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Abstract 

Background  Tumor-associated macrophages (TAMs) constitute a substantial part of human hepatocellular carci-
noma (HCC). The present study was devised to explore TAM diversity and their roles in HCC progression.

Methods  Through the integration of multiple 10 × single-cell transcriptomic data derived from HCC samples 
and the use of consensus nonnegative matrix factorization (an unsupervised clustering algorithm), TAM molecular 
subtypes and expression programs were evaluated in detail. The roles played by these TAM subtypes in HCC were 
further probed through pseudotime, enrichment, and intercellular communication analyses. Lastly, vitro experiments 
were performed to validate the relationship between CD63, which is an inflammatory TAM expression program 
marker, and tumor cell lines.

Results  We found that the inflammatory expression program in TAMs had a more obvious interaction with HCC cells, 
and CD63, as a marker gene of the inflammatory expression program, was associated with poor prognosis of HCC 
patients. Both bulk RNA-seq and vitro experiments confirmed that higher TAM CD63 expression was associated 
with the growth of HCC cells as well as their epithelial-mesenchymal transition, metastasis, invasion, and the repro-
gramming of lipid metabolism.

Conclusions  These analyses revealed that the TAM inflammatory expression program in HCC is closely associated 
with malignant tumor cells, with the hub gene CD63 thus representing an ideal target for therapeutic intervention 
in this cancer type.
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Background
Hepatocellular carcinoma (HCC) poses a significant 
global health challenge due to its heterogeneity and lim-
ited treatment options [1]. Even with surgical treatment 
as an option for some patients, the high rates of recur-
rence and poor prognostic outcomes experienced by 
patients with unresectable diseases underscore the press-
ing need to establish novel interventions [2]. While the 
tumor microenvironment (TME) consists of many cell 
types, tumor-associated macrophages (TAMs), in par-
ticular, have been a focus of substantial interest regarding 
the roles that they play in the progression of HCC [3].

TAMs exhibit a high degree of plasticity, contributing 
to metastatic tumor progression, immune evasion, angio-
genic activity, and resistance to therapy via the secretion 
of a range of factors including chemokines, cytokines, 
and matrix metalloproteinases (MMPs) [4–7]. Efforts to 
target TAMs have been advanced as an attractive form of 
cancer immunotherapy, but the persistent lack of reliable 
and specific markers associated with TAMs has ham-
pered these efforts [8, 9].

The epithelial-mesenchymal transition (EMT) process 
is integral to the invasive and metastatic progression of 
HCC. When tumor cells undergo the EMT, they present 
with greater migratory and invasive activity and altered 
adhesion molecule expression [10, 11]. A growing body 
of evidence suggests that the dysregulation of choles-
terol and lipid metabolism is involved in tumor initiation 
and progression [12]. Lipids are a vital source of energy 
that can fuel metastatic progression [13, 14]. Lipids and 
cholesterol can conjoin on cell membranes, forming 
lipid rafts, and assemble alongside numerous receptors, 
ligands, and iron channel proteins, acting as functional 
units [15].

Here, an effort was made to better understand TAM 
heterogeneity in HCC through the integration of single-
cell RNA sequencing (scRNA-seq) data. The specific goal 
of these analyses was to better characterize communi-
cation networks linking TAMs and tumor cells, and to 
clarify the impact of these interactions on the survival of 
patients. These analyses revealed that high CD63 expres-
sion in the inflammatory TAM expression program was 
correlated with aggressive HCC phenotypes. Vitro exper-
iments also confirmed these results, with macrophage-
derived CD63 serving to promote HCC cell proliferative, 
invasive, and metastatic activity. CD63 + TAMs were also 
found to promote EMT induction and dysregulated lipid 
metabolism within HCC cells. Together, these results 
emphasize the potential value of CD63 as a novel target 
for the treatment of HCC, given that its functional role in 
TAMs can drive malignant disease progression.

Together, these findings underscore the necessity to 
explore TAM heterogeneity while also establishing CD63 

as an important driver of HCC progression. Efforts to tar-
get CD63 in TAMs may represent a promising approach 
to the development of effective treatments for HCC.

Methods
Data retrieval and processing
Publically available HCC scRNA-seq datasets were ini-
tially identified through a systematic search effort, lead-
ing to the identification of two datasets generated with 
the 10 × Genomics single-cell 3’-sequencing platform, 
including one from the National Institutes of Health 
(NIH) and one from the Beijing Proteome Research 
Center (BPRC) [16, 17]. To validate the present find-
ings on a larger scale, two large-scale bulk RNA-seq 
cohorts pertaining to HCC were also integrated. The 
log2(count + 1) processed bulk RNA-seq data (n = 424) 
and clinical details corresponding to liver HCC (LIHC) 
patients were accessed through The Cancer Genome 
Atlas (TCGA) using the UCSC Xena browser (https://​
xenab​rowser.​net/​datap​ages/). Gene expression and clini-
cal data for 241 patients from a Japanese cohort (n = 241) 
were also accessed via the International Cancer Genome 
Consortium (ICGC).

R (v4.1.2) was used to conduct scRNA-seq analy-
ses with the Seurat package (v4.0.2). Initially, data were 
converted into Seurat objects, with the following qual-
ity control steps: (1) only HCC tissue-derived cells 
were retained for analysis; (2) only cells with 200–6000 
detected genes were retained for analysis; (3) genes were 
excluded if expressed in fewer than 5 cells; and (4) cells 
with > 10% detected mitochondrial genes were excluded. 
Those cells with fewer than 200 genes were regarded as 
dead or broken cells, whereas the detection of > 6000 
genes was considered indicative of doublets resulting 
from droplet encapsulation errors. The Seurat ’Nor-
malizeData’ and ’ScaleData’ functions were used for log 
normalization and linear regression analyses to generate 
gene expression matrices. The top 2000 highly variable 
genes (HVGs) were selected with the ’FindVariableFea-
tures’ function. Dimensionality reduction was achieved 
through a principal component analysis (PCA) approach, 
with the uniform manifold approximation and projection 
(UMAP) approach being utilized for cell visualization. 
The ’FindClusters’ function was employed at a resolution 
of 0.4 to cluster cells, and ‘SingleR’ was used to annotate 
cell types based on classic markers. Correction for batch 
effects between samples and cohorts was achieved using 
the ‘Harmony’ algorithm [18].

Differential expression and functional enrichment analyses
Differential analysis of gene expression was performed 
using two algorithms: the ’edgeR’ algorithm or the Wil-
coxon signed rank test [19]. Differentially expressed 
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genes (DEGs) were selected using the default parameters 
of the Wilcoxon likelihood ratio test and the ’FindMark-
ers’ function in Seurat. DEGs were required to have at 
least 10% expression in cells and an average log2(fold 
change) greater than 0.25. Enrichment analysis for Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) was conducted using the ’cluster-
Profiler’ package. Significance was determined by an 
adjusted p value less than 0.05. To calculate the enrich-
ment score of gene sets in each cell, the ’AddModuleS-
core’ function was utilized.

Expression programs analyses
A consensus nonnegative matrix factorization (cNMF) 
algorithm was leveraged for the identification of tran-
scriptomic expression programs. The program signature 
consisted of the top 30 genes with the highest program 
weight. Subsequently, the scores for each expression pro-
gram in every cell were computed based on this signature 
[20, 21].

Gene regulatory network analyses
The Single-Cell rEgulatory Network Inference and Clus-
tering (SCENIC) algorithm was employed to identify 
regulons [22], which consist of transcription factors and 
associated gene targets. To assess regulon activity, the 
‘AUCell’ package was employed for area under the curve 
(AUC) calculations, and the entropy-based regulon spec-
ificity score (RSS) was used to evaluate regulon occu-
pancy [23]. Hub regulons were established as the top 10 
regulators exhibiting the highest RSS in each of the cel-
lular subtypes.

Trajectory analyses
To investigate the differentiation/transformation of 
TAMs in the HCC microenvironment, pseudotime tra-
jectory analysis was performed using Monocle2 [24]. The 
top 2000 highly variable genes (HVGs) were selected for 
constructing trajectories, whereby dimensionality reduc-
tion was achieved using the ’DDRTree’ function. Dimen-
sionality reduction plots and pseudotime heatmaps were 
visualized using the "plot_cell_trajectory" and "plot_
pseudotime_heatmap" functions, respectively.

Cell‒cell interaction (CCI) analyses
To predict interactions between different cell types, 
we employed CellPhoneDB (v2.1.0), which is based on 
known ligand‒receptor pairs[25]. In total, 1000 permuta-
tions were used to calculate the null distribution of mean 
ligand-receptor pair expression in each random cell. Cut-
off values based on the mean log gene expression dis-
tribution for all genes in each type of cell were used to 
determine expression thresholds for particular receptors 

or ligands, with a mean expression > 0.1 and a P < 0.05 
being considered indicative of significant interactions.

Cell culture
The human monocytic cell line THP-1 and the liver can-
cer cell lines HepG2 and Huh7 were purchased from the 
Shanghai Cell Bank (Shanghai, China). THP-1-derived 
macrophages were produced by stimulating THP-1 cells 
using PMA (100  ng/mL, Sigma, P1585) for 48  h, with 
the resultant cells being cultured in RPMI-1640 contain-
ing 10% FBS and 1% penicillin/streptomycin. Huh7 and 
HepG2 cells were cultured in DMEM (Hyclone) with 10% 
FBS and 1% penicillin/streptomycin. All cells were cul-
tured in 37 °C 5% CO2 incubators (Thermo, MA, USA).

Lentivirus transfection
Lentiviruses carrying CD63 knockdown or control vec-
tors were obtained from Gene-Chem and used to trans-
fected THP-1 cells as directed, with > 80% of cells being 
GFP positive being considered indicative of successful 
transfection. Following lentiviral transduction, puromy-
cin (3  µg/ml) was used to select cells for 15  days, after 
which this puromycin concentration was maintained at 
1  µg/ml. CD63 overexpression was achieved by trans-
fecting tumor cells at 60–70% confluence with a CD63 
plasmid (Gene-Pharma Technologies, Shanghai, China). 
Utilized shRNA and plasmid sequences are presented in 
Supplementary Material 2, Table S1.

Co‑culture
A co-culture system was generated with 6-well transwells 
(3450, Corning). Initially, THP-1-derived macrophages in 
which CD63 was overexpressed or knocked down were 
added into the upper chamber, followed by the transfer 
of these seeded inserts into 6-well plates pre-seeded with 
Huh7 or HepG2 cells. After an additional 48 h co-culture 
period, liver cancer cells from the lower chamber were 
harvested for functional analyses.

RNA extraction and quantitative real‑time PCR (qRT‒PCR)
TRIzol (Invitrogen, USA) was used to isolate cellular total 
RNA as directed, after which the PrimeScript RT rea-
gent Kit (Takara) was used to produce cDNA. Levels of 
CD63 mRNA expression were assessed using TB Green® 
(RR820A, Takara) with a Light Cycler 480 II Real-Time 
PCR system (Roche Diagnostics). The primers used were 
designed and synthesized by Sangon Biotech. The primer 
sequences of relevant genes can be found in Supplemen-
tary Material 2, Table S1.

Protein extraction and western blotting
Protein lysis buffer (KeyGEN BioTECH) was used for the 
extraction of total cellular proteins which were quantified 
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with a BCA kit as directed. Then, SDS-PAGE was used 
to separate 20 µg of protein extract per sample and these 
were transferred onto PVDF membranes (Millipore, MA, 
USA). After blocking blots for 2 h at room temperature 
using 5% skim milk, they were probed with primary 
antibodies overnight at 4  °C, rinsed thrice with TBST 
(15  min/wash), incubated for 2  h at room temperature 
with secondary antibodies, rinsed with TBST, and pro-
teins were detected with an electrochemiluminescence 
(ECL) detection kit (Thermol Biotech, IL, USA). Anti-
body brands and corresponding numbers are listed in 
Supplementary Material 2, Table S1.

Cell viability assays
CCK8(Cell Counting Kit-8), EdU, and colony formation 
assays were employed as measures of cellular viabil-
ity. For CCK8 assays, cells were added to 96-well plates. 

Absorbance at 450  nm in each well was assessed with 
a microplate reader (SpectraMax Absorbance Reader, 
USA). For EdU assays, cells were added to 12-well plates 
for 24 h at 30–40% confluency, followed by incubation for 
2 h in EdU-containing media with a BeyoClick™EdU kit 
(C0071S) as directed. These cells were imaged with a flu-
orescence microscope (Leica DMi8, THUNDER Imager, 
Germany). Colony formation assays were performed by 
seeding 6-well plates with 1 × 103 cells for 14  days, and 
then fixing the resultant colonies with methanol, stain-
ing them with crystal violet, and quantifying them with 
Image J.

Transwell assays
In migration assays, 2 × 104 cells suspended in 200 µl of 
high-glucose serum-free DMEM were placed in the upper 
chamber of a Transwell (Costar, USA), whereas 600  µl 

Fig. 1  Cellular Landscape and Functional Heterogeneity of TAMs in HCC. A Distribution of Patients with Different Etiologies and AJCC Stages 
in the scRNA-seq Dataset. B Visualization of All 104,428 Cells Using the Uniform Manifold Approximation and Projection (UMAP) Technique, 
with Cells Colored by Cell Type. C Heatmap displaying the top 5 marker genes for each cell type. A Random Subset of 100 Cells from Each Cell 
Type was Selected for Visualization. D Visualization of All 104,428 Cells Using the UMAP Technique, with Cells Colored by Normal or Tumor Tissue. 
E Scatter Plot Showing Differentially Expressed Genes Between Monocytes/Macrophages in Normal Tissue and TAMs in Tumor Tissue. Each dot 
represents a gene, with red dots indicating upregulated genes and blue dots indicating downregulated genes. F Bar plot illustrating the Gene 
Ontology functional enrichment analysis of TAMs in HCC. Red represents upregulated functions, and blue represents downregulated functions. 
G Calculation of M1 and M2 signatures for TAMs Using AUCell
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of DMEM containing 20% FBS was added to the lower 
chamber. Invasion assays were conducted with this same 
general approach, except that the Transwell chamber had 

been precoated for 6  h with 50  μl of Matrigel (1:9, BD 
Bioscience, USA). Following a 48 h incubation in a tissue 
culture incubator, a cotton swab was utilized to remove 

Fig. 2  Deciphering Expression Programs Reveals Functional Features of TAMs. A Consensus nonnegative matrix factorization (cNMF) analysis 
of TAMs. The Heatmap Presents Representative Markers of Transcriptome Modules Derived from TAMs, with the Main Functions and Top 3 Ranked 
Genes of Each Module Shown on the Right. B Identification of the top 5 enriched gene sets from representative markers of transcriptome modules 
derived from TAMs. C Calculation of Module Scores for TAMs Using AUCell based on the cNMF Algorithm. D Visualization of the Four Distinct TAM 
Subtypes Based on Their Module Scores. E Heatmap of the Top 10 Ranked Regulons in TAM Subtypes. F, G Potential Developmental Trajectory 
of TAMs Inferred through the Monocle 2 Algorithm. H Identification of differentially expressed genes over pseudotime. I Trajectory of Module Scores 
Along the Pseudotime Defined by the Monocle 2 Algorithm
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those cells inside the chamber, while the cells on the 
basement membrane of the chamber were stained using 
hematoxylin and eosin, fixed using neutral resin, and 
imaged with a Leica DM3000 microscope (Leica, Wet-
zlar, Germany). Cells were then counted with Image-Pro 
6.0.

Apoptosis and cell cycle analyses
An APC and PI apoptosis kit (KGA105, KeyGEN Bio-
TECH) and a cell cycle kit (KGA512, KeyGEN BioTECH) 
were respectively used as directed as a means of assessing 
cellular apoptosis and cell cycle progression, followed by 
flow cytometry analyses.

Lipid content assays
To detect neutral lipids within cells, the BODIPY 493/503 
fluorescent dye was used as directed, adding this dye to 
the culture medium followed by a 30  min incubation 
at 37  °C. Cells were subsequently fixed using 4% para-
formaldehyde, and a multichannel fluorescence micro-
scope (Leica DMi8, THUNDER Imager, Germany) 
was employed to image neutral lipid staining results. 

Differences in fluorescence intensity among groups were 
assessed. Tumor cells were lysed for 30  min with lysis 
buffer at 4 °C, followed by the use of chloroform/metha-
nol (2:1) for lipid extraction. Cellular free fatty acid (FFA) 
and cholesterol (CL) levels were then analyzed with the 
EnzyChrom™ FFA and CL kits (Bioassay Systems), as 
directed.

Statistical analysis
All experiments were conducted at least three times, and 
results are given as means ± SD. R software (version 4.2.1) 
and GraphPad Prism 8.0 were used to conduct statisti-
cal analyses. Data were analyzed with Student’s t-tests or 
one-way ANOVAs as appropriate, with spearman analy-
ses being used to assess correlations between the expres-
sion of gene pairs. Kaplan–Meier curves were employed 
to estimate survival probabilities, and the R ‘survminer’ 
package was used to select the optimal survival cutoff 
based on the maximally selected rank statistic. A two-
sided test with a significance level of P < 0.05 was consid-
ered statistically significant.

Fig. 3  Dynamic Interactions between Subtypes of TAMs and Components of the Microenvironment. A, B Heatmap Illustrating the Number 
of Potential Ligand‒Receptor Pairs between Macrophages and Components of the Liver/TME, as Predicted by CellphoneDB. C-J Provide a Detailed 
Description of the Interaction between Macrophage Subtypes and Cancer Cells, and Highlight the Top 5 Ligand‒Receptor Pairs with the Highest 
Number of Interaction Relationships
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Results
Characterization of the HCC cellular landscape 
with single‑cell resolution
In total, 104,428 cells passed the quality control stand-
ards for inclusion in this analysis, of which the NIH 
and BRPC cohorts respectively contributed 43,011 and 
61,417 cells. HCV-related HCC samples comprised the 
greatest proportion (42.86%) of the scRNA-seq data, 
whereas HBV-related HCC and nonviral-related HCC 
samples each comprised 28.57% of these data. Among 
the HCC samples, 61.9% were classified as stage IV, with 
stages III, II, and I representing 21.43%, 4.76%, and 11.9% 
of the samples, respectively (Fig.  1A). Next, a compre-
hensive single-cell transcriptomic atlas of the HCC TME 

was established that included B cells, endothelial cells, 
fibroblasts, epithelial cells, monocytes/macrophages, and 
NK/T cells (Fig. 1B). The top 5 genes with the most sig-
nificant expression in each of these cell types are shown 
in Fig. 1C.

Strikingly, monocytes/macrophages presented with 
distribution patterns that were distinct when compar-
ing normal and malignant tissues of different types, sup-
porting a role for these cells in the pathogenesis of HCC 
(Fig.  1D). A subsequent analysis of DEGs expressed in 
monocytes/macrophages from normal and tumor tis-
sues was conducted, revealing 80 upregulated DEGs in 
monocytes/macrophages and 150 downregulated DEGs 
in TAMs (Fig.  1E,Supplementary Material 2, Table  S2). 

Fig. 4  The upregulated expression of CD63 is closely related to TAMs infiltration and poor prognosis in HCC. A Multiplex immunohistochemistry 
showed that CD63 was expressed in macrophages (CD68) of hepatocellular carcinoma. B Correlation analysis of macrophages infiltration level 
and CD63 mRNA level in the TCGA-LIHC dataset. C Expression of CD63 mRNA in normal tissues and HCC tissues in the TCGA-LIHC dataset. D, 
E Kaplan‒Meier curves of overall survival (OS) of patients with different CD63 expression levels in the TCGA-LIHC and ICGC-LIHC-JP datasets. 
F–H Barplots showing the results of the functional enrichment analysis of patients with high CD63 expression in the MSigDB database hallmark, GO 
biological process and KEGG gene sets
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Gene Ontology (GO) enrichment analyses indicated that 
the DEGs upregulated in TAMs were primarily related to 
lipid metabolism, stress response, and antigen response 
pathways (Fig.  1F, Supplementary Material 2, Table  S3). 
TAMs are frequently classified into the M1 and M2 phe-
notypes. The evaluation of these cells for classical M1 
and M2 markers was thus performed (Supplementary 
Material 2, Table S4), revealing significant differentiation 
of certain HCC-associated TAM populations according 
to these M1/M2 phenotypes, although certain clusters of 
these cells were not effectively classified based on these 
M1/M2 markers (Fig. 1G).

Assessment of transcriptome heterogeneity of TAMs 
in HCC
To begin exploring HCC-related TAM expression pat-
terns, distinct expression modules were elucidated with 
a cNMF approach. TAMs were ultimately classified into 
four modules based on the balance between error rate 
and stability, with each of these modules being char-
acterized by particular marker genes and phenotypes 
(Supplementary Material 1, Figure S1, 2A-2B, Supple-
mentary Material 2, Table S5). These modules included 
the proliferative (MKI67, TOP2A, and TUBB), lipid 
metabolism (APOA2, APOC2, and APOE), interferon 
(GBP1, IL1B, and PTPRC), and proinflammatory mod-
ules (CD63, C1QA, and C1QB). The expression levels 
of these modules were then used to assign TAMs into 
different clusters (Fig.  2C, D, Supplementary Material 
2, Table S6).

SCENIC analyses additionally revealed significant 
differences in transcription factor expression profiles 
across these four subtypes of TAMs (Fig.  2E), further 
supporting the heterogeneous nature of TAMs within 
the HCC microenvironment. The Monocle 2 algorithm 
was further used to implement pseudotime analyses 
assessing the relationships between modules and cel-
lular evolution, revealing multiple TAM developmen-
tal patterns and differentiation directions (Fig.  2F, G). 
These included two major expression patterns desig-
nated C1 (gradual increase) and C2 (gradual decrease) 
(Fig.  2H,Supplementary Material 2, Table  S7). Of note, 
the lipid metabolism module genes APOA2 and APOE, 

the inflammatory module genes CD63, C1QA, and 
C1QB, and the interferon module gene GBP1 all pre-
sented with C1 patterns. Genes associated with the pro-
liferation module were stably expressed across the course 
of TAM evolution, whereas inflammatory module genes 
tended to gradually rise in expression levels with TAM 
evolution (Fig. 2I).

Interactions of TAM subtypes with the TME and cancer cells
TAMs can interact with other cells in the TME such that 
they function as vital regulators of tumor progression. To 
better characterize these interactions in this experimen-
tal context, CellPhoneDB was utilized, revealing a sig-
nificantly increased number of total interactions between 
TAMs and tumor cells as well as other immune cells 
within tumor tissue samples as compared to healthy con-
trol tissues (Fig. 3A, B).

TAMs can express an array of chemokines, cytokines, 
effector molecules, and surface proteins capable of sup-
pressing or augmenting HCC-related immune responses. 
The recruitment of these cells and their activation are 
the results of particular chemokines released within 
the immune-inflammatory microenvironment, ulti-
mately triggering the polarized differentiation of TAMs 
into subsets associated with particular pathological 
conditions. Of note, IFN-TAMs, Inflam-TAMs, and 
LA-TAMs were all found to be closely associated with 
specific chemokines, as these TAMs expressed CCL4L2, 
CXCL12, CCL5, CXCL11, and CXCL2.

TAMs can also interact with HCC tumor cells through 
multiple mechanisms (Fig. 3C-J). One particularly note-
worthy interaction is that between signal regulatory 
protein alpha (SIRPα), which is an inhibitory receptor 
protein that is primarily expressed by Inflam-TAMs, and 
CD47, which is expressed by tumor cells. IFN-TAMs pri-
marily exhibit tumor necrosis factor (TNF) expression 
and can interact with a range of tumor cell receptors to 
modulate cellular functionality. Macrophage activity and 
differentiation are also closely related to the ability of 
colony-stimulating factor-1 (CSF-1) to signal through its 
receptor CSF-1R. In this study, tumor cells were found 
to express CSF-1, highlighting a strong link between 

(See figure on next page.)
Fig. 5  Silencing TAM CD63 expression impairs HCC cell proliferative, migratory, and invasive activity in vitro.A, B CD63 shRNA was transfected 
into THP-1-derived macrophages, and the expression levels of CD63 mRNA and protein were detected using qRT‒PCR and western blotting, 
respectively. C-E The proliferation ability of HCC cells (Huh-7 and HepG2) was assessed using CCK8, colony formation and EdU assays 
after coculturing them with CD63 knockdown macrophages for 48 h. F Statistical charts for cloning and EdU assays. G The migration and invasion 
ability of HCC cells (Huh-7 and HepG2) were assessed after coculturing them with CD63 knockdown macrophages. H Statistical charts for transwell 
assay. I: The apoptosis rate and cell cycle of HCC cells (Huh-7 and HepG2) were determined by flow cytometry after transfecting macrophages 
with either shNC or shCD63. J, K Statistical charts for the apoptosis rate and cell cycle of HCC cells (Huh-7 and HepG2)
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Fig. 5  (See legend on previous page.)
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these cells and Inflam-TAMs. These results thus support 
the existence of bidirectional regulatory links between 
Inflam-TAMs and cancer cells.

Macrophage‑derived CD63 in HCC is highly expressed 
in tumor tissue and is associated with a poor prognosis
As inflammation-related TAMs appear to play a role 
in the progression of HCC, the contributions of the 
inflammatory TAM marker gene CD63 to HCC devel-
opment were next explored at length. To that end, mul-
ticolor immunohistochemical staining was used to assess 
CD63 and CD68 expression within HCC tissues. This 
approach revealed consistent CD63 expression by mac-
rophages (Fig. 4A). Moreover, analyses of data from the 
TCGA-LIHC cohort revealed that CD63 expression 
was significantly positively correlated with macrophage 
infiltration (Fig.  4B). Pronounced D63 upregulation was 
also observed in tumors relative to nontumor tissues 
(Fig. 4C).

To establish the effects of CD63 + TAMs on prognos-
tic outcomes for patients and the role in HCC, survival 
analyses were performed for two large cohorts of HCC 
patients. In our analysis, CD63 + TAMs (inflammation) 
were strongly associated with poorer prognosis in HCC 
patients (Fig.  4D, E, Supplementary Material 1, Figure 
S2).

As a means of understanding the functional relevance 
of the expression of CD63 in HCC, functional enrich-
ment analyses of patients expressing high CD63 levels 
were additionally conducted with the MSigDB database. 
This approach revealed a number of biological processes 
enriched in the group with high CD63 expression, includ-
ing the lipid metabolism, EMT, and cell cycle regulation 
pathways (Fig. 4F-H). Lipid homeostasis, lipid synthesis, 
fatty acid metabolism, and cholesterol metabolism were 
also all highly represented in several gene sets.

Silencing TAM CD63 expression impairs HCC cell 
proliferative, migratory, and invasive activity in vitro
In an effort to understand how CD63 expression by mac-
rophages affects HCC cell phenotypes, a series of in vitro 
assays was next conducted. Initially, THP-1 cells were 
differentiated using PMA to produce macrophages, and 

lentiviral vectors encoding a CD63-specific shRNA were 
then used to generate macrophages in which CD63 had 
been stably knocked down. Knockdown efficiency of 
CD63 was confirmed via qRT-PCR and western blotting 
(Fig. 5A, B). The results showed that the sh-3 interference 
sequence had the highest efficiency in knocking down 
CD63 and was determined to be applied in subsequent 
experiments. CCK8, clone formation and EdU assays 
revealed that Huh7 and HepG2 cell proliferation were 
significantly reduced when macrophages in which CD63 
had been knocked down were present (Fig.  5C-E). The 
statistical charts for cloning and EdU assays are shown in 
Figure F. In order to further evaluate the impact of CD63 
on cancer cells, transwell assays were applied to detect 
the migratory and invasive potential of these HCC cells. 
Migration and invasion capability were also significantly 
impaired upon co-culture with these CD63-knockdown 
macrophages (Fig.  5G). The statistical charts for tran-
swell assay were shown in Fig. 5H. Flow cytometry also 
revealed increased Huh7 and HepG2 apoptosis following 
CD63 knockdown in macrophages, and cell cycle assays 
revealed that HCC cell numbers in the G2/M phase were 
significantly higher in the presence of these CD63-knock-
down macrophages (Fig. 5I, K).

CD63‑overexpressing TAMs drive HCC cell proliferative, 
migratory, and invasive activity in vitro
Subsequently, these CD63-overexpressing macrophages 
were then cultured together with either Huh7 or HepG2 
HCC cells in transwell assay system for 48 h, after which 
HCC cells were subjected to various functional assays 
(Fig. 6A).

To better confirm the pro-tumor effects of macrophage 
CD63 expression on the growth of HCC cells, plasmids 
were used to stabilize the overexpression of CD63 in 
macrophage cells, similarly, as confirmed by qRT-PCR 
and western blotting (Fig. 6B, C). In line with the knock-
down experiment, co-culturing CD63-overexpressing 
macrophages with HCC cells enhanced the proliferation 
of tumor cells via CCK8, clone formation and Edu assays 
(Fig.  6D-F). The statistical charts for cloning and EdU 
assays were shown in Fig.  6G. Transwell assay showed 
that co-culturing CD63-overexpressing macrophages 

Fig. 6  CD63-overexpressing TAMs drive HCC cell proliferative, migratory, and invasive activity in vitro.A Schematic illustration of the coculture 
of HCC cells (Huh-7 and HepG2) and THP-1-derived macrophages. B, C THP-1 cells were differentiated into macrophages and then transiently 
transfected with plasmids containing CD63 cDNA or vector only. The expression of CD63 mRNA and protein was detected using qRT‒PCR 
and Western blot, respectively. D-F The proliferation ability of HCC cells (Huh-7 and HepG2) was assessed using CCK8, colony formation, and EdU 
assays after co-culturing them with macrophages transfected with CD63 vector and control vector for 48 h. G Statistical charts for cloning and EdU 
assays. H The migration and invasion ability of HCC cells (HepG2 and Huh-7) was examined after co-culturing them with macrophages transfected 
with CD63 vector and control vector. I, J Statistical charts for transwell assay

(See figure on next page.)
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with HCC cells promoted migratory and invasive poten-
tial of HCC cells (Fig. 6H-J).

CD63 expression in TAMs can influence EMT 
and intracellular lipid levels in HCC cells
To explore how the expression of CD63 by macrophages 
alters HCC cell functionality, the EMT induction and 
lipid metabolism activities were selected as targets for 
further study. To that end, EMT-related epithelial and 
mesenchymal marker proteins (E-cadherin, N-cadherin, 
and Vimentin) were analyzed in Huh7 and HepG2 cells. 
Knocking down CD63 in macrophages significantly 
increased the expression level of E-cadherin and reduced 
the expression levels of N-cadherin and Vimentin. On 
the other hand, an increase in the expression of CD63 in 
macrophages reduced the expression level of E-cadherin 
and increases the expression levels of N-cadherin and 
Vimentin (Fig. 7A-B). These results indicated that CD63 
in macrophages promotes EMT.

Lastly, the impact of TAMs CD63 expression on the 
metabolic activity within HCC cells was evaluated 
through analyses of cellular lipid content, with a par-
ticular focus on lipid droplet formation in both analyzed 
HCC cell lines. Strikingly, macrophages silencing CD63 
were able to suppress the formation of lipid droplets in 
these tumor cells, whereas overexpressing CD63 had the 
opposite effect, driving this process (Fig. 7C-E). To con-
firm this link between TAMs CD63 and the lipid metabo-
lism of HCC cells, free fatty acid and cholesterol levels in 
Huh7 and HepG2 cells were analyzed. In this experiment, 
CD63 silencing significantly reduced both free fatty acid 
and cholesterol levels, whereas the opposite occurred in 
the context of CD63 overexpression (Fig. 7F, G).

Discussion
In the present report. scRNA-seq data were leveraged 
to characterize the transcriptomic landscape of TAMs 
in HCC. Through these analyses, novel interactions 
between CD63 + TAMs and HCC cells were detected, 
supporting the key role that this subtype of TAMs plays 
in HCC progression [26]. TAM infiltration is a hallmark 
of the immunosuppressive microenvironment generally 
observed in HCC, and prior reports have demonstrated 
the context-dependent ability of TAMs to inhibit or 

enhance tumor growth [27, 28]. TAM heterogeneity and 
the interactions between these cells and HCC cells, how-
ever, have yet to be fully characterized.

Single-cell technologies have fueled an increasingly 
comprehensive understanding of the heterogeneous 
nature of cancers at the cellular level, yielding unprece-
dented insight into the diverse nature of TAMs through 
a wealth of datasets [29]. Here, an unsupervised cluster-
ing algorithm was employed to group TAMs into four 
subtypes, including Prolif-TAMs, LA-TAMs, IFN-TAMs, 
and Inflam-TAMs. Prolif-TAMs have previously been 
reported in pan-cancer research, and exhibit expres-
sion patterns characterized by the proliferation marker 
Ki-67 and several other genes associated with the cell 
cycle [30]. Prolif-TAMs play a role in rapid intratumoral 
TAM accumulation and are linked to limited differentia-
tion, immunosuppressive phenotypes, and poorer patient 
prognostic outcomes [31–33]. LA-TAMs exhibit lipid-
related gene-based expression signatures enriched for 
factors involved in the oxidative phosphorylation and 
lipid metabolism pathways. These cells engage a variety 
of mechanisms to aid in the maintenance of tissue-level 
metabolic homeostasis [34–36]. IFN-TAMs are M1-like 
macrophages in terms of their patterns of gene expres-
sion, yet they primarily function in an immunosuppres-
sive manner that includes the degradation of tryptophan 
and the ability to recruit immunosuppressive regulatory 
T cells (Tregs) [37–39]. Inflam-TAMs present with char-
acteristic patterns of inflammatory cytokine expression 
and help recruit and regulate immune cells in the context 
of tumor-associated inflammation [40]. HCC is a cancer 
that is generally associated with inflammatory activity, 
with chronic inflammation playing a role in HCC devel-
opment [41, 42]. While the gene expression profiles of 
each of these TAM subtypes are distinct and they engage 
in different interactions with HCC cells, the Inflam-TAM 
subtype was particularly strongly associated with these 
tumor cells, suggesting that it may be particularly impor-
tant as a driver of disease progression.

In the present analyses, CD63 was identified as a 
marker gene associated with the inflammatory HCC-
related TAM expression program. CD63 was the first 
transmembrane tetraprotein to be identified, and it is 
encoded on chromosome 12q13 in the human genome. 

(See figure on next page.)
Fig. 7  TAM-derived CD63 expression can influence EMT and intracellular lipid levels in HCC cells. A, B The EMT status of HCC cells was assessed 
by co-culturing them with macrophages that either had CD63 knocked down or overexpressed for a period of 48 h. C, D Representative images 
of BODIPY 493/503 staining (green) were captured to evaluate the presence of neutral lipids in the Huh-7 and HepG2 cells in the respective CD63 
knockdown and overexpression groups. Cell nuclei were counterstained with 4’,6-diamidino-2-phenylindole (DAPI, blue). E Quantitative results 
of BODIPY 493/503. F, G The cellular contents of free fatty acids and cholesterol were quantified in Huh-7 and HepG2 cells in the CD63 knockdown 
and overexpression groups, respectively
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CD63 has previously been associated with the modula-
tion of the behaviors of solid tumors exhibiting meta-
static potential [8, 43]. The role that CD63 plays in the 
interactions between TAMs and HCC cells, however, is 
not well understood. Here, high levels of intratumoral 
CD63 expression were observed and linked to poor prog-
nostic outcomes. In an effort to better unveil the func-
tional roles that CD63 + TAMs play in HCC, functional 
and molecular analyses were performed. Through a series 
of in vitro assays, TAMs expressing high levels of CD63 
were found to promote HCC cell proliferation, invasivity, 
and metastasis.

The EMT is integral to the tumor progression process, 
with its induction facilitating enhanced cellular motility, 
dissemination, and consequent metastasis [44, 45]. Here, 
CD63 expression by TAMs was found to upregulate mes-
enchymal marker expression (N-cadherin and Vimentin) 
by HCC cells while suppressing epithelial E-cadherin 
expression. Tumor metabolic reprogramming can help 
optimize the utilization of resources and provide effective 
energy homeostasis within the TME [46]. Lipid metabo-
lism changes can significantly contribute to the progres-
sion of HCC [47, 48]. Here, the expression of CD63 by 
TAMs was found to be positively correlated with levels of 
both cholesterol and triglycerides. These data thus high-
light the role that CD63 + TAMs play in the progression 
of HCC, in contrast with prior reports suggesting that 
CD63 can negatively regulate HCC [49]. The discrep-
ancy between our findings and previous studies regard-
ing the role of CD63 in HCC underscores the complexity 
of tumor biology and the variability in CD63 function 
depending on its cellular context. This difference could be 
attributed to the distinct molecular and cellular environ-
ments between macrophages within the tumor micro-
environment and the cancer cells, indicating that CD63 
may play dual roles in HCC progression depending on its 
cellular localization and the specific intercellular interac-
tions it mediates.

Conclusions
In conclusion, our study highlights the potential role of 
CD63 + TAMs in regulating HCC progression and opens 
up new possibilities for targeted therapy. Recognizing 
CD63 + TAMs as crucial regulators of HCC progres-
sion offer opportunities for therapeutic intervention. 
Targeting CD63 + TAMs could disrupt the pre-tumor-
igenic communication between TAMs and HCC cells, 
leading to the development of novel immunotherapeu-
tic strategies. Additionally, the use of CD63 as a prog-
nostic marker may help guide personalized treatment 
approaches for HCC patients.
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