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Abstract
Background  Papillary thyroid carcinoma (PTC) is globally prevalent and associated with an increased risk of lymph 
node metastasis (LNM). The role of cancer-associated fibroblasts (CAFs) in PTC remains unclear.

Methods  We collected postoperative pathological hematoxylin–eosin (HE) slides from 984 included patients with 
PTC to analyze the density of CAF infiltration at the invasive front of the tumor using QuPath software. The relationship 
between CAF density and LNM was assessed. Single-cell RNA sequencing (scRNA-seq) data from GSE193581 and 
GSE184362 datasets were integrated to analyze CAF infiltration in PTC. A comprehensive suite of in vitro experiments, 
encompassing EdU labeling, wound scratch assays, Transwell assays, and flow cytometry, were conducted to elucidate 
the regulatory role of CD36+CAF in two PTC cell lines, TPC1 and K1.

Results  A significant correlation was observed between high fibrosis density at the invasive front of the tumor and 
LNM. Analysis of scRNA-seq data revealed metastasis-associated myoCAFs with robust intercellular interactions. A 
diagnostic model based on metastasis-associated myoCAF genes was established and refined through deep learning 
methods. CD36 positive expression in CAFs can significantly promote the proliferation, migration, and invasion 
abilities of PTC cells, while inhibiting the apoptosis of PTC cells.

Conclusion  This study addresses the significant issue of LNM risk in PTC. Analysis of postoperative HE pathological 
slides from a substantial patient cohort reveals a notable association between high fibrosis density at the invasive 
front of the tumor and LNM. Integration of scRNA-seq data comprehensively analyzes CAF infiltration in PTC, 
identifying metastasis-associated myoCAFs with strong intercellular interactions. In vitro experimental results indicate 
that CD36 positive expression in CAFs plays a promoting role in the progression of PTC. Overall, these findings provide 
crucial insights into the function of CAF subset in PTC metastasis.
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Introduction
Thyroid cancer (THCA) stands as the most preva-
lent malignant tumor within the endocrine system [1]. 
Among the various pathological types of THCA, papil-
lary thyroid carcinoma (PTC) emerges as the most wide-
spread [2]. Notably, the incidence of PTC has exhibited 
a rapid increase on a global scale in recent years [3]. The 
presence of neck lymph node metastasis (LNM) in PTC is 
acknowledged as a risk factor associated with local recur-
rence, distant metastasis, and diminished survival rates 
[4, 5]. Therefore, unraveling the molecular mechanisms 
governing the invasion and metastasis of PTC assumes 
paramount significance.

Tumor tissues encompass both tumor parenchyma 
and stroma. The infiltration and metastasis of tumor 
cells intricately link to synergistic interactions with stro-
mal components, facilitating mutual nourishment and 
propelling further cancer progression [6]. Within the 
tumor microenvironment (TME), stromal cells wield 
regulatory control over diverse biological behaviors of 
tumor cells, including proliferation, apoptosis, migra-
tion, and invasion. This orchestration facilitates tumor 
development, while tumor cells reciprocally reshape the 
TME by modulating stromal cells, ultimately enhanc-
ing angiogenesis and metastasis [7, 8]. A pivotal player 
in this scenario is cancer-associated fibroblasts (CAFs), 
constituting a major stromal cell population in the TME. 
They originate from normal fibroblasts at the tumor site 
or undergo transformation from circulating bone mar-
row-derived mesenchymal stem cells [9]. CAFs comprise 
distinct subpopulations with varied functions in tumors 
[10]. Specific CAF subgroups exert positive influences on 
diverse facets of tumor growth, encompassing cancer cell 
survival, proliferation, vascularization, and extracellular 
matrix (ECM) remodeling, thereby impacting metastasis 
[9]. CAFs accelerate tumor cell growth and metastasis, 
directly or indirectly affecting the progression of various 
cancers, including lung cancer [11], breast cancer [12], 
colorectal cancer [13], pancreatic cancer [14], and gastric 
cancer [15]. By secreting growth factors, CAFs stimu-
late cancer cell proliferation and invasion [16], shape 
the innate and adaptive immune cell responses to can-
cer cells via cytokine secretion [17], and transport mol-
ecules to cancer cells via extracellular vesicles, promoting 
their invasiveness [18]. The functionality of CAFs criti-
cally affects treatment responses and resistance develop-
ment [19], positioning CAFs as potential cancer therapy 
targets.

Despite the established significance of CAFs in various 
cancers, their precise role in PTC remains incompletely 
elucidated. Some studies have hinted at a correlation 
between CAFs and PTC development [20, 21]. How-
ever, the specific molecular mechanisms by which CAFs 
foster the occurrence and progression of PTC remain 

unexplored. Digital pathology, integral to modern clini-
cal practice [22], has evolved with the advent of whole 
slide imaging (WSI), enabling the imaging of complete 
glass slides with high-resolution storage. In this study, 
we utilized a substantial dataset of pathology WSI from 
clinical patients to analyze the pathological dimension of 
the correlation between tumor fibrosis level and LNM. 
With the advancements of single-cell RNA sequencing 
(scRNA-seq) technology, in-depth research on the role 
of CAFs in cancer has been extensively studied using 
scRNA-seq data analysis [23, 24]. We utilized publicly 
available scRNA-seq PTC data to characterize the fea-
tures of CAFs within PTC and describe their interactions 
with other cell types. The study flowchart is illustrated in 
Fig. 1A.

Materials and methods
Data acquisition
Clinical patient data acquisition
Patients with PTC at the First Affiliated Hospital of China 
Medical University in 2017 were selected. Inclusion cri-
teria comprised an initial PTC diagnosis post-surgery, 
an absence of prior radiotherapy or chemotherapy, and 
complete clinical data. Exclusion criteria included non-
PTC pathology post-surgery, preoperative treatment, 
incomplete clinical data, and coexisting malignancies. 
Following stringent criteria-based selection, a total of 984 
patients were enrolled. Postoperative hematoxylin–eosin 
(HE) slides were systematically collected for panoramic 
scanning, and patient data, including age, sex, anatomic 
site, focus type, T grade, N grade, M grade, clinical stage, 
coexistence with Hashimoto’s disease, and extrathyroidal 
extension, were meticulously recorded.

scRNA-seq data
Single-cell transcriptome data from GSE193581 and 
GSE184362 were meticulously downloaded from the 
Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/). The analysis included five PTC 
lesions with LNM and one PTC lesion without metastasis 
from the GSE193581 dataset, as well as four PTC lesions 
with LNM and three PTC lesions without metastasis 
from the GSE184362 dataset. Harmony, a bioinformatics 
tool, was proficiently employed to seamlessly integrate 
and harmonize the datasets.

Bulk RNA-seq data
The THCA expression and clinical data were sourced 
from The Cancer Genome Atlas (TCGA) data portal 
(https://tcga-data.nci.nih.gov/tcga/) and the UCSC can-
cer browser (https://genome-cancer.ucsc.edu), respec-
tively. The TCGA THCA dataset comprised 510 PTC 
samples and 58 non-cancer samples. As an external vali-
dation cohort, the GSE33630 dataset was systematically 
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utilized, downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). Following the exclusion of 
patients with missing clinical information, a comprehen-
sive total of 49 patients with PTC were included in the 
analysis. Fragments per Kilobase Million was employed 
as the normalized value for bulk RNA-seq analysis.

Immunohistochemical staining
Immunohistochemical staining was methodically con-
ducted using a specialized immunohistochemical kit 
and 3,3’-diaminobenzidine substrate kit, meticulously 
following the manufacturer’s protocol. Tissue sections 
were incubated overnight at 4  °C with primary antibod-
ies against smooth muscle alpha-actin (α-SMA) (Abcam, 
Cambridge, MA; dilution 1:100).

Fig. 1  Process flowchart and hematoxylin–eosin slide annotation of tumor invasive front with cancer-associated fibroblasts (CAFs). (A) Process flowchart. 
(B) Immunofluorescent double staining results for α-SMA and CK19. (C) Smooth muscle actin-alpha (α-SMA) immunohistochemical staining. (D) Sche-
matic representation of Qupath delineation of tumor invasive front and CAF annotation. The orange areas represent fibroblasts and tissues, while the 
blue areas represent tumor cells
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Immunofluorescence staining
Double immunofluorescent staining involved depa-
raffinization, rehydration, and heat-induced epitope 
retrieval of tissue sections. Subsequent to permeabiliza-
tion and blocking, sections were incubated overnight at 
4 °C with CK19 (Abcam, #ab76539) and α-SMA (Abcam, 
#ab7817) antibodies. Following thorough washing, fluo-
rochrome-conjugated secondary antibodies were used 
for the simultaneous visualization of multiple antigens. 
Nuclei were counterstained with 4’,6-diamidino-2-phe-
nylindole (DAPI), and sections were mounted with an 
anti-fade medium.

Evaluation of fibrosis level in HE pathological tissue 
sections
An open-source software for digital pathology image 
analysis, QuPath, was used to meticulously assess fibrosis 
levels in HE pathological tissue sections. Within QuPath, 
tumor boundaries were delineated on each HE-stained 
slide, and an area within 1000  μm from this bound-
ary was designated as the invasive front of the tumor. A 
pixel classifier was developed to identify fibroblasts and 
fibrotic regions at the invasive front of the tumor using 
machine learning techniques. The ratio of the identi-
fied fibrotic area to the total area of the tumor invasive 
front yielded the fibrosis density for each HE slide. All 
HE slides were subjected to independent completion and 
verification by three pathology experts (Supplementary 
Table 1).

Preprocessing and annotation of scRNA-seq data
We obtained single-cell count matrices by download-
ing data from GSE193581 and GSE184362. The Seurat 
package, a comprehensive toolkit, was used to analyze 
gene expression matrices for each sample. To eliminate 
doublets, DoubletFinder was applied. Each cell was sub-
jected to quality control using specific criteria, including 
a minimum gene count of 500, a maximum gene count 
of 5000, and a mitochondrial proportion below 10%. We 
conducted principal component analysis using the most 
variable genes, and the top 20 principal components were 
utilized for Louvain clustering. Dimensionality reduc-
tion was conducted using UMAP (https://umap-learn.
readthedocs.io/en/latest/).

We identified and annotated cell types based on spe-
cific gene markers [25]: TG, EPCAM, KRT18, and KRT19 
for thyrocytes; CD3D, CD3E, CD3G, and CD247 for T 
and natural killer (NK) cells; LYZ, S100A8, S100A9, and 
CD14 for myeloid cells; CD79A, CD79B, IGHM, and 
IGHD for B cells; COL1A1, COL1A2, COL3A1, and 
ACTA2 for fibroblasts; PECAM1, CD34, CDH5, and 
VWF for endothelial cells.

Cell communication analysis
For the comprehensive inference and quantitative char-
acterization of cell communication networks, the “Cell-
Chat” R package, encompassing ligand, receptors, and 
their interactions, was employed. The analysis was con-
ducted using the secreted signaling pathway, and the 
reference human ligand-receptor database, CellChatDB, 
was utilized to evaluate human intercellular communi-
cation. Interactions between different cell types were 
evaluated, with pathways containing fewer than 10 cells 
filtered out.

Pseudo-time trajectory analysis
Pseudo-time analysis was systematically conducted 
using the Monocle2 package with default parameters. 
This advanced analysis included machine learning to 
simulate temporal progression dynamics based on the 
expression patterns of crucial genes. Genes exhibiting 
significant variations in intercellular gene expression 
were selected, and their expression profiles were downs-
ampled to construct a minimum spanning tree (MST) 
[23]. Subsequently, we employed the MST to delineate 
the differentiation trajectory of cells sharing similar tran-
scriptional characteristics along the longest path.

High dimensional weighted gene co-expression network 
analysis (hdWGCNA)
For the comprehensive co-expression analysis of scRNA-
seq data, the hdWGCNA R package (v0.1.1.9002) was 
employed (https://github.com/smorabit/hdWGCNA) 
[26]. To establish a co-expression gene network with a 
signed scale-free nature, soft-threshold parameters of 
β = 4 and a scale-free R2 = 0.9 were chosen to ensure net-
work robustness.

Gene ontology (GO) analysis and protein-protein 
interaction (PPI) network construction
GO enrichment analysis was conducted in the GO data-
base (http://www.geneontology.org/). The PPI network 
was analyzed using the STRING protein interaction data-
base (http://string-db.org).

Construction and validation of cancer-associated 
myofibroblast (myoCAF)-related gene signature
The top 100 highly expressed genes from the brown mod-
ule were selected. Furthermore, univariable Cox regres-
sion analysis was applied to identify myoCAF-related 
genes associated with metastasis. A gene signature was 
developed using least absolute shrinkage and selection 
operator (LASSO) penalized Cox regression analysis 
with the “glmnet Version 4.1.4” package in R. Thirteen 
myoCAF-related genes were identified, forming the gene 
signature.

https://umap-learn.readthedocs.io/en/latest/
https://umap-learn.readthedocs.io/en/latest/
https://github.com/smorabit/hdWGCNA
http://www.geneontology.org/
http://string-db.org
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We constructed receiver operating characteris-
tic (ROC) curves using the R package “ROCR Version 
1.0.11” to evaluate the diagnostic performance of the 
myoCAF-related gene diagnosis signature.

Machine learning analysis
Seven machine learning methods, including weighted 
k-nearest neighbor classifier (kknn), linear discriminant 
analysis, logistic regression, Naïve Bayes, Random Forest 
regression, Decision Tree, and support vector machine 
(SVM), were employed to search for the most fitting for-
mula. R packages ‘kknn’, ‘MASS’, ‘glmnet’, ‘Ranger’, and 
‘rpart’ were used in this process.

Identification of PTC subtypes
Using myoCAF-related genes associated with metasta-
sis, non-negative matrix factorization (NMF) cluster-
ing was conducted. NMF clustering is commonly used 
to delineate molecular subtypes in cancer [27]. We used 
the NMF R package for unsupervised NMF clustering on 
the metadata set, and the ideal cluster number was deter-
mined based on the co-occurrence correlation coefficient 
K value.

Immune cell infiltrate analysis
The ‘microenvironment cell population count (MCP-
counter)’ approach with the R package MCPcounter was 
employed for immune infiltration assessment [28]. This 
method quantifies the absolute abundance of 8 immune 
cell types and 2 stromal cell populations based on tran-
scriptome data.

Cell culture
After rinsing the LNM-PTC specimens with D-Hanks 
solution, cut them into tissue blocks of 1 × 1 × 1  mm in 
size. Fetal bovine serum (FBS) is used to soak the bot-
tom of T25 culture flasks, and then the tissue blocks are 
evenly spread out and placed in an incubator for pre-
attachment. After pre-attachment, a specialized culture 
medium is added to soak the tissue blocks. This special-
ized culture medium contains DMEM/F12 medium with 
5% FBS, 100 units/ml penicillin, 100ug/ml streptomycin, 
5ug/ml insulin, 1ug/ml dexamethasone, and 5ng/ml epi-
dermal growth factor. The medium should be changed 
daily for the first 3 days, then every 3–4 days after-
wards, for a total culture period of 26–30 days. Discard 
the culture medium and tissue blocks, and proceed with 
the subculturing process according to the cell passage 
protocol.

TPC1 and K1 cells, acquired from Wuhan Puno Sai Life 
Technology Co., Ltd. in Wuhan, China, were grown in 
1640 medium enriched with 10% FBS.

Establishment of CD36 knockdown CAF
CD36 knockdown CAF were created via lentivirus trans-
fection, while control cells received negative control len-
tivirus (NC). Verification of successful CD36 depletion 
was performed through western blotting. The specific 
CD36 shRNA sequence used was 5′-​C​C​G​G​C​G​G​A​T​C​T​G​
A​A​A​T​C​G​A​C​C​T​T​A​A​C​T​C​G​A​G​T​T​A​A​G​G​T​C​G​A​T​T​T​C​A​
G​A​T​C​C​G​T​T​T​T​T​G-3′. These CD36 shRNA and negative 
control vectors were introduced into CAF using Lipo-
fectamine 3000 (Invitrogen, USA).

Western blot
Western blot experiments utilized a CD36-specific anti-
body (ab133625, Abcam, Cambridge, UK) to probe for 
protein levels. The detected protein bands were visual-
ized using an ECL chemiluminescence solution (BL520A, 
Biosharp, China) and imaged with a chemiluminescence 
detection system (Tano 5200Multi).

Co-culture of CAF and PTC cell lines
The co-culture of CAF and TPC1/K1 cells was conducted 
using a Transwell system (with a membrane pore size of 
0.4  μm). shNC CAF cells or shCD36 CAF cells suspen-
sions were added to the Transwell inserts at a density of 
2 × 10^5 cells per well in a six-well plate. The Transwell 
inserts were then placed into six-well plates that had been 
pre-seeded with TPC1 or K1 cells. The shared culture 
medium was prepared by mixing CAF culture medium 
and PTC cell culture medium at a 1:1 ratio. 1 ml of the 
shared cell culture medium was added to the Transwell 
inserts, and 2 ml of the shared cell culture medium was 
added to the wells of the six-well plate. For the control 
group, no cells were seeded in the upper chamber. The 
cells were cultured in a 37 °C, 5% CO2 incubator for 48 h. 
TPC1/K1 cells in the lower chamber were then collected 
for subsequent experiments following trypsin digestion.

EdU assay
Cell proliferation was assessed utilizing the EdU incor-
poration method, facilitated by the EdU kit (Cat. No. 
K1075, ApexBio, USA). TPC1 or K1 cells were plated at 
a density of 3 × 104 cells per well in 24-well plates and 
allowed to adhere overnight at 37 °C. Subsequently, cells 
were treated with 10µM EDU for a 5-hour incubation 
period. Following this, cells underwent fixation with 4% 
paraformaldehyde for 15 min and were then treated with 
0.3% Triton X-100 for membrane permeabilization for an 
additional 15 min. The Click Reaction Mixture was then 
applied to the cells for 30 min in darkness at room tem-
perature, before being stained with Hoechst 33,342 for 
DNA visualization for 15 min. Fluorescence microscopy 
at 100× magnification was used to capture images, and 
ImageJ software facilitated the quantification of prolifer-
ating cells.
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Wound scratch assay
To assess the migratory capabilities of cells, the scratch 
wound healing assay was utilized. TPC1 or K1 cells were 
grown to achieve 100% confluence in a six-well plate. A 
precise, linear scratch was then made across the layer of 
cells using the tip of a pipette, followed by the replace-
ment of the culture medium. The gap created by the 
scratch was documented using a microscope at 200× 
magnification at both the initial time (0 h) and after 24 h 
(24 h). The average distance across the scratch was deter-
mined at these two time points using ImageJ software, 
and the extent of cell migration was evaluated by com-
puting the area percentage of the wound that had healed.

Transwell assay
The upper chamber was pre-coated with Matrix gel, 
which was diluted tenfold in serum-free culture medium. 
TPC1 or K1 cell concentrations were adjusted to around 
90,000 cells/ml using a serum-free medium. The lower 
chamber received a medium supplemented with 10% 
FBS, and 300 µl of the cell suspension was then added to 
the upper chamber. The setup was incubated at 37 °C in 
a 5% CO2 atmosphere for 24 h to facilitate cell migration. 
After incubation, each well was fixed with 700 µl of ice-
cold methanol at -20 °C for 30 min at room temperature. 
This was followed by the addition of 700 µl of crystal vio-
let staining solution to each well for a further 30-minute 
incubation. Images were taken at 200× magnification, and 
cell quantification was carried out using ImageJ software.

Cell apoptosis
Apoptosis in cells was evaluated using flow cytometry 
with the aid of the Cell Apoptosis Detection Kit from 
MultiSciences (Cat. No. AT105, China). Cells from the 
TPC1 or K1 lines were first suspended in 1× Binding 
Buffer, followed by the addition of 5 µl Annexin V-APC 
and 10 µl 7-AAD for staining. These samples were then 
incubated in the dark at room temperature for 5 min. The 
analysis was carried out using a FACS C6 flow cytometer.

Statistical analyses
Visualization analyses were performed using R software 
(version 4.1.1) with a significance level set at p < 0.05. 
Student’s t-test and analysis of variance were employed 
to compare quantitative data, whereas the Chi-squared 
test was employed for categorical variables. Correlation 
analysis was conducted using Spearman’s correlation test.

Results
Correlation between fibrosis density at the tumor invasive 
front and LNM in PTC
A comprehensive study involving 984 patients meeting 
the inclusion criteria from the First Affiliated Hospital of 
China Medical University was undertaken. Postoperative 

pathological HE-stained sections underwent panoramic 
scanning, with three independent pathologists delineat-
ing the tumor invasive front on all HE sections. CAFs 
at the invasive front of the tumor were identified using 
QuPath software (Fig. 1D). Immunohistochemical stain-
ing for the CAF marker α-SMA demonstrated a high con-
cordance between the fibrotic areas identified by QuPath 
and α-SMA-positive expression areas (Fig.  1C). Further 
validation through α-SMA and CK19 immunofluorescent 
double staining affirmed CAF distribution delineated by 
QuPath at the tumor invasive front (Fig. 1B).

The fibrosis density, defined as the ratio of the fibrotic 
area at the tumor invasive front to the total area at the 
tumor invasive front, was determined. This density was 
ranked from high to low across all HE pathological sec-
tions, with the median value serving as the cutoff. Sec-
tions with higher fibrosis density than the median were 
classified as high fibrosis infiltration, and those with 
lower fibrosis density than the median were classified 
as low fibrosis infiltration. Analyzing the correlation 
between fibrosis infiltration levels and clinical-patholog-
ical indicators revealed a significantly higher proportion 
of patients with high fibrosis infiltration levels experi-
encing LNM. Patients with bilateral PTC and those with 
extrathyroidal extension exhibited a higher proportion 
of high fibrosis infiltration. However, no significant cor-
relation was observed between fibrosis infiltration levels 
and patient sex, age, focus type, T grade, M grade, clinical 
stage, or concurrent Hashimoto’s disease (Table 1).

Differential expression of CAFs between PTC tissues with 
LNM (LNM-PTC) and PTC tissues without LNM (non-LNM-
PTC)
In the combined GSE193581 and GSE184362 datasets, 
including four non-LMN (non-LNM-PTC) samples and 
nine PTC lesions with concurrent LNM (LNM-PTC), cell 
clustering based on cell markers (Figure S1A) resulted 
in the visualization of six distinct cell clusters through 
UMAP analysis. These clusters encompassed T/NK 
cells, myeloid cells, thyrocytes, fibroblasts, and endothe-
lial cells (Fig.  2A). Bar plots illustrated the proportional 
distribution of these cell types for LNM-PTC and non-
LNM-PTC (Fig. 2B). Obviously, the fibroblasts in LNM-
PTC are significantly higher than that in non-LNM-PTC.

Metastasis-associated myoCAFs strongly interacted with 
other cells
Subsequently, subcluster analysis and UMAP visualiza-
tion of CAFs in LNM-PTC and non-LNM-PTC tissues 
were conducted, resulting in the subdivision of CAFs 
into 15 clusters (Fig.  2C), with distinct marker charac-
teristics for each cluster highlighted in Fig. 2D. Clusters 
0, 1, 3, 6, 7, 12, 14, and 15 exhibited increased MYL9, 
MYLK, TAGLN, and ACTA2 expression, denoted as 
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inflammatory CAF (iCAF), whereas clusters 2, 4, 5, 
8, 9, 10, 11, and 13 exhibited increased expression of 
S100A10, MCL1, CCDC80, PLA2G2A, and CFD, identi-
fied as myoCAF (Fig. 2E).

The subpopulation of myoCAFs that is increased in 
proportion in LNM-PTC tissues compared to non-LNM-
PTC tissues is defined as metastasis-associated myo-
CAFs. Subsequently, metastasis-associated myoCAFs 
were extracted and annotated from LNM-PTC tissues. 
Cellular communication analysis revealed that these 
myoCAFs exhibited a higher number of communication 
interactions with other cells (Fig. 2F) and exhibited stron-
ger communication intensities (Fig. 2G).

Temporal trajectory analysis of the 15 CAF clusters 
revealed a differentiation pattern from cluster 2 toward 
clusters 6, 7, 14, and 15, indicating a transition from 
iCAF to myoCAF, potentially associated with late-stage 
metastasis (Fig. 2H-I).

Signal pathway analysis of intercellular communica-
tion revealed that among all cells, metastasis-associated 
myoCAFs exhibited the highest output signal count. In 
particular, only metastasis-associated myoCAFs were 
identified as output signal cells in the pleiotrophin (PTN) 
pathway, with thyrocytes being the top recipients of this 
pathway (Fig.  2J). Furthermore, network visualization 
of the PTN signaling pathway validated similar results 

(Fig. 2K, Figure S1B). These results reveal that metasta-
sis-associated myoCAFs may influence cancer cells via 
the PTN signaling pathway.

Identification of the myoCAF module using hdWGCNA
In the hdWGCNA analysis, we selected a threshold at the 
inflection point β = 4 (Fig. 3A). The application of hdW-
GCNA for CAF module analysis identified six WGCNA 
modules—turquoise, blue, green, red, yellow, and brown 
(Fig. 3B). The brown module, specifically, exhibited high 
consistency with metastasis-associated myoCAFs, show-
casing elevated expression of genes such as TINAGL1, 
TAGLN, LHFP, CALD1, and ACTA2 (Fig.  3D). Addi-
tional details, including mapping and highly expressing 
genes from other modules, are presented in Figure S1D-
E. The bubble chart depicting the correlation between 
various CAF clusters and WGCNA modules is displayed 
in Fig. 3E. Notably, the brown module, especially clusters 
0, 1, 3, 6, 7, 12, 14, and 15, exhibited higher proportions 
and expression. Correlation analysis among modules 
revealed a positive correlation between the brown mod-
ule and the turquoise and yellow modules (associated 
with myoCAFs), whereas negative correlations were 
observed with the blue, green, and red modules (associ-
ated with iCAFs) (Fig. 3C). Subsequently, univariate Cox 
analysis focused on the top 100 highly expressed genes in 

Table 1  Correlation analysis between the degree of fibrosis and clinical characteristics
Low fibrosis infiltration High fibrosis infiltration P value

Metastasis No 316 53.2% 278 46.8% 0.016
Yes 176 45.1% 214 54.9%

Gender Female 379 49.3% 389 50.7% 0.488
Male 113 52.3% 103 47.7%

Age <55 315 50.5% 309 49.5% 0.741
≥ 55 177 49.2% 183 50.8%

Location anatomic site unilateral 394 51.7% 368 48.3% 0.056
bilateral 98 44.1% 124 55.9%

Focus type unifocal 334 50.9% 322 49.1% 0.457
multifocal 158 48.2% 170 51.8%

T grade T1 404 50.1% 402 49.9% 0.161
T2 46 59.0% 32 41.0%
T3 23 41.1% 33 58.9%
T4 19 43.2% 25 56.8%

N grade N0 316 53.2% 278 46.8% 0.016
N1 176 45.1% 214 54.9%

M grade M0 492 50.0% 492 50.0% ——
M1 0 0.0% 0 0.0%

Clinical stage I 439 50.9% 424 49.1% 0.214
II 45 45.0% 55 55.0%
III 7 35.0% 13 65.0%
IV 1 100.0% 0 0.0%

Hashimoto disease Without 359 50.2% 356 49.8% 0.886
With 133 49.4% 136 50.6%

ETE No 454 51.0% 436 49.0% 0.065
Yes 38 40.4% 56 59.6%
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Fig. 2  Analysis of cancer-associated fibroblasts (CAFs) in papillary thyroid carcinoma (PTC). (A) UMAP analysis based on cell markers revealed six distinct 
cell clusters within the combined GSE193581 and GSE184362 datasets. (B) The bar plots depict the proportional distribution of cell types in lymph node 
metastasis (LNM-PTC) and non-metastasis (non-LNM-PTC) PTC tissues. (C) Subcluster analysis and UMAP visualization of CAFs in LNM-PTC and non-LNM-
PTC tissues. (D) Distinct marker characteristics for each CAF subcluster. (E) UMAP plots of myoCAFs and iCAFs in PTC tissues. (F) Cellular communication 
analysis (interaction strength). (G) Cellular communication analysis (number of interactions). (H-I) Temporal trajectory analysis of CAF clusters. (J) The heat 
map shows the incoming and outgoing signaling patterns of cell clusters. (K) Network visualization of the pleiotrophin (PTN) signaling pathway
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the brown module, identifying 43 genes associated with 
metastasis. The results of the GO enrichment analysis for 
these 43 genes are depicted in Fig. 3F. The PPI network 
of these genes is demonstrated in Fig.  3G, indicating 
involvement in processes such as the cell leading edge, 
protein complex involved in cell adhesion, cell-substrate 
adhesion, homotypic cell-cell adhesion, and cell adhe-
sion mediator activity. Pseudo-time trajectory analysis of 
these 43 genes revealed predominantly high expression 
in later stages (Figure S1F).

Development and validation of a metastasis diagnostic 
model based on LNM-associated myoCAF genes
We constructed a diagnostic model using LASSO regres-
sion for the 43 LNM-associated myoCAF-related genes 
(Fig. 4A-B). A subset of 13 genes was identified for diag-
nosing LNM in PTC, and their relationship with stromal 
cells is depicted in Fig. 4C. Notably, besides COX8C and 
LDHB, which were significantly negatively correlated 
with CAFs, the other genes demonstrated significant pos-
itive correlations. To refine the diagnostic model, we used 
seven deep learning methods. Ultimately, we selected the 

Fig. 3  hdWGCNA analysis. (A) The inflection point threshold β = 4 was considered for hdWGCNA analysis. (B) hdWGCNA was used to analyze CAF 
modules, followed by the identification of six WGCNA modules. (C) Correlation analysis among the modules. (D) Mapping and high-expressing genes of 
brown module. (E) Bubble chart of the correlation between various CAF subclusters and WGCNA modules. (F) Gene ontology enrichment analysis of 43 
genes associated with metastasis. (G) Protein–protein interaction network of the 43 genes associated with metastasis
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SVM method to construct the final diagnostic model, 
which exhibited an area under the curve (AUC) of 0.706 
in the external validation dataset GSE33630 (Fig. 4E).

Identification of cancer subtypes and immune infiltration 
characteristics in patients with PTC
NMF analysis categorized patients with PTC in TCGA 
into three subgroups (Fig.  5A, Figure S1G), and con-
sensus clustering results indicated distinct boundaries 
among these subgroups (Fig. 5B). Correlation analysis of 
metastasis-associated CAF infiltration levels across these 
three subgroups revealed that subgroup 1 exhibited the 
highest level of CAF infiltration, whereas subgroup 3 dis-
played the lowest CAF infiltration (Fig. 5C). Analysis of 
immune cell infiltration levels suggested that the expres-
sion of NK cells, monocytic lineage, neutrophils, endo-
thelial cells, and fibroblasts among the three subgroups 
were significantly different (Fig. 5D). We generated heat-
maps demonstrating the correlation of 13 metastasis-
associated myoCAF-related genes and stromal cells in 
each patient. Deep learning was then performed for 
the heatmaps for all patient heatmaps (Fig.  5E). Deep 

learning significantly enhanced the diagnostic efficacy of 
the model to 0.951 (Fig. 5F-I).

In vitro experiments confirm the pro-oncogenic role of 
CD36+CAF in PTC cell line
Previous studies have shown that the expression of 
CD36 in CAFs varies across different types of cancer. 
Our analysis of single-cell data revealed a significant 
increase in CD36 expression in CAFs within PTC (Fig-
ure S1C). Primary CAF cells expressing α-SMA were 
isolated from PTC tissues (Fig. 6A). Subsequently, CD36 
knockdown CAFs (shCD36 CAF) were successfully 
established through lentivirus transfection (Fig.  6B-C). 
Further, a Transwell co-culture system was established 
to investigate the effects of the control group (Tran-
swell inserts without cell seeding), shNC CAF (Tran-
swell inserts seeded with CAF transfected with control 
lentivirus vector), and shCD36 CAF (Transwell inserts 
seeded with CAF transfected with shCD36 lentivirus) on 
PTC cell proliferation, migration, invasion, and apopto-
sis. The results showed that the proliferation (Fig. 6D, H), 
migration (Fig.  6F, J), and invasion abilities (Fig.  6G, K) 

Fig. 4  Establishment and refinement of the diagnostic model. (A) Least absolute shrinkage and selection operator (LASSO) coefficient profiles. (B) The 
tuning parameter (lambda) in the LASSO model was selected by performing a 10-fold cross-validation using the minimum criteria approach. (C) Cor-
relation analysis of 13 metastasis-associated myoCAF-related genes with immune cells. (D) Area under the curve of seven deep learning models in the 
training set of The Cancer Genome Atlas. (E) Receiver operating characteristic curve of the prognostic model optimized using the support vector machine 
algorithm applied to the external validation set GSE33630
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of TPC1 and K1 cells co-cultured with shNC CAF were 
significantly higher than those co-cultured with shCD36 
CAF and the control group cells, and the apoptosis rate 
(Fig. 6E, I) was significantly lower than that in TPC1 co-
cultured with shCD36 CAF and the control group cells. 
The proliferation (Fig. 6D, H), migration (Fig. 6F, J), and 
invasion abilities (Fig.  6G, K) of TPC1 and K1 cells co-
cultured with shCD36 CAF were significantly higher 
than those of the control group cells, and the apoptosis 

rate (Fig.  6E, I) was significantly lower than that in the 
control group cells.

Discussion
Patients with PTC and concurrent LNM face elevated 
mortality and recurrence risks compared to those with-
out LNM [29]. Timely detection of LNM is crucial for 
reducing recurrence rates and improving the progno-
sis of PTC, ultimately enhancing cancer survival rates. 
Although nearly 80% of patients with PTC experience 

Fig. 5  Subgroup analysis and immune infiltration characteristics in patients with papillary thyroid carcinoma (PTC). (A) Non-negative matrix factorization 
analysis stratified patients with PTC from The Cancer Genome Atlas into three distinct subgroups. (B) Consensus clustering outcomes showed well-
defined boundaries among these subgroups. (C) Correlation analysis of metastasis-associated CAF infiltration across the three subgroups. (D) Immune 
cell infiltration analysis of the three subgroups. (E) The heatmaps show the correlation between 13 metastasis-associated myoCAF-related genes and 
stromal cells for each patient, followed by machine learning applied to heatmaps of all patients. (F-I) The utilization of deep learning significantly boosted 
the diagnostic accuracy of the model to 0.951
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microscopic LNM, its identification typically relies on 
postoperative histopathological diagnosis [30]. Current 
methods, especially preoperative ultrasound examina-
tion, exhibit only 48.3% accuracy in diagnosing lymph 
node metastasis [31]. Consequently, establishing a reli-
able predictive model for diagnosing LNM in PTC, 
applicable in preoperative biopsies or intraoperative 
pathological examinations, holds paramount significance 
for early tumor diagnosis and preventing rapid PTC 
progression.

This study delves into the pivotal role of CAFs in PTC 
with LNM. Utilizing postoperative pathological HE slides 
from an extensive patient cohort, we meticulously delin-
eated the tumor invasive front, a critical region within 
1000  μm inside the tumor edge. Our findings revealed 
a significant correlation between high fibrosis density 
at the tumor invasive front and LNM. We employed a 
diverse range of methodologies, leading to the develop-
ment of a robust diagnostic model predicting LNM in 
PTC based on metastasis-associated myoCAF genes. 
Our initial analysis, comparing CAF expression between 

Fig. 6  In vitro experiments confirm the pro-oncogenic role of CD36+CAF in PTC cell line. (A) Immunofluorescence staining of α-SMA in CAFs. (B) WB 
analysis of CD36 protein expression in CAF after transfecting shCD36 or control lentivirus vector and (C) Statistical graphs for each group. WB images are 
cropped. (D) EdU staining results and (H) statistical graphs for each group. (F) Scratch assays results and (J) statistical graphs for each group. (G) Transwell 
assays results and (K) statistical graphs for each group. (E) Flow cytometry analysis of apoptosis levels in each group and (I) statistical graphs. Asterisks 
indicate statistical comparison with the control group unless indicated otherwise on the graphs. * p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001
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PTC tissues with and without LNM (LNM-PTC and non-
LNM-PTC, respectively), indicated a higher proportion 
of CAFs in LNM-PTC tissues, suggesting their poten-
tial involvement in metastatic processes. Subsequent 
subcluster analysis and UMAP visualization stratified 
CAFs into 15 clusters, revealing distinct marker profiles 
for myoCAFs and iCAFs. Notably, myoCAFs exhibited 
intense interactions with other cells, implying their sig-
nificant contribution in shaping the TME. Temporal tra-
jectory analysis unveiled a differentiation pattern from 
iCAFs to myoCAFs, possibly correlating with late-stage 
metastasis. Applying the hdWGCNA approach, we iden-
tified the brown module highly correlated with metas-
tasis-associated myoCAFs, highlighting genes such as 
TINAGL1, TAGLN, LHFP, CALD1, and ACTA2. This 
module exhibited strong associations with metastasis-
related processes, shedding light on the molecular under-
lying mechanisms of myoCAFs in LNM-PTC. Leveraging 
these findings, we constructed a diagnostic model using 
machine learning methods for the 43 LNM-associated 
myoCAF-related genes. This model exhibited remark-
able accuracy, showcasing its potential in identifying 
PTC patients at risk of LNM. Additionally, our study 
included cancer subtype identification and immune infil-
tration analysis. NMF analysis classified TCGA patients 
with PTC into three subgroups, each displaying dis-
tinct immune infiltration patterns. The refined diagnos-
tic model further enhanced its efficacy to an impressive 
0.951, emphasizing its valuable clinical application poten-
tial. In summary, our study demonstrates that in PTC, 
CAFs infiltrate at high levels at the tumor invasive front, 
particularly the myoCAF subtype, which promotes PTC 
progression and increases the likelihood of lymph node 
metastasis. The diagnostic model based on myoCAF-
related genes, developed using deep learning methods, 
can efficiently predict lymph node metastasis in PTC.

Research on CAFs in PTC is currently limited. A study 
of 125 PTC samples reported the use of immunohisto-
chemistry to analyze four CAF marker proteins (FAP, 
α-SMA, vimentin, and PDGFR-α) and correlated them 
with clinicopathological features [32]. Elevated FAP and 
α-SMA immunoreactivity scores were associated with 
unfavorable tumor features, such as BRAF mutation, 
extrathyroidal invasion, and LNM. Dadafarin et al. pro-
posed that MEG3 expression in tumor CAFs might drive 
PTC invasiveness and LNM, suggesting a potential thera-
peutic target [33]. Research including single-cell sequenc-
ing [34] revealed high fibroblast infiltration in PTC and 
their interactions with various cell types, uncovering dif-
ferentially expressed fibroblast-related genes in THCA 
tissues. The fibrosis score model emerged as an indepen-
dent prognostic factor for patients with THCA, with low 
fibrosis scores correlating with improved overall survival. 
High CAF scores were linked to aggressive phenotypes, 

genetic mutations, oncogenic signaling pathways, and 
alterations in the immune landscape alterations [34, 35]. 
We identified 43 metastasis-associated myoCAF-related 
genes, suggesting a close association with cell adhesion-
related signaling pathways. We selected 13 genes (ACTB, 
C1QTNF1, CALD1, CD36, COX6C, CSRP2, FABP4, 
LDHB, MYL12A, MYO1B, NES, SUCNR1, and TBX2) to 
establish an LNM prediction model, achieving an opti-
mized AUC of 0.951 via deep learning. However, further 
exploration and validation are warranted to understand 
the underlying molecular mechanisms and potential 
therapeutic targets.

myoCAFs are typically induced by TGF-β1 or SMAD 
signaling, leading to changes in cellular cytoskeleton 
and contributing to the formation of the ECM that pro-
motes metastasis [36, 37]. MyoCAFs express α-SMA 
and secrete collagen-rich ECM [38, 39]. In various solid 
tumors, including esophageal [40], breast [41], colorec-
tal [42], gastric [43], and prostate [44] cancers, myoCAFs 
govern malignancy-associated tumor features and are 
linked to poor prognosis. This study extensively explored 
the predictive role and underlying mechanisms of CAFs 
in PTC LNM, with a particular focus on myoCAFs and 
their strong correlation with PTC metastasis.

CD36 is a scavenger receptor expressed in various cell 
types, mediating lipid metabolism, immune recognition, 
inflammation, molecular adhesion, and apoptosis [45]. 
The lipid metabolism reprogramming driven by CD36 
and the functional suppression of tumor-associated 
immune cells lead to tumor immune tolerance and can-
cer progression [46]. The uptake of palmitic acid (PA) 
by CD36 has been shown to induce phosphorylation of 
AKT in gastric cancer cells, inhibit the degradation of 
GSK3β/β-catenin, and promote gastric cancer metastasis 
[47]. Studies have found that in hepatocellular carcinoma 
(HCC), CD36+ CAFs exhibit high levels of lipid metabo-
lism and expression of macrophage migration inhibitory 
factors [48]. In this study, CD36 positive expression in 
CAFs can significantly promote the proliferation, migra-
tion, and invasion abilities of PTC cells, while inhibit-
ing the apoptosis of PTC cells. These results imply that 
CD36+CAF plays a promoting role in PTC, aligning with 
conclusions drawn in HCC research, thus underscoring 
its potential as a therapeutic target. CD36 plays a crucial 
role in lipid uptake, immune recognition, inflammation, 
molecular adhesion, and apoptosis, impacting the initia-
tion, development, and progression of cancer. Currently, 
several anti-tumor drugs targeting CD36 have entered 
clinical trials [49]. Nonetheless, the precise mechanisms 
underlying CD36+CAF promoting role in PTC warrant 
further investigation.

The present is a single-center study. This is the limita-
tion of this study. To mitigate the limitations of a single-
center study, we expanded our sample size. Furthermore, 
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the First Hospital of China Medical University is a lead-
ing hospital in Northeast China, attracting patients from 
across the region. This somewhat compensates for the 
single-center limitation by including a diverse patient 
population from a broad geographic area.

This study has certain limitations. The data utilized in 
this study originates from a singular institution, poten-
tially constraining the generalizability of the findings. 
Despite efforts to increase the sample size and incor-
porate a varied patient demographic, future research 
endeavors will involve multi-center studies to improve 
the transferability of the results to diverse populations. 
Furthermore, the molecular mechanisms of CD36+CAFs 
in the progression of PTC have not been thoroughly 
investigated. The present study predominantly con-
firms their function through in vitro experiments. Sub-
sequently, we aim to pursue comprehensive mechanistic 
investigations and in vivo experiments to establish a more 
robust scientific foundation.

Conclusion
In conclusion, in the present study, we addressed the crit-
ical issue of the risk of LNM in patients with PTC. The 
analysis of postoperative HE-stained pathological slides 
from several patients revealed that high fibrosis density 
at the tumor invasive front was significantly correlated 
to LNM. Further, we comprehensively analyzed CAF 
infiltration in PTC by integrating scRNA-seq data from 
GSE193581 and GSE184362 datasets. Notably, we iden-
tified metastasis-associated myoCAFs exhibiting strong 
intercellular interactions and established a diagnostic 
model validated using deep learning. Next, NMF cluster-
ing revealed distinct PTC subtypes and immune infiltrate 
variations. In vitro experimental results indicate that 
CD36 positive expression in CAFs plays a promoting role 
in the progression of PTC. Overall, these findings provide 
crucial insights into the function of CAF subset in PTC 
metastasis.
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