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Abstract
Background Multicenter non-small cell lung cancer (NSCLC) patient data is information-rich. However, its direct 
integration becomes exceptionally challenging due to constraints involving different healthcare organizations and 
regulations. Traditional centralized machine learning methods require centralizing these sensitive medical data for 
training, posing risks of patient privacy leakage and data security issues. In this context, federated learning (FL) has 
attracted much attention as a distributed machine learning framework. It effectively addresses this contradiction 
by preserving data locally, conducting local model training, and aggregating model parameters. This approach 
enables the utilization of multicenter data with maximum benefit while ensuring privacy safeguards. Based on pre-
radiotherapy planning target volume images of NSCLC patients, a multicenter treatment response prediction model 
is designed by FL for predicting the probability of remission of NSCLC patients. This approach ensures medical data 
privacy, high prediction accuracy and computing efficiency, offering valuable insights for clinical decision-making.

Methods We retrospectively collected CT images from 245 NSCLC patients undergoing chemotherapy and 
radiotherapy (CRT) in four Chinese hospitals. In a simulation environment, we compared the performance of the 
centralized deep learning (DL) model with that of the FL model using data from two sites. Additionally, due to 
the unavailability of data from one hospital, we established a real-world FL model using data from three sites. 
Assessments were conducted using measures such as accuracy, receiver operating characteristic curve, and confusion 
matrices.

Results The model’s prediction performance obtained using FL methods outperforms that of traditional centralized 
learning methods. In the comparative experiment, the DL model achieves an AUC of 0.718/0.695, while the FL model 
demonstrates an AUC of 0.725/0.689, with real-world FL model achieving an AUC of 0.698/0.672.

Conclusions We demonstrate that the performance of a FL predictive model, developed by combining 
convolutional neural networks (CNNs) with data from multiple medical centers, is comparable to that of a traditional 
DL model obtained through centralized training. It can efficiently predict CRT treatment response in NSCLC patients 
while preserving privacy.
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Introduction
Non-Small Cell Lung Cancer (NSCLC), as one of the 
most common cancers, exhibits high incidence and mor-
tality rates [1]. For patients ineligible for radical surgery, 
the combination of radiotherapy and chemotherapy rep-
resents their primary treatment option [2]. The assess-
ment of treatment response, which relates to the quality 
of survival and the effectiveness of treatment, is the key 
to enhancing the prognosis of patients [3]. Within the 
same disease stage, patients exhibit varying responses to 
radiotherapy. Some experience tumor shrinkage, while 
others manifest signs of tumor progression [4]. Current 
criteria for Response Evaluation Criteria in Solid Tumors 
(RECIST) [5] judge treatment effectiveness based on 
tumor size, shape, and growth rate. However, these cri-
teria usually take time to produce observable changes, 
making it challenging to provide real-time therapeutic 
feedback during the early stages [6]. Therefore, an urgent 
demand exists for a method capable of delivering real-
time efficacy predictions to facilitate more informed 
treatment decisions.

With the advancement of artificial intelligence, the 
prediction of treatment response has become efficient 
and accurate within the precision medicine. Liu et al. [7] 
used MRI images to predict treatment response to che-
motherapy in patients with nasopharyngeal carcinoma. 
Sammut et al. [8] constructed a model based on clinical, 
digital pathology, genomic and transcriptomic profiles to 
predict pathological complete responses in breast can-
cer cases. Xu et al. [9] constructed a deep learning (DL) 
model by CT images of NSCLC patients to predicted 
survival and cancer specific outcomes. However, highly 
accurate models require a wide variety of datasets. In 
practice, the medical image data held by each institution 
tends to be limited and fragmented, and the increasing 
awareness of data privacy makes multi-center data col-
lection difficult. However, there are three main prob-
lems. To begin, training high-precision models often 
requires pooling data together in most studies [10]. Yet, 
medical image data held by each institution tends to be 
limited and fragmented, making data collection chal-
lenging. Additionally, the increasing awareness of data 
privacy makes multi-center data collection difficult [11]. 
Moreover, data centralization may bring the risk of data 
leakage.

Meanwhile, Federated Learning (FL) [12, 13] has gar-
nered substantial interest within the medical domain as 
an emerging machine learning technique [14]. In mul-
ticenter medical research, data is typically siloed across 
various medical institutions and research centers, and 
sharing data across institutions becomes infeasible due 
to privacy and regulatory constraints. In contrast, FL 
presents a novel avenue. It allows multiple data holders 
to collaboratively construct machine learning models 

without sharing raw data [15, 16]. This approach protects 
patient privacy by performing model training on local 
devices and sharing only model parameters. Pati et al. 
[17] employed FL to detect sub-compartment boundar-
ies of glioblastoma. Similarly, Islam et al. [18] leveraged 
FL to build CNN architectures to identify brain tumors 
in MRI images. Likewise, Yan et al. [19] used FL for the 
automatic detection of COVID-19 lesions in images. 
However, existing research in this area has significant 
limitations, particularly regarding diversity. The evalu-
ation of efficacy using FL has not been fully explored. 
Furthermore, there are limitations in applying FL in 
real-world environments. Most studies have primarily 
focused on experiments in simulation environment, lack-
ing validation in actual medical settings. This limits the 
practical application value of FL.

The objective of this study aims to address this gap 
by exploring the application of FL in real-world set-
tings for predicting the response to radiotherapy treat-
ment in a multicenter cohort of NSCLC patients. We’ve 
set up a privacy-preserving data analysis framework 
through cross-institutional federated learning in collab-
oration with multiple medical centers. It allows medical 
image data from different centers to collaborate in train-
ing efficacy prediction models while ensuring data pri-
vacy. Through this study, we hope to offer novel insights 
into the treatment of NSCLC patients, paving the way 
for innovative prospects in multicenter collaborative 
research. Ultimately, our goal is to assist physicians in 
enhancing the precision of treatment response assess-
ment and optimizing cancer treatment outcomes.

Methods
Patients
Image data of NSCLC patients with planning target vol-
ume images made within 1–3 days before radiotherapy 
at four hospitals from 2016 to 2022 was reviewed. The 
research received approval from the Ethics Committee 
of the Affiliated Hospital of Shandong First Medical Uni-
versity (No. SB-KJCX2101) and the Ethics Committee of 
the Xiangya Hospital of Central South University (No. 
202,207,167). The requirement of written informed con-
sent was waived.

The inclusion criteria were as follows: (I) 18 years of 
age or older; (II) primary NSCLC; (III) CRT treatment; 
(IV) A CT scan both prior to and within 5 months after 
completing the identical course of CRT; (IV) no history 
of surgical removal of the tumor for treatment.

The exclusion criteria were as follows: (I) patients with 
incomplete clinical or imaging information; (II) failure 
to complete the intended treatment planning protocol; 
(III) patients with no information on efficacy assessment 
after treatment; and (IV) patients with other primary 
tumors. After exclusion, the study ultimately included 
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245 patients who met the specified conditions. Among 
them, 102 cases originated from an affiliated hospital 
of Shandong First Medical University  (Hospital A), 42 
cases originated from Xiangya Hospital of Central South 
University  (Hospital B), 32 cases were from a different 
affiliated hospital of Shandong First Medical Univer-
sity (Hospital C), and 69 cases were from Cathay General 
Hospital (Hospital D).

According to RECIST, the outcome of patients’ treat-
ment response was assessed by two proficient radiolo-
gists at each center, who analyzed the CT images taken 
prior to and after CRT administration. Patients with 
complete response (CR) and partial response (PR) who 
demonstrated a positive biological effect on treatment 
were categorized as responsive. Conversely, patients with 
stable disease (SD) and progressive disease (PD) who 
demonstrated a limited or negative biological effect were 
categorized as nonresponsive [7, 20]. The protocols of the 
scanning in the four hospitals are shown in Supplemen-
tary 1.

Data preprocessing
Observing the collected images of planning target 
volume, there were differences in the naming of seg-
mentation target volume and endangered organs in dif-
ferent hospitals, we first imported the raw data file and 
RT struct file into 3D-slicer (4.11) [21] and manually 
selected the region of interest (ROI) named GTV in the 
list of names of RT struct file. The raw data and ROI were 
then converted to nii format images. Due to the differ-
ences thickness, the original Dicom and ROI were resa-
mpled to 1 × 1 × 1 mm3 using B-spline interpolation. The 
ROI was converted to a 3D binary matrix and the tumor 
region was calculated. Statistical analysis of tumor sizes 
at three XYZ levels was conducted, and by referencing 
previous studies [22–24], a size of 64 × 64 × 64  mm³ was 

determined (Supplementary 2). Subsequently, 3D patches 
were cut with the center of the tumor as the origin for 
input to the model.

To prevent overfitting, increase the data diversity, and 
bolster the model’s generalization capability, we perform 
image augmentation on the training data. The methods 
applied were as follows: [1] Random horizontal flip [2] 
Random rotation within the − 15° to 15° range [3] Ran-
dom cropping [4] Brightness, contrast, saturation, and 
hue set to 0.2.

Neural network structure
A custom 3D convolutional neural network model, con-
v3DNet, was used in this study. This model was designed 
from scratch, using a train-from-initialization approach, 
rather than relying on a pre-trained model structure. The 
model consists of three convolutional layers, three 3D 
Max-Pooling pooling layers, two fully-connected layers, 
and a Softmax layer for final regression to probability. 
The architecture of the model is shown in Fig. 1.

Federated learning framework
The FL part of this study was implemented using a FL 
framework, Flower 1.3.0 [25], which consists of three 
main modules: server-side, client-side, and strategy [26]. 
The server-side handles global aggregation, while the 
client-side manages local training. Within the built-in 
strategy module, various FL training schemes are embed-
ded, facilitating the selection of the appropriate approach 
to achieve model parameter aggregation on the server. 
The framework contains popular FL algorithms such as 
FedAvg [12] and FedProx [27].

The process of federated learning is presented in Fig. 2. 
First, all clients (participants) wait for the server (central 
node) to transmit the initial parameters. After receiving 
the initial parameters, the clients train the model locally 

Fig. 1 The architecture of conv3DNet. Including convolution layers, max pooling layers, and fully connected layers
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using their own training set while the server remains in a 
waiting state. After each iteration, the client generates a 
model parameter update. Once a client finishes training, 
it transmits the model parameters to the server over the 
network. After receiving the parameters from all clients, 
the server uses the FedAvg algorithm to aggregate the 
parameter updates by taking their weighted average. The 
server then sends the aggregated parameters back to the 
clients over the network, and the clients train their local 
model again based on these aggregated parameters. The 
whole process is iterated repeatedly, with each iteration 
training the local model on the client, generating param-
eter updates, transmitting them to the server for aggrega-
tion, and obtaining the final global model [15, 28].

Model construction
In this study, we first built a DL model and a two-client 
FL model in a simulated environment, comparing their 
performance to elucidate the advantages of FL. Due to 
the unavailability of data from hospital D, we conducted a 
real-world three-client FL model to explore the potential 
of FL in healthcare applications. The model frameworks 
all come from conv3Dnet mentioned in 2.3.

Federated learning in a simulation environment
Initially, we developed a centralized DL model by divid-
ing the data from hospitals A and B into training and 
validation sets in a ratio of 7:3. In addition, data from 
hospital C was used as an external validation set for test-
ing the model, and was not involved in model training 
or debugging. The training hyperparameters included 
the following: (I) Batch size set at 8; (II) Learning rate of 
0.001; (III) Utilizing the Adam optimizer; and (IV) Train-
ing for 100 epochs. The loss function employed was cross 
entropy.

The data were then utilized to build a FL model. Two 
clients (Hospital A and B) divided the local data into a 
training set and a validation set in a 7:3 ratio. The data 
from Hospital C was used as an external validation set 
for model testing and was not involved in model training 
or debugging. We configured the initial global model for 
both clients and used the Flower framework to commu-
nicate with the central server via gRPC to build the FL 
model. The training hyperparameters included the fol-
lowing: (I) Batch size set at 16; (II) Learning rate of 0.001; 
(III) Utilizing the SGD optimizer (To assess the initial 
performance of the FL model, we employ an SGD opti-
mizer capable of fine-tuning the model.); (IV) Conduct-
ing 10 communication rounds; and (V) Training for 50 
local epoch per client. (Local epoch means that each cli-
ent trains with its local data before sending model param-
eters to center server.) The loss function used remained 
cross entropy.

Federated Learning in Real-world environments
The experiment in FL in the real world was continued 
using the Flower framework. The configuration of the 
Flower framework to process data from different health-
care organizations and protect data privacy is described. 
The approach is as follows: Three clients (hospital A, 
hospital B and hospital D) divided the local data into a 
training set and a validation set in a 7:3 ratio. The data 
from hospital C was used as an external validation set 
for model testing and was not involved in model training 
and debugging. The model training is all performed on 
the client side, and the flow is shown in Fig. 3. The train-
ing hyper-parameters were as follows: (I) Batch size set 
at 16 (II) Learning rate of 0.001; (III) Utilizing the Adam 
optimizer (In real-world environment with higher data 
distribution and complexity, we use the Adam optimizer, 

Fig. 2 The process of federated learning
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which adaptively adjusts the learning rate for faster and 
more stable convergence.); (IV) Conducting 10 com-
munication rounds; and (V) Training for 50 local epoch 
per client. The loss function employed remained cross 
entropy.

In deep learning, the model’s performance is influ-
enced by the distribution of the dataset. To assess the 
robustness of the proposed model, a switch to a different 
dataset for external validation was made, following the 
method described earlier. In the simulation environment, 
we used data from hospitals A and C to train the central-
ized learning model DL2, while two clients (Hospital A 
and C) were used to train the distributed learning model 
FL3. In the real world, three clients (Hospital A, C, and 
D) were used to train the distributed learning model FL4. 
Experimental parameters are shown in Supplementary 
3. Data from Hospital B was used as an external valida-
tion set to test models DL2, FL3, and FL4, and was not 
involved in model training or debugging.

Experimental environment
Statistical analyses were performed using IBM SPSS Sta-
tistics 21.0 software. CPU processor is Intel(R) Core(TM) 
i5-11500 @2.70  GHz 2.71  GHz, Intel(R) Xeon(R) Silver 
4114 CPU @ 2.20 GHz 2.19 GHz. The GPU processor is 
NVIDIA Quadro P4000; the operating system is 64 bit 
Windows 10 Professional with python 3.7; and the net-
work model is implemented using a deep learning frame-
work based on Pytorch(1.13.1).

Results
To train a multicenter well-performing predictive model, 
a highly diverse dataset is essential. In light of this, we 
collected data from a total of 245 NSCLC patients from 
four centers. Among these, 110 cases were classified 
within the responsive group, while the remaining 135 
cases fell into the non-responsive group. A detailed sum-
mary of the cohort’s demographic information is pre-
sented in Table 1. To ensure no significant differences in 
patient characteristics across institutions, we conducted 
statistical analyses using one-way ANOVA, Chi-square 
tests, and Fisher’s exact test. Results indicated that, aside 
from gender, all other characteristics were not signifi-
cantly different across institutions (p > 0.05). Although 
gender differences among the four cohorts were signifi-
cant (p < 0.05), we believe gender does not impact our 
results as our analysis primarily relies on image features.

The performance of centralized DL models (DL1, DL2) 
and FL models (FL1, FL3) in simulated environments, as 
well as FL models (FL2, FL4) in the real world, are evalu-
ated using accuracy, specificity, AUC value, and confu-
sion matrix. For a fair comparison, the models are all 
evaluated using the same test set (Hospital B or C).

When validated using the dataset from hospital C in 
the simulated environment, the centralized DL1 model 
exhibits an AUC value of 0.718(95% CI: 0.52–0.88). The 
FL1 model achieves higher AUC value of 0.725(95% CI: 
0.55–0.90). In the real-world setting, the FL2 model 
shows an AUC value of 0.698(95% CI: 0.49–0.87). After 
switching dataset B for external validation, the DL2 
model built in the simulated environment achieved an 
AUC value of 0.695(95% CI: 0.45–0.90), while the FL3 

Fig. 3 Model training architecture for NSCLC treatment response from CT images. (FL training process: ①Model is trained using local data. ②Model pa-
rameters are sent to the server. ③Server aggregation parameters. ④Update parameters.)
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model achieved an AUC value of 0.689(95% CI: 0.51–
0.85). Additionally, the FL4 model built in the real world 
attained an AUC of 0.672(95% CI: 0.45–0.89). Figure  4 
summarizes the training loss of the FL model across 

the two hospitals. Figures 5 and 6 summarizes the ROC 
curves and confusion matrices obtained from the above 
three models. Tables 2 and 3 summarize the performance 
metrics for our model’s training, validation, and testing.

Table 1 Patient characteristics
Subjects Hospital A (n = 102) Hospital B (n = 42) Hospital C (n = 32) Hospital D (n = 69) P value
R 51 31 17 11
nR 51 11 15 58
Gender P < 0.05
Male 82 34 23 36
Female 20 8 9 33
Age 64.32 ± 7.81 64.21 ± 10.68 63.96 ± 8.57 68.7 ± 11.4 0.057
Range 47–81 44–83 39–79 37–91
Histological type 0.269
LUAD 48 17 14 40
LUSC 54 25 18 29
Tumor stage 0.120
T1 10 11 3 8
T2 32 16 10 21
T3 34 7 11 16
T4 26 8 8 24
Node stage 0.114
N0 16 10 7 20
N1 9 5 6 7
N2 51 13 13 19
N3 26 14 6 23
Metastasis 0.065
M0 66 24 22 32
M1 36 18 10 37
Clinical stage 0.187
IIIA 26 7 12 12
IIIB 36 14 14 26
IIIC 7 3 2 4
IV 33 18 4 27
R, responsive; nR, non-responsive. LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma

Fig. 4 The training loss of the FL model across the two hospitals
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Discussion
In previous multicenter studies, machine learning or 
deep learning methods are usually employed to con-
struct models using diverse medical imaging data such 
as CT and MRI. For instance, Cui et al. [29] developed 
a DL model for predicting individual patient responses 

to neoadjuvant chemotherapy based on CT images of 
patients with locally progressed gastric cancer from four 
hospitals in China. Braman et al. [30] built a machine 
learning model to predict the ability of neoadjuvant 
chemotherapy to provide a complete remission of the 
pathology through MRI images of breast cancer patients. 

Fig. 6 Performance comparison between local and collaborative FL training based on imaging data to predict treatment response in NSCLC patients. 
Confusion matrix of three models

 

Fig. 5 Performance comparison between local and collaborative FL training based on imaging data to predict treatment response in NSCLC patients. 
ROC curve of three models
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However, these conventional methods typically neces-
sitate data centralization for training, raising concerns 
about data privacy.

Therefore, methods such as swarm learning (SL) [31] 
and FL allow for training models in multi-center collabo-
rations without sharing sensitive data. SL is a decentral-
ized machine learning approach that does not require 
server-coordinated parameters, enabling direct commu-
nication between parties through a blockchain network. 
For instance, Saldanha et al. [32] used SL in a multicenter 
study to predict gene mutation status and microsatellite 
instability. Another study employed SL to predict molec-
ular biomarkers for gastric cancer [33], both of which 
achieved remarkable results.

Unlike SL, FL utilizes a central server for coordina-
tion, through which all participants communicate. This 
method effectively integrates multicenter data while 
protecting data privacy. For example, Sheller et al. [34] 
divided the BraTs dataset into 10 simulated institu-
tions to study simulated FL, which aimed to distinguish 
healthy brain tissue from cancerous tissue. Sadilek et al. 
[35] conducted several studies on FL in different sce-
narios to explore its performance. However, many of the 
FL studies in existing research have been conducted in 
simulated environments. These studies primarily focus 
on technological innovations in data security and privacy 
protection, but lack validation in real healthcare environ-
ments. In contrast, our study focuses more on predicting 
efficacy in practical clinical applications and validates the 
feasibility of FL in real clinical settings.

In this study, we introduced the Flower FL frame-
work to establish a collaborative multicenter learning 
model based on 3D CT images for predicting the treat-
ment response of radiotherapy in NSCLC patients. Our 
research involved a cohort of 245 patients from four 
different hospitals. We began with a theoretical per-
formance comparison conducted in a simulation envi-
ronment using data from three of these hospitals. By 
comparing the performance of a DL model built by a 
centralized approach with a FL model, our findings sup-
port the effectiveness of the FL approach [DL model 
accuracy = 0.688/0.691, AUC = 0.718/0.695; FL model 
accuracy = 0.750/0.714, AUC = 0.725/0.689]. In real-world 
scenarios, in order to more closely match the actual 
medical application scenarios and to address the chal-
lenges of data acquisition and privacy protection, we 
utilize data from all four hospitals to develop a FL model 
[FL model accuracy = 0.688/0.667; area under the curve 
(AUC) = 0.698/0.672].

The left panel of Fig. 4 shows that after 20 epochs, the 
loss values fluctuate. And the right panel shows that as 
training proceeds, the losses for both hospitals gradually 
decrease and stabilize. The relatively smoother loss curve 
for Hospital A may indicate a larger amount of data at Ta
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this site, facilitating smoother learning for the model [36]. 
As demonstrated in Tables 2 and 3; Figs.  5 and 6, since 
the model weights received by the federated global model 
are the weighted average of the local model weights from 
other clients, which are aggregated by the global model 
and then returned to the client’s local model, each cli-
ent can benefit from the experiences of the other clients, 
thus the FL1, FL3 model’s performance, surpasses that of 
the DL1, DL2 model. The federated learning models FL2 
and FL4, trained using data from three clients, exhibited 
lower metrics compared to FL1 and FL3, which were 
trained using data from two clients. This discrepancy may 
attribute to uneven data distribution in hospital D com-
pared to the other two clients. In cases where data dis-
tribution differs noticeably among clients, there may be 
inconsistencies in data distribution during model aggre-
gation. Using fewer clients reduces the likelihood of this 
data distribution inconsistency. In addition, the perfor-
mance of the model trained using AC hospital data (with 
hospital B as the test set) is comparatively lower than that 
trained using AB hospital data (with hospital C as the test 
set). In FL, hospital A, which possesses a larger dataset, is 
assigned a higher weight. Hence, this discrepancy in per-
formance could potentially be attributed to the fact that 
the data distribution of Hospital C aligns more closely 
with that of Hospital A compared to Hospital B.

Certain limitations remain in this study. First, the data-
set of NSCLC patients used in this paper was relatively 
small, and the inclusion of data from more medical insti-
tutions could potentially enhance the model’s perfor-
mance. In addition, this study was limited by the sample 
size, and CR and PR were categorized as treatment with 
remission, and SD and PD were categorized as treat-
ment without remission for dichotomous studies. In the 
future, it is hoped that the RECIST criteria will be used to 
classify efficacy into four classes for more accurate pre-
diction, while expanding and balancing the sample size. 
Furthermore, this study focused on constructing a CT-
based unimodal model using FL, omitting the integration 
of additional data such as clinical features and pathology 
image features, which have the potential to enhance the 
model’s predictive capacity in the context of cancer treat-
ment response. Future studies will aim to expand the size 
of the dataset, invite more medical institutions to partici-
pate, and integrate data from various sources to build a 
more comprehensive model for the precise prediction of 
radiotherapy treatment response in NSCLC patients.

Conclusions
To emphasize the efficacy of a distributed learning 
approach in a data-private setting, we conducted a study 
on FL for predicting treatment responses among patients 
with NSCLC.
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We compared traditional DL and FL approaches. Our 
results show that FL can achieve comparable perfor-
mance to centralized DL without sharing sensitive data. 
In addition, we validate the feasibility of FL in real-world 
applications. We believe that this approach is not only 
applicable to NSCLC efficacy prediction, but can also 
be extended to other DL applications for medical image 
analysis. This research provides an effective approach to 
address data privacy and collaboration issues in multi-
center medical image analysis, which is expected to have 
a broader impact in clinical applications.
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