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Abstract
Background  Lymph node metastasis (LNM) is associated with worse prognosis in bladder urothelial carcinoma (BUC) 
patients. This study aimed to develop and validate machine learning (ML) models to preoperatively predict LNM in 
BUC patients treated with radical cystectomy (RC).

Methods  We retrospectively collected demographic, pathological, imaging, and laboratory information of BUC 
patients who underwent RC and bilateral lymphadenectomy in our institution. Patients were randomly categorized 
into training set and testing set. Five ML algorithms were utilized to establish prediction models. The performance of 
each model was assessed by the area under the receiver operating characteristic curve (AUC) and accuracy. Finally, 
we calculated the corresponding variable coefficients based on the optimal model to reveal the contribution of each 
variable to LNM.

Results  A total of 524 and 131 BUC patients were finally enrolled into training set and testing set, respectively. We 
identified that the support vector machine (SVM) model had the best prediction ability with an AUC of 0.934 (95% 
confidence interval [CI]: 0.903–0.964) and accuracy of 0.916 in the training set, and an AUC of 0.855 (95%CI: 0.777–
0.933) and accuracy of 0.809 in the testing set. The SVM model contained 14 predictors, and positive lymph node in 
imaging contributed the most to the prediction of LNM in BUC patients.

Conclusions  We developed and validated the ML models to preoperatively predict LNM in BUC patients treated 
with RC, and identified that the SVM model with 14 variables had the best performance and high levels of clinical 
applicability.
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Background
Bladder cancer (BC) is one of the most common urinary 
carcinomas, which was reported to be the tenth most 
common malignancy in both sexes and the sixth most 
common malignancy in men in 2020 worldwide [1]. As 
for patients with muscle-invasive bladder cancer (MIBC) 
and high-grade non-muscle‑invasive bladder cancer 
(NMIBC), treated with bladder-conserving therapies 
often result in early recurrence and progression. There-
fore, radical cystectomy (RC) with pelvic lymph node 
dissection (PLND) is standardly recommended for these 
patients [2, 3].

Even if most patients treated with RC had negative 
surgical margins, approximately 50% patients had the 
possibility of recurrence, indicating the existence of 
extravesical tumor deposits at the time of surgery [4, 5]. 
Lymph node metastasis (LNM) is the most common site 
of BC metastases, which was reported to be ranging from 
24 to 29% in patients receiving RC [4, 6]. It was reported 
that BC patients who had LNM had only 19% 5-year 
overall survival rate with RC treatment alone. Even if 
patients received RC combined with neoadjuvant or 
adjuvant chemotherapy, the 5-year overall survival rate 
was only around 30% [7]. Hence, preoperatively predict-
ing LNM in patients with BC is necessary and beneficial.

Machine learning (ML) is one application field of arti-
ficial intelligence, which can automatically learn and 
improve the model performance without programming 
comparing with traditional methods [8]. Its algorithms 
can fit different configurations of data, assign weighting, 
and calculate the divinable power of each combination of 
variables in order to assess diagnostic and prognostic ele-
ments [9]. Several ML models which preoperatively pre-
dicted LNM in prostate cancer and renal cell carcinoma 
were established and validated, and some of which indi-
cated the better performance compared with traditional 
logistic regression models [10, 11].

Over 90% of BC cases were pathologically diagnosed 
with bladder urothelial carcinoma (BUC). And previ-
ously we have established a traditional nomogram for 
predicting LNM in BUC, which was highly accurate, 
reliable, and clinically applicable in both internal valida-
tion and external validation [12]. However, there was no 
study aimed at preoperatively predicting LNM using ML 
in BC being reported. Therefore, we aimed to use ML 
algorithms to construct and validate a model for preoper-
atively predicting LNM in BUC using demographic infor-
mation, imaging data, pathologic characteristics from 
transurethral resection of the bladder tumor (TURBT) 
specimens, and laboratory measurements.

Methods
Patient selection
This study was approved by the Medical Ethics Commit-
tee of the Affiliated Hospital of Qingdao University with 
the number of QYFYWZLL28026, and was carried out 
following the Declaration of Helsinki of the World Medi-
cal Association. We retrospectively collected the clinical 
data of patients who underwent RC and bilateral lymph-
adenectomy in the urology department of the Affiliated 
Hospital of Qingdao University between January 2013 
and April 2022. We divided these patients into training 
set (80%) and testing set (20%) by stratified random sam-
pling using the Stratified Shuffle-Split function in Python. 
LNM was defined as the confirmation of lymph node 
metastasis in the specimen from RC through pathology. 
Patients were excluded based on the following criteria: (a) 
age < 18 years; (b) without TURBT before RC or without 
muscle in TURBT; (c) patients with incomplete imaging 
examination data before RC; (d) tumor originated from 
sites other than the bladder; (e) patients with distant 
metastasis; (f ) patients with incomplete laboratory mea-
surements within a month before RC; (g) patients were 
diagnosed with non-urothelial carcinoma in pathology 
from RC; (h) patients receiving preoperative radiother-
apy; (i) patients with severe or end-stage chronic kidney 
disease. This study complied with the principles of the 
Declaration of Helsinki and was conducted in accordance 
with the ethical standards of the medical ethics commit-
tee of our institution.

Data collection
The following preoperative data of included patients were 
recorded: age, sex, body mass index (BMI), tumor grade 
of TURBT, papillary tumor presence of TURBT, uro-
thelial variants of TURBT, muscle invasion of TURBT, 
infiltration of TURBT, hydronephrosis on imaging, 
extravesical invasion on imaging, positive LN on imag-
ing, tumor size on imaging, neutrophil count, monocyte 
count, basophil count, eosinophil count, lymphocyte 
count, erythrocyte count, platelet count, hemoglobin, 
fibrinogen, urea nitrogen, creatinine, and albumin. We 
used the respective cell counts to calculate neutrophil 
to lymphocyte ratio (NLR), platelet to lymphocyte ratio 
(PLR), monocyte to lymphocyte ratio (MLR), and neu-
trophil to platelet ratio (NPR). Besides, the systemic 
immune-inflammation index (SII) was defined as mul-
tiplying the platelet count by the neutrophil count and 
dividing this value by the lymphocyte count.

The pathological characteristics (including tumor 
grade, papillary tumor presence, differentiation, muscle 
invasion, and infiltration) of the highest tumor grade or 
cancer stage were recorded when they received several 
rounds of TURBT. If the latest TURBT was performed 
over one month before RC, the pre-RC laboratory 
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measurements were recorded. Otherwise, the measure-
ments before TURBT were collected, which could reduce 
the impact of surgery on the results.

Feature selection and model building
We conducted the univariate analysis for the recorded 
clinical variables to primarily determine potential preop-
erative risk factors for LNM in BUC. Secondly, spearman 
correlation analysis was performed to reduce collinear-
ity among features. To reduce the risk of overfitting, the 
least absolute shrinkage and selection operator (LASSO) 
algorithm was applied to select features with non-zero 
coefficient values.

The prediction model of LNM in BUC patients after 
RC was established using five ML algorithms, including 
the support vector machine (SVM), light gradient boost-
ing machine (LightGBM), eXtreme gradient boosting 
(XGBoost), random forest (RF) and extra-trees classifier. 
All patients were randomly categorized into training set 
(80%) and testing set (20%). The training set was used 
to establish the prediction models using five-fold cross-
validation, whereas the testing set was used to validate 
the prediction models using the area under the curve 
(AUC) of the receiver operating characteristics (ROC) 
and corresponding 95% confidence intervals (95%CI). We 
considered the model with the highest AUC as the best 
model. We calculated the correlation coefficient between 
features and drew shapely additive explanation (SHAP) 
summary plot, which were used to visualize the relative 
importance ranking of each feature to the model predic-
tions. Decision curve analysis (DCA) was performed to 
demonstrate net benefit for each risk threshold prob-
ability, as well as the clinical application value of the best 
model.

Statistical analyses
The Stratified Shuffle-Split function was conducted in 
Python (version 3.7). Continuous variables with a normal 
distribution were described as means and standard devia-
tions, continuous variables with an abnormal distribution 
were described as medians and interquartile ranges, and 
categorical variables were described as frequencies and 
proportions. Continuous variables with a normal distri-
bution, continuous variables with an abnormal distribu-
tion, and categorical variables were univariately analyzed 
using Student’s t-test, Mann-Whitney U-test, and Chi-
squared test, respectively. Univariate statistical analyses 
were performed using SPSS (version 24.0). Other statisti-
cal analyses, correlation analysis, and LASSO algorithm 
were implemented by importing the “scipy”, “numpy”, 
and “sklearn” packages in Python (version 3.7), and were 
performed using the “One-key AI” platform (http://www.
medai.icu/), which was based on Python (version 3.7). 
The code used in this study was derived from: https://

gitee.com/wangqingbaidu/OnekeyCompo. A bilateral 
P-value < 0.05 was considered as a measure of statistical 
significance.

Results
Patient characteristics
A total of 805 patients with BUC were potentially eli-
gible from the Affiliated Hospital of Qingdao University 
between January 2013 and April 2022. After the selecting 
process, 655 patients were finally enrolled in our study, 
and 105 of which had LNM. The training set included 440 
patients without LNM and 84 patients with LNM, while 
the testing set included 110 patients without LNM and 
21 patients with LNM (Fig.  1). The baseline data of the 
included patient are shown in Table  1, which indicated 
that the grade, papillary, infiltration, hydronephrosis, 
extravesical invasion, positive lymph node, tumor size, 
neutrophil count, monocyte count, erythrocyte count, 
platelet count, hemoglobin, fibrinogen, creatinine, albu-
min, NLR, PLR, MLR, and SII were significantly different 
between patients with LNM and patients without LNM 
in univariate analyses.

The comparison of baseline characteristics between 
the training and testing sets with corresponding P values 
was shown in Table 2. LNM was not significantly differ-
ent between training set and testing set (p = 1.000). All 
baseline characteristics between the training and testing 
sets were statistically insignificant except diabetes. Con-
sidering the rate of diabetes was not significantly differ-
ent between patients with LNM or not (p = 0.227), the 
baseline characteristics between two sets were balanced. 
Besides, the baseline characteristics of the two sets by 
lymph node status were analyzed and shown in Supple-
mentary Table 1.

Features selection and model evaluation
We performed spearman correlation analysis and the 
lasso algorithm with fivefold cross-validation (Fig. 2a and 
b) to select predictors. 14 potential predictors of LNM 
after RC were ultimately determined (Supplementary 
Table 2), which were incorporated into the construction 
of the prediction model in our study.

Five machine learning algorithms utilizing the 14 
selected factors as inputs were used to establish the pre-
diction models in the training set, and the performance 
of the models was evaluated using the testing set and 
expressed by the AUC, accuracy, sensitivity, and speci-
ficity. The performance results of the prediction models 
in the training set and testing set were shown in Table 3. 
The receiver operating characteristics (ROC) and the 
area under the curve (AUC) for each different prediction 
models in the testing set were shown in Fig. 3a. The SVM 
model performed the best prediction ability with an AUC 
of 0.934 (95%CI: 0.903–0.964) and accuracy of 0.916 in 

http://www.medai.icu/
http://www.medai.icu/
https://gitee.com/wangqingbaidu/OnekeyCompo
https://gitee.com/wangqingbaidu/OnekeyCompo
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the training set, and an AUC of 0.855 (95%CI: 0.777–
0.933) and accuracy of 0.809 in the testing set (Fig. 3b). 
The RF model had the lowest AUC value of 0.686 (95% 
CI: 0.563–0.810) and accuracy of 0.611 in the testing set.

Importance of features of the best model
Coefficients were used to interpret the results of the best 
prediction model by evaluating the contribution of each 
variable to the prediction model. We focused on the SVM 
model since it was the best prediction model, and visu-
alized these variables in Fig.  4a. Moreover, SHAP sum-
mary plot was also adopted to show the contribution of 
each predictor of LNM in the SVM model (Fig. 4b). The 
results revealed that positive lymph node in imaging 

contributed the most to the prediction of the outcome, 
followed by tumor size, extravesical invasion, infiltration, 
grade, hydronephrosis, papillary, age, fibrinogen, NPR, 
creatinine, albumin, hemoglobin, and erythrocyte count. 
Results of the DCA of SVM model in testing set showed 
that the model offered a clinical benefit at a threshold of 
between 0.10 and 0.50 (Supplementary Fig. 1).

Discussion
RC plus bilateral PLND and neoadjuvant cisplatin-based 
combined chemotherapy are recognized as standard 
treatments of MIBC and some very high-risk NMIBC 
patients [2, 3]. However, the high possibility of concealed 
micro metastases resulted in the high recurrence rate of 

Fig. 1  Flow chart of the process of patients’ selection
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Table 1  Baseline characteristics of the patients
Characteristics LNM (+) (n = 105) LNM (-) (n = 550) P Value
Demography
Age 67.0 (61.0–74.0) 66.0 (59.0–72.0) 0.060
Sex male 93 (88.6%) 462 (84.0%) 0.233

Female 12 (11.4%) 88 (16.0%)
BMI 23.50 (20.80-26.05) 24.20 (22.00-26.20) 0.072
Hypertension Yes 28 (26.7%) 161 (29.3%) 0.589

No 77 (73.3%) 389 (70.7%)
Diabetes Yes 16 (15.2%) 61 (11.1%) 0.227

No 89 (84.8%) 489 (88.9%)
Cardiovascular Yes 14 (13.3%) 62 (11.3%) 0.546

No 91 (86.7%) 488 (88.7%)
Cerebrovascular Yes 5 (4.8%) 22 (4.0%) 0.927

No 100 (95.2%) 528 (96.0%)
Pathology
Grade High grade 102 (97.1%) 418 (76.0%) < 0.001***

Low grade 3 (2.9%) 132 (24.0%)
Papillary Yes 14 (13.3%) 219 (39.8%) < 0.001***

No 91 (86.7%) 331 (60.2%)
Urothelial
Variants

Yes 9 (8.6%) 44 (8.0%) 0.844

No 96 (91.4%) 506 (92.0%)
Muscle Invasion Yes 15 (14.3%) 48 (8.7%) 0.077

No 90 (85.7%) 502 (91.3%)
Infiltration Yes 81 (77.1%) 295 (53.6%) < 0.001***

No 24 (22.9%) 255 (46.4%)
Imaging
Hydronephrosis Yes 55 (52.4%) 110 (20.0%) < 0.001***

No 50 (47.6%) 440 (80.0%)
Extravesical Invasion Yes 51 (48.6%) 86 (15.6%) < 0.001***

No 54 (51.4%) 464 (84.4%)
Positive LN Yes 36 (34.3%) 47 (8.5%) < 0.001***

No 69 (65.7%) 503 (91.5%)
Tumor Size (cm) ≥ 4 64 (61.0%) 181 (32.9%) < 0.001***

< 4 41 (39.0%) 369 (67.1%)
Laboratory
Neutrophil Count 4.39 (3.29–5.93) 3.86 (3.07–5.08) 0.008**

Monocyte Count 0.53 (0.41–0.68) 0.48 (0.38–0.62) 0.019*

Basophil Count 0.03 (0.02–0.05) 0.03 (0.02–0.04) 0.795
Eosinophil Count 0.13 (0.07–0.24) 0.11 (0.06–0.18) 0.080
Lymphocyte Count 1.82 (1.35–2.17) 1.84 (1.43–2.25) 0.210
Erythrocyte Count 4.35 (3.87–4.70) 4.52 (4.18–4.84) 0.004**

Platelet Count 239 (199–293) 226 (188–263) 0.024*

Hemoglobin 136 (116–146) 139 (128–150) 0.001**

Fibrinogen 3.54 (3.00-3.97) 2.99 (2.56–3.55) < 0.001***

Urea Nitrogen 6.44 (5.34–8.05) 6.22 (5.14–7.59) 0.217
Creatinine 89.70 (72.00-108.50) 80.04 (67.00-94.05) < 0.001***

Albumin 39.45 ± 4.41 40.72 ± 4.41 0.007**

NLR 2.57 (1.93–3.41) 2.10 (1.56–2.92) 0.001**

PLR 134.00 (110.93-180.21) 123.87 (95.77-157.76) 0.014*

MLR 0.29 (0.24–0.41) 0.26 (0.20–0.35) < 0.001***

NPR 0.018 (0.014–0.025) 0.017 (0.013–0.023) 0.162
SII 612.14 (400.63-882.79) 475.34 (329.76-696.77) 0.001**

LNM, lymph node metastasis; BMI, body mass index. *, P < 0.05; **, P < 0.01; ***, P < 0.001

LNM, lymph node metastasis; LN, lymph node; BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; MLR, monocyte-to-
lymphocyte ratio; NPR, neutrophil-to-platelet ratio; SII, systemic immune inflammation index. *, P < 0.05; **, P < 0.01; ***, P < 0.001
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Characteristics Training set (n = 524) Testing set (n = 131) P Value
Demography
Age 66.0 (60.0–72.0) 67.0 (58.0–71.0) 0.871
Sex male 449 (85.7%) 106 (80.9%) 0.174

female 75 (14.3%) 25 (19.1%)
BMI 24.00 (21.60–26.30) 24.09 (22.49-26.00) 0.992
Hypertension yes 149 (28.4%) 40 (30.5%) 0.635

no 375 (71.6%) 91 (69.5%)
Diabetes yes 52 (9.9%) 25 (19.1%) 0.004**

no 472 (90.1%) 106 (80.9%)
Cardiovascular yes 56 (10.7%) 20 (15.3%) 0.143

no 468 (89.3%) 111 (84.7%)
Cerebrovascular yes 20 (3.8%) 7 (5.3%) 0.432

no 504 (96.2%) 124 (94.7%)
Pathology
Grade high grade 413 (78.8%) 107 (81.7%) 0.469

low grade 111 (21.2%) 24 (18.3%)
Papillary yes 190 (36.3%) 43 (32.8%) 0.463

no 334 (63.7%) 88 (67.2%)
Urothelial
Variants

yes 45 (8.6%) 8 (6.1%) 0.352

no 479 (91.4%) 123 (93.9%)
Muscle Invasion yes 49 (9.4%) 14 (10.7%) 0.643

no 475 (90.6%) 117 (89.3%)
Infiltration yes 298 (56.9%) 78 (59.5%) 0.580

no 226 (43.1%) 53 (40.5%)
Imaging
Hydronephrosis yes 134 (25.6%) 31 (23.7%) 0.653

no 390 (74.4%) 100 (76.3%)
Extravesical Invasion yes 109 (20.8%) 28 (21.4%) 0.885

no 415 (79.2%) 103 (78.6%)
Positive LN yes 68 (13.0%) 15 (11.5%) 0.638

no 456 (87.0%) 116 (88.5%)
Tumor Size (cm) ≥ 4 195 (37.2%) 50 (38.2%) 0.840

< 4 329 (62.8%) 81 (61.8%)
Laboratory
Neutrophil Count 3.90 (3.09–5.31) 3.95 (3.16–4.99) 0.816
Monocyte Count 0.50 (0.39–0.63) 0.47 (0.37–0.61) 0.276
Basophil Count 0.03 (0.02–0.04) 0.03 (0.02–0.04) 0.433
Eosinophil Count 0.12 (0.07–0.18) 0.10 (0.05–0.21) 0.342
Lymphocyte Count 1.84 (1.41–2.25) 1.82 (1.51–2.18) 0.823
Erythrocyte Count 4.51 (4.13–4.84) 4.48 (4.12–4.80) 0.787
Platelet Count 230 (190–265) 228 (187–278) 0.763
Hemoglobin 139 (126–150) 139 (127–147) 0.658
Fibrinogen 3.06 (2.62–3.68) 3.04 (2.59–3.68) 0.915
Urea Nitrogen 6.20 (5.16–7.60) 6.45 (5.20–8.17) 0.099
Creatinine 81.60 (68.00-96.80) 81.00 (66.20-98.13) 0.741
Albumin 40.44 ± 4.44 40.83 ± 4.39 0.365
NLR 2.21 (1.58–3.04) 2.04 (1.71–3.02) 0.758
PLR 125.46 (97.09-160.18) 130.53 (99.18-166.32) 0.481
MLR 0.27 (0.20–0.36) 0.25 (0.21–0.36) 0.552
NPR 0.018 (0.014–0.023) 0.017 (0.014–0.023) 0.501
SII 496.95 (338.77-722.38) 475.68 (334.93-761.85) 0.951
Outcome

Table 2  Comparison of baseline characteristics between the two sets
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BUC after surgery [13]. Considering BUC patients with 
LNM were reported to have tumor tissue in LNs which 
were outside the region of standard PLND, the extended 
PLND were put up [14]. Even one study developed a 
nomogram aimed at LNM prediction in BC patients 
treated with extended PLND [15]. However, one prospec-
tive randomized trial demonstrated that extended LND 
showed no significant survival advantage over standard 
PLND [16]. Thus, preoperatively predicting LNM in BUC 
patients treated with RC is of high clinical value. Here, we 
developed and validated models for preoperatively pre-
dicting LNM in BUC using ML, and demonstrated that 
the SVM model performed the best prediction ability.

Several articles have extensively explored the inde-
pendent predictors of LNM in BC after RC using vari-
ous features. Two articles developed nomogram models 
containing gene signature. Cao et al. established epithe-
lial-mesenchymal transition-LN signature containing 19 
candidate genes and identified it as a predictor of LNM 
in BC [17]. Wu et al. also selected 5 LN-status-related 
mRNA and developed the five-mRNA-based classifier, 
which was also incorporated in the nomogram as an 
independent risk factor for LNM in BUC [18]. Besides, 
two studies used CT-based radiomics signature and 
MRI-based radiomics signature as independent variables 
to predict LNM in BC patients, respectively. And both 

CT-based radiomics signature contained nomogram and 
MRI-based radiomics signature contained nomogram 
showed good calibration and discrimination in the train-
ing and validation sets [19, 20]. However, the patients’ 
genomic and clinical features of gene-based nomograms 
were from online database such as The Cancer Genome 
Atlas, which could lead to the information selection bias 
and the restriction of the range of analyses. Although 
the radiomics features were selected from authors’ 
institution, the low sample size and the lack of external 
validation limited the validation and application of the 
nomogram models. Then, the genomic information and 
radiomics signature were difficult to collect and apply 
in clinical life, and finally restricted the clinical value of 
these models.

One study based on the Surveillance, Epidemiology, 
and End Results database identified age, tumor grade, 
tumor size, and tumor T stage as independent risk fac-
tors for LNM in BUC patients [21], which was similar to 
our selected predictors in the final ML model. Although 
the sample size was large, the AUC in training data-
set was only 0.69, and the AUC in testing dataset was 
only 0.704, indicating the low accuracy of this model. 
Besides, another limitation was that the tumor grade in 
the database was from the pathology of RC, which could 
not be preoperatively collected. Ou et al. constructed a 

Fig. 2  (a) The process of feature selection. We used the LASSO regression model with penalty parameter tuning conducted by fivefold cross validation 
according to minimum criteria. Selection of the tuning parameter (λ). Based on the minimum criteria, the vertical dotted line is plotted at the optimal 
value λ = 0.0072. (b) The vertical line was plotted with 14 selected features. LASSO, least absolute shrinkage and selection operator

 

Characteristics Training set (n = 524) Testing set (n = 131) P Value
LNM in pathology yes 84 (16.0%) 21 (16.0%) 1.000

no 440 (84.0%) 110 (94.0%)
BMI, body mass index. *, P < 0.05; **, P < 0.01; ***, P < 0.001

LNM, lymph node metastasis; LN, lymph node; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; MLR, monocyte-to-lymphocyte ratio; NPR, 
neutrophil-to-platelet ratio; SII, systemic immune inflammation index. *, P < 0.05; **, P < 0.01; ***, P < 0.001

Table 2  (continued) 
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nomogram for predicting LNM in T1 high-grade BUC 
containing MLR and fibrinogen [22]. Another study also 
demonstrated that systemic inflammatory biomarker 
such as NLR was an independent risk factor for LNM in 
BUC [13]. Therefore, we selected information of labo-
ratory measurements and calculated systemic inflam-
matory biomarkers. Although several articles reported 
that T stage was a risk factor of LNM in BC [13, 21], 
the staging accuracy of imaging tool such as CT was 
low. Therefore, we selected the “presence or absence of 
extravesical invasion” parameter instead of “T stage” to 
analyze. Although TURBT is typically recommended 
before RC and the resection specimen should contain 
bladder muscle tissue, the staging accuracy of TURBT 
is low, which was evidenced by the results that around 
25–51% patients who were diagnosed with NMIBC 
in TURBT were upstaged to MIBC at RC [23–25]. The 
presence of lymphovascular invasion (LVI) was not accu-
rately reported in our institution because immunohisto-
chemistry is a nonessential tool in the diagnosis of BC 
[26]. Thus, we collected pathological information from 
TURBT excepted LVI. And finally, we developed the ML 
model based on preoperative demographic, pathological, 
imaging, and laboratory data, which were comprehensive 
and easily collected in clinical application.

We analyzed the relationship between positive LN on 
imaging and LNM in both training set and testing set 
using Chi-squared test, which was shown in Supple-
mentary Table 1. Results indicated that positive LN was 
significantly different between patients with LNM and 
patients without LNM in both training set (p < 0.001) and 
testing set (p = 0.002). The accuracy of LN on imaging of 
diagnosing LNM was 0.821 and 0.832 in training set and 

Table 3  Comparison of the performance of machine learning 
models in the training and testing set
Set Model Accuracy AUC 

(95%CI)
Sensitivity Spec-

ificity
Train-
ing set

SVM 0.916 0.934 
(0.903–
0.964)

0.917 0.916

LightGBM 0.840 0.947 
(0.928–
0.966)

0.964 0.816

Extra-Trees 
Classifier

1.000 1.000 
(1.000–
1.000)

1.000 1.000

XGBoost 0.968 0.992 
(0.983-
1.000)

0.964 0.968

RF 0.992 1.000 
(0.999-
1.000)

0.988 0.993

Testing 
set

SVM 0.809 0.855 
(0.777–
0.933)

0.810 0.809

LightGBM 0.771 0.850 
(0.768–
0.931)

0.905 0.745

Extra-Trees 
Classifier

0.695 0.763 
(0.646–
0.879)

0.762 0.682

XGBoost 0.702 0.772 
(0.682–
0.863)

0.857 0.679

RF 0.611 0.686 
(0.563–
0.810)

0.810 0.578

AUC, area under the curve; 95%CI, 95% confidence intervals; SVM, support 
vector machine; LightGBM, light gradient boosting machine; XGBoost, eXtreme 
gradient boosting; RF, random forest

Fig. 3  (a) Performance for machine learning models in the testing set based on the AUC of the ROC curve. (b) AUC and the ROC curve of SVM model in 
the training set and the testing set. AUC, area under the curve; ROC, receiver operating characteristics; SVM, support vector machine
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testing set, respectively. However, the sensitivity was only 
34.5% and 33.3% separately in training set and testing set, 
which was much lower than our model. Even though CT 
and MRI are most common imaging modalities in BUC, 
it was reported that both of them had limitation in the 
sensitivity of accessing LNM [3]. The sensitivity of diag-
nosing LNM in CT and MRI was only ranging from 14 to 
30% [27, 28]. Even the most advanced imaging techniques 
such as PET-CT showed low sensitivity in predicting 
LNM [27, 29, 30]. Our machine learning model showed 
high accuracy, sensitivity, and specificity, which could aid 

clinical diagnosis. Positive LN still had the highest weight 
in our model (Fig. 4a and b), which might due to the high 
accuracy and specificity of this variable.

The precision medicine was commonly defined as the 
stratification of patients using clinical, lifestyle, genetic 
and further biomarker information with large-scale 
data [31]. ML is an accurate and new approach to fac-
ilely estimate individualized outcomes and bring better 
decision-making protocols with the availability of plenty 
of electronic patient clinical and genomic data at pres-
ent [32]. Previously we had established a nomogram 

Fig. 4  (a) Top 14 selected features and the corresponding variable coefficients of SVM model. Y-axis shows the top 14 variables, and X-axis shows their 
impact on the machine model. (b) SHAP summary plot of top 14 selected features of SVM model. SVM, support vector machine; LN, lymph node; NPR, 
neutrophil-to-platelet ratio; SHAP, shapely additive explanation
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model for predicting LNM of BUC using multivariate 
traditional logistic regression. We identified tumor grade, 
infiltration, extravesical invasion, positive LN on imag-
ing, tumor size, and serum creatinine levels as indepen-
dent preoperative risk factors, while the AUC of 0.817 in 
training set and the AUC of 0.805 in testing set proved 
its accuracy and stability [12]. One study identified LNM 
related genes in prostate cancer using ML algorithm, and 
performed well in the validation process, indicating the 
excellent data handling capacity of ML methods [33]. 
Sabbagh et al. constructed a ML model to predict LNM 
in prostate cancer using standard clinicopathologic vari-
ables, and proved that ML model outperforms traditional 
tools by AUC and decision curve analysis [10]. The SVM 
model in our study containing 14 variables had AUCs of 
0.934 and 0.855 in the training set and testing set, respec-
tively, which were higher than the results in the tradi-
tional logistic regression model. Therefore, we concluded 
that the SVM model has better prediction performance 
in LNM of BUC patients than traditional model.

As far as we know, this is the first study to develop 
the ML model to preoperatively predict LNM in BUC 
patients using demographic, pathological, imaging, and 
laboratory data. The high AUCs in both training set and 
testing set demonstrated the high accuracy and discrimi-
nation ability of our model, and the large sample size 
guaranteed the stability of our results. Besides, the pre-
operative variables we selected were easily to get, facili-
tating the application of our model in clinical life.

Nevertheless, this study also had some limitations. 
First, the inaccurate data selection and the introduc-
tion of other potential confounders could not be elimi-
nated due to the retrospective study design. Second, we 
only conducted the internal validation of all ML models 
and identified SVM model as the best model. The exter-
nal validation with large sample size should be furtherly 
conducted. Third, several clinical trials and retrospec-
tive studies proved the survival benefit in BUC patients 
with neoadjuvant cisplatin-based chemotherapy [34–36]. 
Although neoadjuvant cisplatin-based chemotherapy has 
become the standard of care for cNOM0 patients with 
MIBC, we did not analyze the influence of neoadjuvant 
chemotherapy on LNM due to the lack of data. The rela-
tionship between neoadjuvant chemotherapy and LNM 
in patients with radical cystectomy should be explored 
with large sample size in the future. Finally, we only col-
lected traditional pathological features of TURBT and 
traditional imaging data. One recently published study 
collected new pathological characteristics and radiomics 
features using deep learning algorithm and constructed 
the deep learning model to predict LNM in prostate 
cancer [37]. Thus, the micro variables of pathology and 
radiomics could be included and used to construct pre-
diction model using deep learning in the future.

Conclusions
We developed and validated the ML models to preop-
eratively predict LNM in BUC patients received RC, and 
identified that the SVM model with 14 variables had 
the best performance. The SVM model displayed high 
levels of accuracy and clinical applicability by internal 
validation.
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