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Abstract
Purpose  The potential efficacy of metformin in breast cancer (BC) has been hotly discussed but never conclusive. 
This genetics-based study aimed to evaluate the relationships between metformin targets and BC risk.

Methods  Metformin targets from DrugBank and genome-wide association study (GWAS) data from IEU OpenGWAS 
and FinnGen were used to investigate the breast cancer (BC)-metformin causal link with various Mendelian 
Randomization (MR) methods (e.g., inverse-variance-weighting). The genetic association between type 2 diabetes 
(T2D) and the drug target of metformin was also analyzed as a positive control. Sensitivity and pleiotropic tests 
ensured reliability.

Results  The primary targets of metformin are PRKAB1, ETFDH and GPD1L. We found a causal association between 
PRKAB1 and T2D (odds ratio [OR] 0.959, P = 0.002), but no causal relationship was observed between metformin 
targets and overall BC risk (PRKAB1: OR 0.990, P = 0.530; ETFDH: OR 0.986, P = 0.592; GPD1L: OR 1.002, P = 0.806). A 
noteworthy causal relationship was observed between ETFDH and estrogen receptor (ER)-positive BC (OR 0.867, 
P = 0.018), and between GPD1L and human epidermal growth factor receptor 2 (HER2)-negative BC (OR 0.966, 
P = 0.040). Other group analyses did not yield positive results.

Conclusion  The star target of metformin, PRKAB1, does not exhibit a substantial causal association with the risk 
of BC. Conversely, metformin, acting as an inhibitor of ETFDH and GPD1L, may potentially elevate the likelihood 
of developing ER-positive BC and HER2-negative BC. Consequently, it is not advisable to employ metformin as a 
standard supplementary therapy for BC patients without T2D.
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Introduction
Breast cancer (BC) is the most prevalent malignant 
tumor among women, exhibiting an escalating incidence 
globally and serving as a leading cause of cancer-related 
mortality in women worldwide [1, 2]. Concurrently, 
Type 2 diabetes (T2D) has emerged as a significant pub-
lic health issue on a global scale [3]. Research investiga-
tions have demonstrated a positive association between 
T2D and an elevated risk of BC [4], potentially attribut-
able to the activation of insulin or insulin-like growth 
factor receptors within breast epithelial tissue, or the 
alteration of sex hormone levels due to insulin resistance 
and hyperinsulinemia [5]. In light of these mechanisms, 
metformin, a well-established therapeutic approach 
for T2D, is believed to have the potential to mitigate 
the risk of breast cancer and enhance BC outcomes [6]. 
Additionally, metformin exerts its effects on the AMPK 
and mTOR pathways, thereby potentially impeding the 
growth of BC [7, 8]. Although preclinical investigations 
offer evidence of metformin’s impact on all subtypes 
of BC, the translation of these findings to the clinical 
domain is not without challenges, primarily due to the 
utilization of supra-physiological concentrations of glu-
cose, insulin, and metformin in in vitro and in vivo labo-
ratory models employed in preclinical studies [9, 10].

However, numerous studies have cast doubt on the cor-
relation between T2D and the risk of BC, concurrently 
underscoring the inadequacy of evidence supporting a 
definitive impact of metformin on BC patients [11–13]. 
Furthermore, inconsistencies prevail within the out-
comes pertaining to distinct subtypes of BC [14, 15]. A 
recent investigation demonstrated that the inclusion of 
metformin, as compared to a placebo, alongside conven-
tional BC treatment did not yield a statistically significant 
enhancement in invasive disease-free survival among 
individuals with high-risk operable BC and no preexist-
ing diabetes [10].

Hence, the status of metformin as a potential standard 
adjuvant therapy for breast cancer remains inconclusive. 
Similar to the randomized controlled trial (RCT) meth-
odology, the MR approach inherently allocates partici-
pants into groups through genetic predictions of drug 
target perturbation, effectively mitigating the influence 
of environmental factors due to the random assortment 
of genetic variants during conception [16]. Furthermore, 
this approach effectively reduces the potential for reverse 
causality, as the germline genotype remains unaltered by 
the onset and progression of disease [17, 18]. An exten-
sion of the MR paradigm, the drug-target approach, 
has been applied to clinical trials in order to predict the 
effectiveness and potential negative consequences of 
therapeutic interventions [19]. Using genetic variants 
to surrogate mechanistic impacts of drug targets, this 
technique enables characterization of protein function 

and perturbation of drug targets [20, 21]. In this study, 
we have employed the drug-target MR methodology to 
simulate prolonged exposure to metformin in European 
populations, aiming to evaluate its causal effects on BC 
and present novel genetic evidence in this regard.

Materials and methods
Study overview and data sources
We employed a multi-group, two-sample MR design to 
investigate the potential efficacy of repurposing metfor-
min for BC. Summary statistics of instrument exposure 
and instrument-outcome associations were derived from 
large-scale genome-wide association studies (GWAS) 
conducted in European populations (Fig. 1).

Initially, based on the Drugbank database, the target 
proteins of metformin were identified [22]. Subsequently, 
GWAS data corresponding to these genes were obtained 
from the IEU OpenGWAS project database, and inde-
pendent variants within the gene locus were utilized as 
instrumental variables (IVs) to approximate the pharma-
cological modulation of the drug target protein [23].

The GWAS summary statistics for overall HER2-posi-
tive/negative BC and T2D were obtained from the Finn-
Gen research project [24], while the GWAS summary 
statistics for ER-positive/negative BC were acquired 
from the Breast Cancer Association Consortium (BCAC) 
[25]. Due to the nature of the study, no specific ethical 
approval or written informed consent from participants 
was deemed necessary.

We subsequently assessed the causal link between 
genetic variations in metformin targets and the suscep-
tibility to overall BC, and each subtype of BC, using a 
two-sample MR. Considering that the intended indica-
tion for metformin is T2DM, we concurrently investi-
gated the causal relationship between metformin target 
variations and T2D as a positive control (ref: Guidelines 
for performing mendelian randomization investigations). 
Table 1 provides comprehensive details on all the GWAS 
included in our study.

Screening of IVs
We implemented several quality control measures to 
identify suitable genetic instrumental tools [26]. Initially, 
we identified single nucleotide polymorphisms (SNPs) 
that achieved genome-wide significance (P < 5.0E − 08). 
Subsequently, a clumping process was applied, utilizing 
linkage disequilibrium (LD) estimates from Europeans 
in the 1000 Genomes project (R2 < 0.1, window size of 
500 kb) to ensure the independence of genetic variables 
[27]. In cases where SNP pairs showed LD R2 values sur-
passing the threshold (0.1), we retained the SNP with the 
lower P value.

To detect potential weak instrumental variable bias, 
we calculated the F-statistic (F = R2(n - k − 1)/k (1 - R2)), 
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where R2, n, and k denote the proportion of variance in 
exposure explained by selected genetic tools, the sample 
size of the exposure GWAS, and the number of chosen 
genetic tools, respectively. An average F-statistic exceed-
ing 10 indicates suitable instrumental variables [28].

Adhering to the two fundamental IV analysis assump-
tions, we removed SNPs linked to potential confound-
ing variables and adjusted for SNPs exhibiting horizontal 
pleiotropic effects through consultation with the Phe-
noScanner database [29].

MR analysis
In this study, we conducted two separate two-sample MR 
analyses. Initially, we aligned SNPs to standardize the 
exposure and outcome data. Subsequently, the inverse-
variance weighting (IVW) method was used to assess 
heterogeneity between SNPs. A p-value greater than 0.05 
for the Q-statistic indicated the absence of heterogeneity. 
Furthermore, for detecting horizontal pleiotropy, we per-
formed the MR-Egger regression intercept test. Finally, 
based on the evaluation of between-SNP heterogeneity 
and horizontal pleiotropy, we selected the primary MR 
method. In order to ensure the robustness of the results, 

Table 1  Studies used to retrieve summary statistics for the two-sample Mendelian randomization analyses
Trait Outcome/Exposure Population Sample Size Data Source Dataset
PRKAB1 Exposure European 31,684 IEU OpenGWAS eqtl-a-ENSG00000111725
ETFDH Exposure European 26,395 IEU OpenGWAS eqtl-a-ENSG00000171503
GPD1L Exposure European 31,684 IEU OpenGWAS eqtl-a-ENSG00000152642
T2D Outcome European 38,657 cases and 310,131 controls FinnGen R9 T2D_WIDE
Overall BC Outcome European 15,680 cases and 167,189 controls FinnGen R9 C3_BREAST_EXALLC
ER-positive BC Outcome European 4,226 cases and 17,588 controls IEU OpenGWAS ieu-a-1134
ER-negative BC Outcome European 4,480 cases and 17,588 controls IEU OpenGWAS ieu-a-1137
HER2-positive BC Outcome European 9,698 cases and 167,017 controls FinnGen R9 C3_BREAST_ERPLUS_EXALLC
HER2-negative BC Outcome European 5,965 cases and 167,017 controls FinnGen R9 C3_BREAST_ERNEG_EXALLC

Fig. 1  This Figure illustrates a diagram of the MR study. The study’s flowchart is structured upon three core assumptions
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five distinct methods were employed in the present study. 
The fixed-effect IVW approach was utilized when neither 
heterogeneity nor pleiotropy were present, while the ran-
dom-effect IVW method was employed in cases where 
heterogeneity was observed but pleiotropy was absent 
[30, 31]. In situations involving pleiotropy, with or with-
out heterogeneity, the MR-Egger regression technique 
was applied [32, 33]. Additionally, the influence of SNPs 
was identified using leave-one-out analyses. All statisti-
cal analyses were performed using the R program (ver-
sion 4.2.1), with MR analysis being implemented through 
the utilization of the TwoSampleMR packages [34]. Both 
sides of the test were considered statistically significant 
at 0.05.

Results
Genetic instruments for metformin
Three targets of metformin were retrieved from the 
DrugBank database: PRKAB1, ETFDH and GPD1L, with 
metformin acting as its inducer, inhibitor and inhibitor, 
respectively. All F-statistics fell within the range of 49.734 
to 7601.343, suggesting that IVs were robust [28]. Further 

information regarding the SNPs can be found in Supple-
ment Tables S1–16.

Positive control analysis
Although no substantial causal relationship exists 
between long-term exposure to functional inhibi-
tion of ETFDH or GPD1L and T2D risk (ETFDH: 
OR[95%] = 1.022 [0.989 to 1.055], P = 0.189; GPD1L: 
OR[95%] = 0.993 [0.978 to 1.007], P = 0.324), the antici-
pated outcome was confirmed by the IVW method, which 
revealed that overexpression of PRKAB1 with AMP-acti-
vated protein kinase activity significantly reduced the 
risk of T2D (OR[95%] = 0.959 [0.935 to 0.984], P = 0.002). 
Consistency in results was also observed across MR 
Egger, simple model, weighted model, and MR-PRESSO 
analyses (Fig. 2).

The causal relationship between metformin targets and 
overall BC
No significant causal relationship found between inhibi-
tion or activation of any metformin target and risk of BC 
(PRKAB1: OR [95%] = 0.990 [0.961 to 1.020], P = 0.530; 
ETFDH: OR [95%] = 0.987 [0.939 to 1.036], P = 0.582; 

Fig. 2  MR estimates derived from the fixed-effect IVW method, MR-Egger regression, weighted median method, weighted-mode method, simple-mode 
and random-effect IVW method to assess the causal effect between metformin targets and type 2 diabetes (T2D)
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GPD1L: OR [95%] = 1.003 [0.981 to 1.025], P = 0.806). 
Consistency in results was also observed across MR 
Egger, simple model, weighted model, and MR-PRESSO 
analyses (Fig. 3)

The causal relationship between metformin targets and 
ER-positive/negative BC
Reduced risk of ER-positive BC was significantly associ-
ated with genetic variants in ETFDH (OR [95%] = 0.867 
[0.770 to 0.976], P = 0.018), but not with GPD1L (OR 
[95%] = 0.987 [0.923 to 1.054], P = 0.689) and PRKAB1 
(No valid genetic instruments were found) (Fig.  4A). 
For ER-negative BC, no significant causal association 
was found between any metformin target and BC risk 
(PRKAB1: No valid genetic instruments were found; 
ETFDH: OR [95%] = 0.954 [0.875 to 1.041], P = 0.294; 
GPD1L: OR [95%] = 1.011 [0.959 to 1.066], P = 0.680) 
(Fig. 4B). Consistency in results was also observed across 
MR Egger, simple model, weighted model, and MR-
PRESSO analyses. (Fig. 4A, B)

The causal relationship between metformin targets and 
HER2-positive/negative BC
For HER-positive BC, no significant causal association 
was found between any metformin target and BC risk 
(PRKAB1: OR [95%] = 0.986 [0.949 to 1.023], P = 0.452; 
ETFDH: OR [95%] = 0.983 [0.929 to 1.039], P = 0.543; 
GPD1L: OR [95%] = 1.023 [0.996 to 1.050], P = 0.102) 
(Fig.  5A). Reduced risk of HER2-negative BC was sig-
nificantly associated with genetic variants in GPD1L (OR 
[95%] = 0.966 [0.936 to 0.998], P = 0.040), but not with 
PRKAB1 (OR [95%] = 0.998 [0.961 to 1.036], P = 0.909); 
ETFDH: OR [95%] = 0.990 [0.928 to 1.057], P = 0.774 
(Fig. 5B). Consistency in results was also observed across 
MR Egger, simple model, weighted model, and MR-
PRESSO analyses (Fig. 5A, B).

Multiple causal path assessment
To address confounding issues among multiple causal 
factors, we attempted multivariable Mendelian random-
ization analysis to simultaneously evaluate the causal 
pathways between the three targets and BC [35, 36]. 
However, there was no enough overlap between effective 

Fig. 3  MR estimates derived from the fixed-effect IVW method, MR-Egger regression, weighted median method, weighted-mode method, simple-mode 
and random-effect IVW method to assess the causal effect between metformin targets and Overall breast cancer (BC).
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Fig. 4  MR estimates derived from the fixed-effect IVW method, MR-Egger regression, weighted median method, weighted-mode method, simple-mode 
and random-effect IVW method to assess the causal effect between metformin targets and ER (A) positive/ (B) negative breast cancer (BC)
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Fig. 5  MR estimates derived from the fixed-effect IVW method, MR-Egger regression, weighted median method, weighted-mode method, simple-mode 
and random-effect IVW method to assess the causal effect between metformin targets and HER2 (A) positive/ (B) negative breast cancer (BC)
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IVs for the three targets and BC, making further analysis 
infeasible. This suggests that the likelihood of significant 
causal interactions among the three targets on breast 
cancer is low.

Sensitivity analysis
The level of heterogeneity and horizontal pleiotropy was 
assessed using Cochrane’s Q and MR Egger regression 
equation, and leave-one-out analysis was conducted to 
identify influential SNPs (Tables S17, Figure S1-6). Sig-
nificant heterogeneity was observed when examining 
the causal relationship between PRKAB1 variation and 
overall BC, HER2-positive BC, and T2D. Importantly, 
the random-effect IVW method employed in this study 
effectively mitigates bias resulting from heterogeneity in 
the findings [30]. Additionally, no heterogeneity or plei-
otropy was detected in other groups analyses.

Discussion
This is the first MR study to investigate whether genetic 
variations in metformin targets are associated with the 
risk of overall BC, as well as ER-positive/negative BC and 
HER2-positive/negative BC. We retrieved the three key 
action targets of metformin from the Drugbank data-
base: PRKAB1 [37], ETFDH [38, 39], and GPD1L [40, 41]. 
Among them, PRKAB1, also known as 5’AMP-activated 
protein kinase (AMPK) subunit beta-1 or AMPK, which 
as AMP-activated protein kinase activity, is the most crit-
ical target of metformin. AMPK is not solely the primary 
focus of glucose reduction; moreover, extant research 
indicates that metformin also depends on its anticancer 
properties [42]. The prevailing perspective posits that 
metformin triggers AMPK activation within cancerous 
cells, thereby instigating metabolic reprogramming and 
impeding the utilization of nutrient resources, ultimately 
impeding proliferation [43]. Regrettably, based on robust 
evidence, leveraging existing large-scale genetic associa-
tion data on BC risk, our genetic investigation suggests 
that metformin might exert no protective effects on over-
all BC, ER-negative BC, and HER2-positive BC within 
European populations. The findings from this study indi-
cate that there exists no discernible causal link between 
the functional activation of the star target AMPK 
(PRKAB1) and the mitigation of breast cancer risk, fail-
ing to manifest the anticipated anticancer efficacy. This 
suggests that despite certain preclinical investigations 
suggesting metformin’s potential in reducing cancer risk, 
its translation into the clinical context is not a straight-
forward process [9, 44].

Furthermore, our research suggests a significant causal 
association between elevated ETFDH expression as an 
exposure factor and a reduced probability of develop-
ing ER-positive BC. Similarly, a high expression level 
of GPD1L is correlated with a decreased likelihood of 

developing HER2-negative BC. These findings suggest 
that, overall among breast cancer patients, metformin 
not only fails to mitigate the risk of breast cancer in each 
subtype, but also possesses the potential to increase the 
risk of ER-positive BC and HER2-negative BC by inhibit-
ing ETFDH and GPD1L.

This might appear disappointing at a first glance 
but not unexpected. While initial epidemiologic stud-
ies suggested a preventive role of metformin in BC [45, 
46], subsequent research and meta-analyses presented 
conflicting conclusions [47, 48]. Most recently, the larg-
est phase 3 randomized trial investigating metformin as 
adjuvant therapy for BC, comprising 3,649 women with 
a 5-year follow-up, revealed no discernible benefits in 
terms of disease-free survival or overall survival with 
metformin [10]. Oriana Hoi et al. highlighted in their 
review [49] that, despite experimental studies supporting 
metformin’s anticancer effects, many used suprapharma-
cological doses, reaching plasma levels 10 to 100 times 
higher than achievable in humans [50]. As such, findings 
from these studies may not translate to the same effects 
in humans [42, 50]. Numerous observational clinical 
studies have demonstrated susceptibility to time-related 
bias, leading to an overestimation of the drug’s advan-
tages. Thus far, randomized trials investigating metfor-
min as a therapeutic intervention for diverse cancer types 
have not yielded any evidence of diminished disease-free 
survival or overall survival rates [49]. Our study is the 
inaugural investigation into the causal link between met-
formin target variations and the risk of distinct breast 
cancer subtypes using drug-target MR stratification. The 
findings offer fresh evidence contradicting the notion of 
metformin as a standard adjunctive therapy for BC.

Furthermore, our findings imply that metformin, act-
ing as an ETFDH inhibitor, might potentially exert a pro-
moting effect on ER-positive BC. Previous studies have 
highlighted that low ETFDH expression correlates sig-
nificantly with poorer survival in various tumors, includ-
ing hepatocellular carcinoma and colorectal cancer [51, 
52]. Some researchers suggest that although metformin 
may benefit ER-positive BC patients initially, the effect 
of long-term use may be reversed [15, 53]. Additionally, 
several investigations have reported metformin use was 
associated with an augmented incidence of ER-positive 
BC, aligning with our study results [54].

Our findings also indicate that metformin may 
enhance the development of HER 2-negative breast 
cancer by inhibiting GPD1L. Ye Du et al. have con-
firmed that the downregulation of GPD1L is linked 
to metabolic reprogramming in triple-negative breast 
cancer (TNBC) as a direct downstream target of aero-
bic glycolysis and oncogenic activity mediated by mir-
210-3p [55]. A study indicates that metformin can 
induce metabolic adaptation in breast cancer cells, 
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increasing resistance to metformin and promoting the 
accumulation of TNBC-derived BCSCs, which could 
eventually lead to cancer cell invasion, metastasis, and 
recurrence [56]. Matthew G. Costales et al. have identi-
fied a small molecule called Targapremir-210 in TNBC 
and observed a significant increase in GPD1L levels in 
TNBC tumor tissues in the Targapremir-210 treated 
group, disrupting the hypoxic adaptive response that 
promotes tumor growth [57]. While specific stud-
ies confirming the impact of GPD1L dysregulation 
on HER2-negative BC are lacking, the clear inhibi-
tory effect of high GPD1L expression on TNBC may 
suggest evidence for the potential promoting effect of 
metformin on HER2-negative BC.

Certainly, we need to consider whether metformin 
interacts with other major BC treatments such as sur-
gery, radiotherapy, chemotherapy, endocrine therapy, 
and targeted therapy. Currently, no evidence links 
metformin’s efficacy to surgical intervention. Its radio-
sensitizing effects have been preliminarily explored 
in mice, suggesting that while metformin with oxygen 
microbubbles may enhance short-term radiosensitiv-
ity, it does not reverse treatment resistance and may 
promote metastasis [58]. Although some studies sug-
gest metformin can reverse chemotherapy resistance 
in vitro, this does not translate effectively in vivo or 
clinically [59, 60]. Additionally, although some studies 
have explored combining metformin with endocrine 
and targeted therapies, evidence shows that metformin 
promotes the survival of dormant estrogen receptor-
positive breast cancer cells by activating AMPK, cau-
tioning against widespread use of AMPK activators 
[61]. Long-term metformin treatment may also lead to 
dual resistance to tamoxifen and metformin through 
the Akt/Snail1/E-cadherin signaling axis [62]. Existing 
clinical data supporting the inclusion of metformin in 
BC treatment primarily come from survival analyses of 
BC patients with diabetic patients [63–65]. This may 
be because diabetes itself is a high-risk factor for BC 
[66, 67], and metformin might help combat diabetes-
related BC risk while treating diabetes. However, this 
does not justify expanding its use to non-diabetic pop-
ulations with normal blood glucose levels.

Not only that, the compliance of metformin cannot 
be ignored. Metformin is recognized for inducing gas-
trointestinal side effects, including nausea, diarrhea, 
and abdominal discomfort, affecting 20–30% of the 
general population, notably during initial dose adjust-
ment [68, 69]. In a substantial double-blind trial for 
ER-positive early BC, non-adherence was more prev-
alent among metformin-treated patients [70]. Con-
sequently, metformin does not appear to be a viable 
standard complementary treatment for breast cancer 

due to concerns about both anticancer efficacy and 
patient compliance.

Our study exhibits notable strengths. Firstly, it pio-
neers a unique MR investigation comparing metfor-
min and breast cancer (both overall and subtypes) in 
European populations, filling a gap in the current lit-
erature. The two-sample design ensures a causal infer-
ence devoid of confounding bias and reverse causation. 
Moreover, the large F statistic underscores minimal 
risk of a weak instrument bias. Lastly, we meticulously 
selected SNPs showing significant associations with 
the exposure variable but lacking direct associations 
with the outcome variable. It is worth mentioning 
that our study, compared to previous epidemiologi-
cal studies, has a much larger sample size. We not 
only concluded that there is no significant causal rela-
tionship between metformin use and reduced overall 
breast cancer risk but also suggested that metformin 
might actually increase the risk of ER-positive and 
HER2-negative BC by inhibiting ETFDH and GPD1L. 
Although there is not yet sufficient clinical data to 
support this finding, much laboratory evidence sup-
ports our conclusion.

Despite the aforementioned strengths, it is cru-
cial to acknowledge several inescapable limitations 
in our study. Firstly, our results should primarily be 
interpreted as a test of causal association and cannot 
replace clinical trials in the real-world setting. Sec-
ondly, our analyses did not consider the combined effi-
cacy of drug interactions in clinical scenarios. Thirdly, 
the drug target MR effect estimates mainly correspond 
to continuous, long-term modulation of drug targets 
and may not reflect the impact of short-term drug use 
on breast cancer. Lastly, our MR analysis was limited 
to the European population due to inadequate GWAS 
data resources, raising uncertainty about the gener-
alizability of our findings to different ethnic popula-
tions. Additionally, due to the limited information in 
the databases, further stratified analysis may not have 
been conducted for patients with different clinical-
pathological characteristics. Therefore, future research 
should conduct subgroup analyses on different racial 
populations, expand the study samples for each breast 
cancer subtype, and supplement the design with con-
siderations for short-term and long-term medica-
tion. A specific and thorough tracking investigation 
should be implemented to assess short-term and long-
term benefits, aiming to derive more comprehensive 
conclusions.

Conclusions
To sum up, the main target of metformin, PRKAB1, does 
not demonstrate a substantial causal association with the 
risk of BC. Conversely, metformin, acting as an inhibitor 
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of ETFDH and GPD1L, may elevate the risk of develop-
ing ER-positive BC and HER2-negative BC. This research 
presents innovative genetic evidence indicating that met-
formin may not serve as a promising standard adjunctive 
therapy for BC patients without T2D.
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