python package (PyRadiomics 3.0.1 
[13]) was applied to extract radiomic features of the 
ROI, thus resulting in a total of 851 radiomic features 
being computed. The feature extraction and definition 

Fig. 1 Patient enrolment flow
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adhere to the image biomarker standardisation initiative. 
PET radiomics studies were conducted according to the 
EANM/SNMMI guidelines [10].

Clinical and pathological characteristics
All breast nodules were classified using the Breast Imag-
ing Reporting and Data System. Breast cancer histo-
logical grading was performed using the internationally 
recognised Nottingham Histologic Grading system. The 
breast cancer specimens were fixed in 4% formaldehyde 
solution and embedded in paraffin. They were then cut 
into 4  μm sections and underwent routine haematoxy-
lin and eosin staining to detect the pathological type and 
histological grade. Additionally, immunohistochemical 
staining for ER, progesterone receptor (PR), and human 

epidermal growth factor receptor 2 (HER2) were per-
formed, as well as Ki67 proliferation index testing. ER 
positive: ≥10% of tumour cell nuclei stained positive; 
PR positive: ≥10% of tumour cell nuclei stained positive; 
HER2 positive: immunohistochemistry score was ≥ 2+; 
and high Ki67 expression: expression index ≥ 14%.

According to the 2023 National Comprehensive Cancer 
Network guidelines [14], breast cancer can be classified 
into luminal A, luminal B, HER2-positive, and triple-neg-
ative subtypes. The luminal A subtype is ER positive and/
or PR positive, has high PR expression (≥ 20%), is HER2 
(-), and has low Ki67 expression (< 14%). The luminal B 
subtype has two variants: (a) the HER2-negative type 
is ER positive, is HER2 negative, has high Ki67 expres-
sion, and has PR negative or low expression (< 20%), and 

Fig. 2 Measurement of PET metabolic parameters by automatic lesion delineation using 3D ROI. A 49-year-old female with right breast cancer. (a) Maxi-
mum intensity projection image displays the volume of the right breast cancer lesion (arrow) delineated by the red 3D ROI. (b) PET image displays the ROI 
of the lesion (arrow) in the axial plane. (c) Fused image displays the ROI of the lesion (arrow)
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(b) the HER2-positive type is ER positive, is HER2 posi-
tive, has any Ki67 expression, and has any PR status. The 
HER2-positive subtype is ER negative and/or PR negative 
and is HER2 positive. The triple-negative subtype is ER 
negative, PR negative, and HER2 negative.

The grouping of axillary lymph-node metastatic burden 
was based on the results of the ACOSOG Z0011 trial [4]: 
three or more lymph-node metastases were classified as 
the high nodal burden (HNB) group, whereas less than 
three lymph-node metastases were classified as the low 
nodal burden (LNB) group.

Statistical analysis
Statistical analysis was performed using R v.4.1.0 and 
SPSS v.27.0 (IBM Corp., New York), with a significance 
level set at α = 0.05. Continuous variables were expressed 
as mean ± standard deviation. Independent samples t-test 
was used for comparing continuous data between two 
groups that were normally distributed and had homoge-
neity of variance; otherwise, the Mann–Whitney U test 
was used. Count variables were expressed as frequencies, 

and the comparison between the two groups was per-
formed using the χ2 test. The dimensionality reduc-
tion of radiomic features was achieved using the least 
absolute shrinkage and selection operator (LASSO). 
The radiomics score (RS) was calculated based on the 
reduced features and the linear weighting of their coeffi-
cients. Variables with significant differences between the 
two groups were included in a multivariate binary logis-
tic regression analysis to develop a multivariate predic-
tion model and plot the nomogram. The discrimination 
of the nomogram was assessed using receiver operating 
curve (ROC) curve analysis. The cut-off value of the ROC 
curve was calculated based on the maximum Youden 
index, and sensitivity and specificity were also calcu-
lated. The DeLong test was used to compare the area 
under the curve (AUC) between the parameters. Fur-
ther internal validation of the multi-parameter (MultiP) 
model was performed using 1000 bootstrap resamples, 
and the adjusted AUC was calculated. Simultaneously, a 
calibration curve was plotted to assess the calibration of 
the MultiP model. A decision curve was further plotted 

Fig. 3 Three-dimensional segmentation of the breast cancer lesion. By using the ITK-SNAP software, the right breast cancer lesion (arrow) was pseudo-
coloured with green in the axial (a), sagittal (b), and coronal (c) views, and the tumour lesion segmentation was performed automatically (d)
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Fig. 4 Cross-validation plot with LASSO regression and coefficient plot, the optimal lnλ of -2.812 was obtained through cross-validation. The upper hori-
zontal axis represents the number of radiomic features corresponding to the model. In Fig. 4A, the two vertical dashed lines represent the two logarithmic 
values (λ) of the minimum mean square error and the minimum mean square error plus 1 standard deviation obtained through cross-validation. In Fig. 4B, 
as the logarithm (λ) increases, the coefficients of the radiomic features gradually shrink towards 0, and the number of features reduces from the logarithm 
(λ) of the minimum mean square error to 4
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to evaluate the net benefit of the MultiP model across all 
patients. Differences with p < 0.05 were considered statis-
tically significant.

Results
Comparison of general information
A total of 124 patients were included, with ages ranging 
from 20 to 76 years and a mean age of 49 years. Clinical 
and pathological characteristics were compared between 

Table 1 Comparison of general information of patients in two groups
Parameters LNB (≤ 2)

(n = 98)
HNB (≥ 3)
(n = 26)

t/χ2 p

Age 48.57 ± 11.66 51.12 ± 11.11 -0.999 0.320
US_BIRADS 7.543 0.110
 Bi-rads 1 1 1
 Bi-rads 3 2 1
 Bi-rads 4 58 8
 Bi-rads 5 20 10
 Bi-rads 6 17 6
Tumour location 0.066 0.798
 Left 50 14
 Right 48 12
Quadrant distribution 10.056 0.074
 Outer upper 38 10
 Outer lower 12 3
 Inner upper 31 5
 Inner lower 7 0
 Middle upper 3 4
 Middle lower 7 4
US_LNM 19.867 < 0.001
 Negative 85 12
 Positive 13 14
T stage 6.856 0.144
 Tis 3 0
 T1 54 8
 T2 32 13
 T3 6 3
 T4 3 2
PET_LNM 33.025 < 0.001
 Negative 69 2
 Positive 29 24
Subtypes 1.938 0.380
 Invasive ductal carcinoma 85 25
 Invasive lobular carcinoma 10 1
 Ductal carcinoma in situ 3 0
Grade 2.865 0.239
 G1 3 0
 G2 44 8
 G3 51 18
Mol-subtypes 3.304 0.347
 Luminal A 25 4
 Luminal B 31 13
 HER2-positive 26 5
 Triple-negative 16 4
SUVmax 8.04 ± 4.36 8.67 ± 6.11 -0.601 0.549
SUVmean 4.31 ± 2.35 4.03 ± 2.55 0.524 0.601
SD 1.28 ± 0.85 1.41 ± 1.45 -0.587 0.558
MTV 33825.73 ± 152299.83 28968.19 ± 30363.31 0.161 0.872
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the LNB group (n = 98) and the HNB group (n = 26) to 
identify potential diagnostic biomarkers for axillary 
lymph-node metastatic burden. The proportion of posi-
tive US_LNM was higher in the HNB group than in the 
LNB group, with a statistically significant difference 
(χ2 = 19.867, p < 0.001). The proportion of positive PET 
lymph-node positivity (PET_LNM) was also higher in the 
HNB group than in the LNB group, with a significant dif-
ference (χ2 = 33.025, p < 0.001; Table 1). Meanwhile, there 
were no significant differences between the LNB and 
HNB groups in terms of age, tumour location, quadrant 
distribution, Breast Imaging Reporting and Data System 
classification, T stage, molecular subtype, pathological 
type, grade, SUVmax, SUVmean, SD, and MTV (p > 0.05; 
Table 1).

LASSO regression and calculation of RS
The radiomic features were standardised using Z-score 
normalisation, followed by dimensionality reduction 
using LASSO regression, and the optimal lnλ of -2.812 
was determined through cross-validation, as shown in 
Fig. 4.

The RS for axillary lymph-node metastatic burden was 
calculated based on the three reduced radiomic features 
and the linear weighting of their coefficients. .

The RS for LNB group was − 1.47 ± 0.41, whereas the 
RS for the HNB group was − 1.04 ± 0.41. The difference 
between the two was statistically significant (t = -4.775, 
p < 0.001), as shown in Fig. 5.

Multivariate logistic regression analysis
The US_LNM, PET_LNM, and RS were included in a 
multivariate logistic regression analysis, and the results 
showed that US_LNM (odds ratio [OR] = 3.264, 95% 
confidence interval [CI] = 1.022–10.423), PET_LNM 
(OR = 14.242, 95% CI: 2.960–68.524), and RS (OR = 5.244, 
95% CI: 1.316–20.896) were all independent influencing 
factors for high lymph-node burden (p < 0.05), as shown 
in Table 2. A nomogram was plotted based on the results 

Table 2 Multivariate logistic regression analysis results
Parameters OR 95% CI p
US_LNM 3.264 1.022–10.423 0.046
PET_LNM 14.242 2.960–68.524 < 0.001
RS 5.244 1.316–20.896 0.019

Fig. 5 Box plot comparing the RS of the two groups
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of the multivariable logistic regression analysis, as shown 
in Fig. 6.

Assessment of nomogram
ROC curve analysis of the nomogram of the parameters 
are shown in Table 3; Fig. 7. The MultiP nomogram had 
the highest AUC of 0.895 (95% CI = 0.840–0.951), sur-
passing all individual parameters, as shown in Fig. 8. The 
cut-off value with the maximum Youden index was 0.13, 
corresponding to a sensitivity of 96.15% and a specificity 

of 73.47%. The adjusted AUC by 1000 bootstrap resam-
pling was 0.882. As shown in Fig. 9, the calibration curve 
indicated good calibration for the MultiP nomogram. 
Further decision curve analysis indicated that within 
the probability threshold range of 0.35–0.67, the MultiP 
nomogram provided greater net benefit for all patients, 
as shown in Fig. 10.

Table 3 AUC, cut-off value, sensitivity, and specificity of single- and MultiP nomograms
Parameters AUC (95% CI) p Cut-off Se (%) Sp (%)
US_LNM 0.703 (0.614–0.782) < 0.001 1 53.85 86.73
PET_LNM 0.814 (0.734–0.878) < 0.001 1 92.31 70.41
RS 0.773 (0.689–0.843) < 0.001 -1.12 61.54 87.76
MultiP 0.895 (0.840–0.951) < 0.001 0.13 96.15 73.47

Fig. 6 Nomogram of axillary lymph-node metastatic burden parameters based on the results of multivariable logistic regression analysis
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Discussion
Breast cancer treatment includes surgery, radiotherapy, 
chemotherapy, adjuvant chemotherapy, and immuno-
therapy. The selection of breast cancer treatment plans is 
typically determined by various factors, including tumour 
staging, pathological type, and presence or absence of 
lymph node metastasis. Axillary lymph-node metastasis 
is a crucial indicator for breast cancer staging, and the 
number and status of axillary lymph-node metastasis are 
closely related to the prognosis of breast cancer patients 
[3]. Generally speaking, the greater the number of axil-
lary lymph-node metastases, the worse the prognosis is 
for patients. Age may also influence the choice of treat-
ment plans [15]. For instance, younger patients may be 
more inclined to choose local treatments such as breast-
preserving surgery and radiotherapy, whereas older 
patients may prefer systemic treatments such as che-
motherapy and endocrine therapy. To date, the primary 
focus has been on comprehensive treatment to improve 
prognosis or delay disease progression. Accurate assess-
ment of axillary lymph-node metastatic burden in breast 

cancer is crucial for choosing appropriate comprehensive 
personalised treatment for patients. Currently, the devel-
opment of a robust prediction model for axillary lymph-
node metastasis is a focus of research both in China and 
worldwide.

A study [16] predicted early cervical squamous cell 
carcinoma by using 18F-FDG PET/CT radiomics, with 
an AUC of 0.91. There was also a report [17] using meta-
analysis to summarise the predictive studies of 18F-FDG 
PET/CT radiomics for chest lymph-node metastasis in 
lung cancer, with an AUC of 0.94. Li et al. [6] reported 
the application of 68Ga-FAPI PET/CT in breast malig-
nancies. Elboga et al. [18] compared the diagnostic accu-
racy of 68Ga-FAPI and 18F-FDG PET/CT in detecting 
breast cancer and found that 68Ga-FAPI performed bet-
ter than 18F-FDG. Munter et al. [7] reported the clinical 
and economic effects of 18F-FES PET/CT for ER-positive 
breast cancer patients. Pedersen et al. [19] reported that 
18F-FES was used for ER-positive breast cancer patients, 
thus resulting in higher lesion visibility. However, FAPI 
and FES are difficult to obtain, and the diagnosis and 

Fig. 7 ROC curves of the single- and MultiP nomograms. The AUC of the MultiP model was 0.895, superior to those of US_LNM, PET_LNM, and RS models 
(AUC = 0.703, 0.814, 0.773, respectively)
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staging of breast cancer in clinical work still mainly rely 
on the application of 18F-FDG PET/CT.

Commonly used clinical imaging methods to assess 
axillary lymph-node metastatic burden in breast can-
cer are mostly based on the subjective experience of 
radiologists or low-dimensional semi-quantitative or 
quantitative analysis, with a large amount of deep and 
high-dimensional data not being fully utilised. Therefore, 
there is an urgent need for an accurate, preoperative, and 
non-invasive method that fully utilises high-dimensional 
data to predict axillary lymph-node metastatic burden in 
breast cancer, providing supplemental information for 
surgical decision-making, which aims to achieve preci-
sion diagnosis and treatment and to improve the quality 
of life for breast cancer patients.

The term “omics” originates in molecular biology and 
is used to describe the characteristics of DNA, RNA, 
proteins, and metabolites [8]. Radiomic features are 
products influenced by tissue genotype and phenotype, 
reflecting the biological characteristics of tumours [8]. In 
medical imaging research, radiomics involves deep min-
ing of images to acquire clinically relevant data, providing 
potential imaging biomarkers for optimising diagnosis 

and treatment [20]. Compared to tissue-based biological 
markers, algorithm-based radiomic markers offer advan-
tages such as non-invasiveness, real-time analysis, inde-
pendence from and non-reliance on samples [21]. Recent 
studies have shown that radiomics demonstrated good 
predictive performance in assessing lymph-node metas-
tasis in various cancers [22, 23].

Studies have indicated [9] the potential clinical value 
of radiomics in the diagnosis, staging, and treatment 
response assessment of breast cancer. Radiomics can 
improve the sensitivity of lymph-node metastasis diag-
nosis in breast cancer [24]. In earlier studies, our team 
has demonstrated that PET/CT-based radiomics in com-
bination with US and clinical pathological features can 
predict axillary lymph-node metastasis in breast can-
cer [25]. However, PET/CT-based radiomics for axillary 
lymph-node metastatic burden in breast cancer has not 
been widely studied. Therefore, in the current study, we 
conducted a multivariate regression analysis of PET/CT-
based radiomics, US, and clinical pathological features of 
breast cancer to establish a MultiP model for predicting 
axillary lymph-node metastatic burden.

Fig. 8 Comparison of ROC curves of the single- and MultiP nomograms. The AUC of MultiP model was compared with those of the US_LNM, PET_LNM, 
and RS models, and the differences were all statistically significant (Z = 2.888, 3.208, 3.804, respectively; p = 0.004, 0.002, < 0.001, respectively)
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One study [26] utilised US to predict axillary lymph-
node burden in breast cancer, and the multivariate 
analysis demonstrated that having ≥ 3 abnormal lymph 
nodes was an independent influencing factor for HNB 
(OR = 18.385, 95% CI = 7.315–46.205, p < 0.05). Another 
study [27] utilised MRI to predict axillary lymph-node 
burden in breast cancer, and the multivariate analysis 
demonstrated that only vascular volume was an inde-
pendent influencing factor for HNB (OR = 1.33, 95% 
CI = 1.03–1.67, p = 0.008). The findings of our study dem-
onstrated a close relationship between positive axillary 
lymph nodes on US and axillary lymph-node metastatic 
burden. The US lymph-node positivity rate in the HNB 
group was significantly higher than that in the LNB group 
(χ2 = 19.867, p < 0.001), which was consistent with previ-
ous findings [28]. The PET lymph-node positivity rate in 
the HNB group was significantly higher than that in the 
LNB group (χ2 = 33.025, p < 0.001), which was consistent 
with previous findings [29].

Previous research has shown a stronger association 
between axillary lymph-node burden and imaging fea-
tures [30]. In the current study, US lymph-node positivity, 

PET lymph-node positivity, and PET-based radiomics 
were all medical imaging features closely related to axil-
lary lymph-node burden (p < 0.05), whereas other clinical 
pathological features showed no significant correlation, 
which was consistent with previous findings.

Our previous study [25] revealed a statistically sig-
nificant difference in the PET-based RS predicting axil-
lary lymph-node metastasis between the positive and 
negative groups. In this study, there was a statistically 
significant difference in the PET-based RS predicting 
axillary lymph-node burden between the HNB group and 
the LNB group (-1.04 ± 0.41 vs. -1.47 ± 0.41, t = -4.775, 
p < 0.001). The findings of this study indicated that US 
lymph-node positivity, PET lymph-node positivity, and 
RS were all independent influencing factors for HNB. The 
AUC of the MultiP model was 0.895, superior to those 
of US_LNM, PET_LNM, and RS models (AUC = 0.703, 
0.814, 0.773, respectively), with statistically significant 
differences (Z = 2.888, 3.208, 3.804, respectively; p = 0.004, 
0.002, < 0.001, respectively). Decision curve analysis indi-
cated that the MultiP model provided higher net benefit 
for all patients.

Fig. 9 Calibration curve of the MultiP model. The MultiP curve (blue line) approaches the ideal lines, thus indicating a good calibration effect
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It has been indicated [31] that the number of axillary 
lymph-node metastases is associated with the SUVmax 
of breast cancer nodules (r = 0.645, p < 0.001). However, 
in this study, there was no significant correlation between 
axillary lymph-node burden and SUVmax. Another study 
suggested [32] an association between Ki67 and axillary 
lymph-node burden in breast cancer. However, in our 
study, the aforementioned factor showed no significant 
correlation with axillary lymph-node burden. A previous 
study [33] revealed that among different molecular sub-
types of breast cancer, there was a higher likelihood of 
LNB in triple-negative breast cancer. However, the cur-
rent study did not find a correlation between the molecu-
lar subtypes of breast cancer and the lymph-node burden 
possibly because of differences in patient inclusion/exclu-
sion criteria.

This study had limitations. Firstly, it was a single-centre 
retrospective study, which could have introduced selec-
tion bias. Second, patients with bilateral, multifocal, and 
occult lesions were excluded. Third, owing to the limited 
amount of data, only internal validation was conducted, 
and expansion of data is necessary for further external 
validation.

Conclusion
The multivariate model constructed based on 18F-FDG 
PET/CT-based radiomics in combination with US and 
clinical pathological features exhibited excellent predic-
tive performance for axillary lymph-node metastatic bur-
den in breast cancer and can serve as a reference tool for 
individualised precision treatment decision-making in 
clinical practice.
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