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Abstract
Background Patients with primary multifocal hepatocellular carcinoma (HCC) have a poor prognosis and often 
experience a high rate of treatment failure. Multifocal HCC is mainly caused by intrahepatic metastasis (IM), and 
though portal vein tumor thrombosis (PVTT) is considered a hallmark of IM, the molecular mechanism by which 
primary HCC cells invade the portal veins remains unclear. Therefore, it is necessary to recognize the early signs of 
metastasis of HCC to arrange better treatment for patients.

Results To determine the differential molecular features between primary HCC with and without phenotype of 
metastasis, we used the CIBERSORTx software to deconvolute cell types from bulk RNA-Seq based on a single-cell 
transcriptomic dataset. According to the relative abundance of tumorigenic and metastatic hepatoma cells, VEGFA+ 
macrophages, effector memory T cells, and natural killer cells, HCC samples were divided into five groups: Pro-T, Mix, 
Pro-Meta, NKC, and MemT, and the transcriptomic and genomic features of the first three groups were analyzed. 
We found that the Pro-T group appeared to retain native hepatic metabolic activity, whereas the Pro-Meta group 
underwent dedifferentiation. Genes highly expressed in the group Pro-Meta often signify a worse outcome.

Conclusions The HCC cohort can be well-typed and prognosis predicted according to tumor microenvironment 
components. Primary hepatocellular carcinoma may have obtained corresponding molecular features before 
metastasis occurred.
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Background
HCC is the sixth most common malignant tumor and the 
third leading cause of mortality worldwide [1]. In recent 
decades, approximately 0.25–1  million patients have 
been diagnosed with HCC annually. Moreover, 41–75% 
of HCC cases are initially diagnosed as multifocal tumors 
with limited interventions, indicating difficult clinical 
management and poor diagnosis [2]. Multifocal HCCs 
are classified into multicenter (MC) or intrahepatic met-
astatic (IM) tumors [3, 4]. The former is often found in 
the early stages, while the latter refers to tumors that 
have already metastatically spread before diagnosis [2]. 
Significant differences in biological behaviors, treatment 
selection, and prognosis between IM and MC tumors 
demonstrate the clinical importance of classification [3, 
4]. For IM tumors, portal vein tumor thrombus (PVTT) 
is considered an undeniable factor associated with the 
terminal stage of HCCs [5]. Several studies have focused 
on the differences in molecular characteristics, such as 
gene mutations [6], gene expression [7–9], long non-cod-
ing RNAs (lncRNAs) [10], and epigenetic modifications 
[11], between PVTT and primary tumors (PTs). Ye et al. 
found no significant difference between the expression 
profiles of PTs and matched PVTTs [7], whereas another 
study reached different conclusions on lncRNAs [10]. To 
avoid the impact of pronounced heterogeneity among 
patients, an individualized differential analysis revealed 
20 genes that co-vary in multiple patients and potentially 
contribute to HCC invasion [11].

These results indicate that hepatoma cells in situ may 
undergo molecular changes before invading blood ves-
sels. Based on this hypothesis, using a single-cell RNA 
sequencing (scRNA-Seq) dataset of HCC with or without 
PVTTs, we predicted the cellular composition of a large 
bulk RNA-Seq HCC cohort and classified all samples 
into five subgroups: Pro-T, Mix, Pro-Meta, NKC, and 
MemT. The Pro-T group was enriched in tumorigenic 
hepatocytes, while the Pro-Meta group was enriched in 
metastatic hepatocytes. In the Mix group, there was no 
significant difference in the abundance of tumorigenic 
and metastatic hepatocytes. The NKC and MemT groups 
are defined by high levels of natural killer cells and effec-
tor memory T cells, respectively. According to survival 
analysis, primary HCC with metastatic features had the 
worst prognosis. Many differential mutations and genes 
were identified between the Pro-T and Pro-Meta groups.

Results
An immunosuppressive and metastasis-prone HCC 
microenvironment contributes to a poor prognosis
We performed bulk RNA-Seq on five native patients 
with liver cancer, including nine PT samples. Two of 
the patients (P3 and P4) were diagnosed with HCC 
combined with PVTT (Additional file 1: Table S1). To 

enhance statistical power, we integrated RNA-Seq data 
from both our and The Cancer Genome Atlas (TCGA) 
liver hepatocellular carcinoma (LIHC) cohorts (primary 
cancer samples only, n = 374) using the R package sva, 
as described in the Methods. Bulk RNA-Seq data were 
deconvoluted using single-cell gene expression signa-
tures to characterize the microenvironment of the HCC 
cohort. It’s hard to ascertain whether the patients in the 
TCGA-LIHC cohort were diagnosed with PVTT. There-
fore, to divide the TCGA-LIHC samples into meaning-
ful groups, we selected independent scRNA-Seq datasets 
with similar clinical characteristics to the native patients, 
that is, the samples were taken from patients with and 
without PVTT. As a supplement, we also included the 
International Cancer Genome Consortium liver cancer-
RIKEN, Japan (ICGC LIRI-JP, n = 240) and France (ICGC 
LICA-FR, n = 159) cohorts in the analysis. Based on the 
relative TME cell scores of the top five cell types, patients 
in cohort TCGA-LIHC were divided into five groups, i.e., 
Pro-T, Mix, Pro-Meta, NKC, and MemT, using unsuper-
vised hierarchical clustering (Fig. 1A), and the number of 
patients in each group was 202 (52.7%), 61 (15.9%), 109 
(28.5%), 5 (1.3%), and 6 (1.6%), respectively. P1, P2, and 
P5 were classified as group Pro-T while P3 and P4 were 
classified as group Pro-Meta, which is consistent with 
the clinical truth (Additional file 1: Table S1). The Pro-T 
group showed high tumorigenic hepatocyte infiltration, 
whereas the Pro-Meta group had high levels of meta-
static hepatocytes. The Mix group exhibited both of these 
characteristics. The remaining two groups were named 
MemT and NKC owing to the high abundance of effec-
tor memory T cells and natural killer cells, respectively. 
We observed a similar clustering result in cohort LIRI-
JP, where the samples were divided into five groups, too, 
including Pro-T (n = 106, 42.6%), Mix (n = 39, 15.7%), Pro-
Meta (n = 78, 31.3%), PlasmaB (n = 16, 6.4%), and MemT 
(n = 10, 4.0%) (Additional file 2: Fig. S1A, upper). In 
cohort LICA-FR, 101 (60.1%) samples were classified as 
group Pro-T, 52 (31.0%, group Pro-Meta), and 10 (6.0%, 
group Pro-Meta2) samples were considered related to 
metastatic characteristics, and only 3 and 2 samples were 
classified as group VEGFA+ Macro and MemT, respec-
tively (Additional file 2: Fig. S1A, lower).

By using either the top five or all cell type compo-
nent fractions as inputs for principal component analy-
sis (PCA), we observed that the samples were separated 
from each other clearly in three cohorts (Additional file 
2: Fig. S1B, left and middle plots). To further confirm the 
rationality of our classification methods, we performed 
PCA based on gene expression features. In cohort 
TCGA-LIHC and LIRI-JP, we observed that samples 
from the Pro-T and Pro-Meta groups were more likely to 
gather together within the group and separate between 
the groups, and the samples from the Mix group were 
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Fig. 1 Stratification of patients with hepatocellular carcinoma (HCC). A Hierarchical clustering of HCC samples based on top five relative cell abun-
dances. The native samples are highlighted. B Relative cell abundance changes in three HCC groups. ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: 
p ≤ 0.0001; Student’s t-test. C Survival analyses based on five HCC groups in cohort TCGA-LIHC and LIRI-JP; Log-Rank test
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scattered between the Pro-T and Pro-Meta groups, sug-
gesting a transitional stage of Pro-Meta. However, in 
cohort LICA-FR, it is difficult to identify samples in tran-
sition state as Mix group, which may be attributed to its 
smaller sample size (Additional file 2: Fig S1B, right).

We focused on the differences in cell components 
between the Pro-T and Pro-Meta groups in cohort 
TCGA-LIHC because of the largest number of samples 
and the greatest difference between them (Fig. 1B). The 
number of mucosal-associated invariant T (MAIT) cells 
and natural killer cells increased from Pro-T to Pro-
Meta, suggesting that innate immunity may play a role 
in constructing the TME of the Pro-Meta group. Duan 
et al. found that tumor-educated MAIT cells can pro-
mote tumors by upregulating inhibitory factors, such 
as CTLA-4 [12]. Three types of macrophages, MMP9+, 
TREM2+, and MARCO+, were more abundant in the 
Pro-Meta group (Fig.  1B). Several studies have shown 
that TREM2+ macrophages promote immune suppres-
sion [13] and play a role in transforming the TME into 
an anti-inflammatory state, leading to the growth of HCC 
[14, 15]. Lu et al. showed that MMP9+ macrophages are 
in the late stage of macrophage differentiation and pro-
mote HCC progression by inducing tumor cell migration 
and angiogenesis [9].

Compared with the Pro-T group, the fractions of effec-
tor memory T and plasma B cells were significantly 
increased in the Pro-Meta group, suggesting a shift 
towards the terminal phase of the immune response. In 
contrast, the proportion of naïve T cells decreased from 
Pro-T to Pro-Meta. FCN3+ endothelial cells and ACTA2+ 
fibroblasts are significantly lost when the phenotype 
becomes metastatic, indicating that the blood vessels 
may be broken and the formation of tumor thrombus is 
promoted. We further investigated the changes in cellu-
lar composition between the Pro-T and Pro-Meta groups 
across different cohorts. Except for tumorigenic and met-
astatic hepatocytes, only the component of MMP9+ mac-
rophage showed increasing in the Pro-Meta group across 
three cohorts consistently, indicating the heterogeneity of 
tumor microenvironment composition among patients 
(Additional file 3: Fig S2A).

Furthermore, we performed a survival analysis to com-
pare the prognosis of patients in the different groups. 
In cohort TCGA-LIHC, the median survival time was 
81.9, 25.2, and 56.2 months in the Pro-T, Pro-Meta, and 
Mix groups, respectively, indicating the worst prognosis 
in the Pro-Meta group and the transitional stage of the 
Mix group (Fig. 1C, left). We observed a similar trend in 
cohort LIRI-JP, too (Fig. 1C, right). Overall, the compara-
tive analysis of the HCC TME components indicated a 
suppressive and anti-inflammatory immune signature in 
the Pro-Meta group. The absence of some stromal cells 

may promote the detachment of HCC cells from the pri-
mary focus.

Gene co-expression modules associated with the Pro-Meta 
and Pro-T phenotype
To further determine the relationship between gene 
expression features and HCC phenotypes, we per-
formed the weighted gene correlation network analysis 
(WGCNA). After average linkage hierarchical cluster-
ing, eight co-expression modules were identified, among 
them, genes in the grey module cannot be clustered in 
any other module, thus representing no consistent bio-
logical functions. The black, blue, and yellow modules 
show significant positive correlations (p < 0.05, cor > 0.3) 
with the Pro-Meta phenotype, whereas these modules 
exhibit significant negative correlations (p < 0.05, cor < 
-0.3) with the Pro-T phenotype (Fig. 2A). For phenotype 
Pro-Meta and Pro-T, the high correlation between mod-
ule membership in black and blue modules and the gene 
significance imply the essential role of these gene mod-
ules. However, the correlations in the yellow module are 
low (Pro-Meta: cor = -0.24; Pro-T: cor = -0.18), thus it is 
abandoned (Additional file 4: Fig. S3A, B).

Due to the “unsigned” network type we selected, we 
further measured the relative expression of genes in two 
modules between groups Pro-T and Pro-Meta. Genes 
were subsequently divided into four sets, of which gen-
esets 1 and 4 were highly expressed in the Pro-T group, 
whereas genesets 2 and 3 were highly expressed in 
the Pro-Meta group (Fig.  2B and Additional file 4: Fig. 
S3C). Genesets 1 and 4 were involved in normal liver 
functions such as organic acid catabolic processes, per-
oxisomal transport, lipid metabolism, metabolism of 
small and macromolecular compounds, and amino acid 
metabolism. We also noticed inflammation and humoral 
immune response pathways, which may be due to 
patients with HCC usually present with hepatitis. Gen-
esets 2 and 3 were associated with cell replication, divi-
sion, and disruptions in cellular metabolism, which are 
characteristics commonly observed in more malignant 
HCC cells (Fig. 2C and D). Collectively, our results sug-
gested that the Pro-Meta group exhibits a more malig-
nant phenotype, manifested by the loss of hepatocyte 
metabolism and the acquisition of cell proliferation traits.

Different functions of the Pro-T and Pro-Meta groups
Next, we compared the differences in gene expression 
between patients from the Pro-T and Pro-Meta groups. 
Among DEGs (adjusted p < 5e-2 and |log2FC(Pro-Meta/
Pro-T)| > 1) found in all cohorts, a considerable number 
of them coexist in at least two cohorts (Additional file 3: 
Fig. S2B). Importantly, among 368 co-upregulated and 
281 co-downregulated DEGs, the trend of logarithmic 
fold change of them is consistent (Additional file 3: Fig. 
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Fig. 2 Weighted correlation network analysis (WGCNA) of the hepatocellular carcinoma (HCC) cohort. A Correlation heatmap of gene modules and 
group information in the HCC cohort. B The relative expression of genes in the black module. Genes are clustered into two groups, geneset1 and gen-
eset2, based on their expression levels. The native samples are highlighted. C, D Gene ontology (GO) analysis of genesets in the black (C) or blue (D) 
module
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S2C). To obtain clearer results, we conducted the subse-
quent analysis based on cohort TCGA-LIHC with a more 
stringent threshold and identified 510 DEGs (adjusted 
p < 1e-25 and |log2FC(Pro-Meta/Pro-T)| > 1). The 
two groups clustered well according to DEGs, and the 
batch effect was removed (Fig. 3A). Consistent with the 
WGCNA results, pathways related to the cell cycle, cell 
proliferation, and growth, such as the G2M checkpoint, 
E2F targets, and Myc targets v1, were highly activated in 
the Pro-Meta group. As expected, the epithelial-mesen-
chymal transition pathway was also enriched in the Pro-
Meta group, which supported its metastatic character. In 
contrast, metabolic and synthetic processes of multiple 
substances were upregulated in the Pro-T group (Fig. 3B).

Single-sample gene set enrichment analysis (ssGSEA) 
showed that the scores for proliferation, metastasis, stem-
ness, and immune exhaustion of HCC cells constantly 
increased from the Pro-T group to the Pro-Meta group. 
When we used genes that were specifically expressed in 
normal human liver tissue to calculate the “normal liver 
function” scores of different groups, we found that the 
scores decreased from the Pro-T group to the Pro-Meta 
group, suggesting that the hepatoma cells dedifferenti-
ate during tumor metastasis (Fig. 3C). Thus, our results 
showed that the acquisition of a metastatic phenotype by 
primary HCC cells was a progressive process.

To explore whether the DEGs reflected the biologi-
cal significance of the tumor, we performed a protein-
protein interaction (PPI) analysis. By using the k-means 
method, we found two meaningful clusters in the PPI 
network of group Pro-Meta, M1 and M2, one represent-
ing high-level cell cycle pathway activity at the biological 
process level (Fig. 3D and F, cluster M1), the other rep-
resenting the establishment of the extracellular matrix 
and the cell membrane at the cellular component level 
(Fig.  3E and G, cluster M2). The genes involved in the 
Pro-Meta PPI network were intersected with genes in 
the black and blue modules, and the upregulated genes 
obtained from WGCNA (genesets 2 and 3) were also 
upregulated in the network, whereas genes in genesets 1 
and 4 didn’t appear in Pro-Meta network at all. Specifi-
cally, 19 genes were upregulated in both the PPI network 
and the blue module of the Pro-Meta group, 15 of which 
belonged to cluster M1 and 4 belonged to cluster M2. It 
is worth mentioning that TMSB10 (Thymosin Beta-10), 
which plays an important role in the organization of the 
cytoskeleton, was upregulated in both cluster M2 and the 
black module of the Pro-Meta group.

In the Pro-T group, we found six meaningful clusters, 
T1 to T6, most of which were related to metabolic pro-
cesses according to the GO enrichment results (Addi-
tional file 5: Fig. S4A-C and Additional file 6: Fig. S5A-B, 
cluster T1 to T5). Genes in the Pro-T network were also 
intersected with genes in the WGCNA black and blue 

modules, interestingly, the co-upregulated genes all came 
from genesets 1 and 4, and were colored dark olive green 
and dark turquoise, respectively. The above results indi-
cate that there are significant differences in gene expres-
sion between phenotype Pro-Meta and Pro-T. The genes 
in cluster T6 appeared to be closely associated with fibri-
nolysis, negative regulation of blood coagulation, and 
wound healing (Additional file 6: Fig. S5C, cluster T6). 
Coagulation activation is closely associated with the 
malignant phenotype of tumors [16]; Anticoagulants can 
inhibit angiogenesis and the growth of many cancers [17]. 
More importantly, thrombomodulin, a natural anticoagu-
lant, may inhibit the formation of PVTTs and the occur-
rence of IM [18]. The formation of portal vein thrombosis 
is infrequent in intrahepatic cholangiocarcinoma and dis-
tant metastatic liver cancer [19]. Li et al. suggested that 
IM may be a unique feature of HCC caused by an imbal-
ance of the coagulation and anticoagulation systems in 
liver cells [20]. Taken together, these results suggest that 
the loss of anticoagulant ability of the TME in the Pro-
Meta group promoted the formation of portal vein tumor 
thrombi.

In general, 75 genes coexisted in the PPI network 
clusters and either the black or blue gene modules from 
WGCNA. We evaluated the potential of the 75 inter-
secting genes as prognostic factors and divided the HCC 
samples into two groups based on the median expres-
sion of each gene. After performing survival analysis, we 
found that all genes that were upregulated in the Pro-
Meta group and co-occurred in the PPI and WGCNA 
networks were predictive of lower median survival times, 
whereas all genes upregulated in the Pro-T group were 
predictive of higher median survival times. Among the 
genes that exhibited significant differences (log-rank test, 
p < 0.05) between the survival curves, we identified 25 and 
24 genes that could serve as significant high- and low-risk 
prognostic factors, respectively, in the HCC cohorts. As 
expected, samples from the better and poorer prognosis 
groups typically infiltrated with lower and higher levels 
of metastatic hepatocytes, respectively. The proportion of 
metastatic hepatocytes in the TME of the good prognosis 
group ranged from 2.7 to 16.7% with a median of 9.7% 
and sd of 0.03. In contrast, the proportion of metastatic 
hepatocytes in the TME of the poor prognosis group 
ranged from 39.2 to 53.2% with a median of 46.2% and 
sd of 0.03 (Additional file 7: Table S2). According to their 
p values, high KIF2C expression implied the worst out-
come, whereas high expression of dimethylglycine dehy-
drogenase (DMGDH) implied the best outcome (Fig. 3H). 
KIF2C (Kinesin Family Member 2  C) is an important 
regulator of the cell cycle; and is highly expressed in a 
variety of tumors, such as Endometrial cancer [21], gli-
omas [22], breast cancer [23], and lung cancer [24]; and 
has been shown to participate in tumor progression and 
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Fig. 3 Differential gene expression analysis of hepatocellular carcinoma (HCC) groups. A Gene expression heatmap of differentially expressed genes 
(DEGs) between the Pro-T and Pro-Meta groups. The native samples are highlighted. B GSEA of genes from the Pro-T and Pro-Meta groups. The functional 
terms enriched in the Pro-Meta group with enrichment scores greater than 0 were shown in cyan bars, and those in the Pro-T group with enrichment 
scores less than 0 were shown in red bars. C ssGSEA of the proliferation, metastasis, stemness, exhaustion, and normal scores in samples from the Pro-
T, Mix, and Pro-Meta groups. D, E STRING database clustering analysis of genes upregulated in the Pro-Meta group resulting in two distinct biological 
meaningful clusters: cluster M1 (D) and cluster M2 (E). Genes in the PPI network that intersect with the black and blue gene modules from WGCNA that 
are upregulated in the Pro-Meta group (genesets 2 and 3) are shown in maroon and indigo, respectively. F, G GO analysis of cluster M1 (F) and cluster M2 
(G), respectively. H Survival analysis based on KIF2C and DMGDH expressions. High (red) and low (cyan) expression groups were separated by the median 
of gene expression levels. The median survival for each group is highlighted. I Differential activity analysis of transcription factor (TF) proteins between 
the Pro-T and Pro-Meta groups. Red and blue bars represent the activated and suppressed target genes of the transcription factor (TF), respectively. The 
Act and Exp color blocks represent the relative TF protein activity and TF gene expression, respectively. The TFs with high activity or expression in the 
Pro-Meta group are marked in red, whereas those with high activity or expression in the Pro-T group are marked in blue. The activity or expression level 
of TFs is positively correlated with the color depth
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metastasis. In vitro experiments have shown that KIF2C 
activates the MEK/ERK pathway to promote the invasion 
of HCC [25] through epithelial-mesenchymal transition 
[26]. DMGDH inhibits metastasis and induces apoptosis 
in HCC cells [27, 28].

To further determine the differences in transcriptional 
regulation between the Pro-T and Pro-Meta groups, we 
performed an enriched regulon analysis. The transcrip-
tion factors E2F5 and E2F4, which are associated with 
the cell cycle and proliferation, were upregulated in the 
Pro-Meta group. In addition, we noticed that the sec-
ond-place regulon HMGA1 (High Mobility Group AT-
Hook 1) was also upregulated in the PPI network and 
blue module of the Pro-Meta group. Many studies have 
reported that HMGA1 is involved in the metastatic pro-
gression of HCC cells [29–32] (Fig.  3I). However, regu-
lons that were upregulated in the Pro-T group, such as 
CREB3L3, NR1I3, and NR1I2, are more likely to partici-
pate in the metabolism of endogenous and exogenous 
compounds. These findings are consistent with the gene 
set enrichment analysis (GSEA) and PPI data.

Gene mutation characteristics of metastatic HCC
We calculated the number of mutations that occurred 
in each gene within three groups (Pro-T, Mix, and Pro-
Meta) stratified from native and TCGA-LIHC samples 
and compared the mutation load differences of each 
gene using a pairwise comparison. A total of 199 differ-
entially mutated genes were identified after comparing 
groups Pro-T and Pro-Meta (p < 0.05, Fisher’s exact test). 
Notably, all differentially mutated genes between Pro-T 
and Pro-Meta presented higher mutation frequencies 
in the Pro-Meta group, and 37 genes (48.7%) were spe-
cifically mutated in the Pro-Meta group, suggesting the 
possibility of a new phenotypic acquisition in this group. 
TP53 mutations are frequent in HBV-infected liver can-
cer [33], and a higher frequency of these mutations in 
the Pro-Meta group implies a more malignant pheno-
type (Fig.  4A). However, when mutations were com-
pared between the Mix and Pro-T groups, differentially 
mutated genes were found specifically in the Mix group 
(Fig.  4B). When it comes to group Mix vs. Pro-Meta, 
CDKN2A (Cyclin Dependent Kinase Inhibitor 2 A) seems 
specifically mutated in the Mix group and is known to be 
an important tumor suppressor gene, indicating a disor-
dered cell cycle in this group (Fig. 4C).

Domain enrichment analysis showed that the top 
ten mutated protein domains were similar between 
the Pro-T and Pro-Meta groups. Notably, the PF00520 
domain (Ion_trans) was more frequently affected in 
Pro-Meta, with 105 mutations across 52 genes (Fig. 4D), 
compared to Pro-T, which had 69 mutations across 42 
genes (Fig. 4E). The Ion_trans domain belongs to a fam-
ily of six transmembrane helicases responsible for ion 

transportation and is primarily involved in ion signal-
ing (Na+/Ca2+) and the interaction pathways of L1CAM. 
Another differentially mutated protein domain was 
WD40, with 105 mutations across 66 genes (Fig. 4D) in 
the Pro-Meta group and 71 mutations across 55 genes in 
the Pro-T group (Fig.  4E). The WD40 domain is found 
in several eukaryotic proteins that perform a wide vari-
ety of functions, including serving as an adaptor/regu-
latory module in signal transduction, participating in 
pre-mRNA processing, and aiding in cytoskeleton assem-
bly. This may explain the lack of metabolic ability for 
multiple substances in liver cancer cells of the Pro-Meta 
group at the genomic level.

Discussion
We conducted a thorough investigation of the medical 
records of our patients and found that both P3 and P4 
had portal vein tumor thrombi during surgery. Because 
of the small difference between the PT and PVTTs in 
HCC reported in previous studies, we assumed that PTs 
that have shown invasion of the portal vein are different 
from those that remain silent.

With the rapid progress in single-cell RNA sequenc-
ing, tumor heterogeneity can be studied at the single-cell 
level. Thus, to test our hypothesis, we analyzed the TME 
for bulk RNA-Seq samples using a scRNA-Seq data-
set with PT and PVTT samples. To improve statistical 
power, we included the TCGA HCC cohort in the analy-
sis. Downstream analysis was based on groups classified 
according to the relative abundance of cells from the bulk 
RNA-Seq datasets.

Both cellular components and expression profile 
showed that samples P3 and P4 were gathered together 
properly and enriched with metastatic liver cancer cells. 
Downstream analysis was based on groups classified 
according to the relative abundance of cells. We also 
found that the number of several types of stromal cells 
increased or decreased with changes in the relative abun-
dance of liver cancer cells changes, indicating a more 
immunosuppressive and invasive TME of samples with a 
metastatic phenotype. The module-trait correlation anal-
ysis showed that compared with the silent PT samples, 
the samples with a metastatic phenotype were more pro-
liferative and had lower liver function. In contrast to pre-
vious studies, we found a batch of differentially expressed 
genes upregulated in the Pro-Meta group, which repre-
sents the highly proliferative and activated extracellular 
matrix organization pathway. The GSEA and ssGSEA 
results also implied overall dedifferentiation in the Pro-
Meta group.

There are several limits of this study: First, the stratifi-
cation of patients is largely determined by the accuracy 
of the deconvolution algorithm. In this study, we adopted 
the most widely used algorithm and used strict quality 
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Fig. 4 Differentially mutated genes and domains between the hepatocellular carcinoma (HCC) groups. A Differentially mutated genes between the 
Pro-T and Pro-Meta groups. The bars represent the 95% confidence interval of the odds ratio, and the adjacent table displays the number of samples in 
the Pro-T and Pro-Meta groups that contain mutations in the highlighted gene. Genes specifically mutated in the Pro-Meta group are colored in red. **: 
p ≤ 0.01, ***: p ≤ 0.001; Fisher’s exact test. B Differentially mutated genes between the Mix and Pro-T groups. C Differentially mutated genes between the 
Mix and Pro-Meta groups. Genes specifically mutated in the Mix and pro-Meta groups are colored in blue and red, respectively. D, E Frequently mutated 
pfam protein domains in the Pro-Meta and Pro-T groups, respectively. The Y-axis represents the number of genes containing a specified domain. The X-
axis represents the number of mutations that occur in the domain. The top ten domains are highlighted in red. The size of each bubble is proportional to 
the number of genes that contain the highlighted domain
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control measures, such as performing batch correction 
and setting larger permutations for significance analysis 
to mitigate the potential biases in the inference of cel-
lular composition. Nonetheless, the absolute accuracy 
of CIBERSORTx can not be guaranteed. Second, more 
detailed clinical information on patients is needed to 
judge the accuracy of unsupervised clustering, however, 
due to the lack of bulk and single-cell RNA-Seq datas-
ets about unpaired PT and PVTT samples, we have not 
been able to perform further validation. Besides, due to 
the missing etiological investigation about patients in 
three cohorts, we focused more on the occurrence of 
PVTT, and placed less emphasis on the etiology of HCC, 
i.e., whether it was caused by HBV, HCV, or other fac-
tors. Finally, it would be better to isolate PT tissues and 
sequence them before and after the occurrence of PVTT 
to understand the molecular mechanisms involved in 
tumor progression.

Conclusions
This study stratified patients according to the relative 
abundance of all cells within the tumor microenviron-
ment. Five biologically meaningful subpopulations were 
separated, and the analysis mainly focused on compar-
ing the molecular signature changes between the Pro-T 
group, the Mix group, and the Pro-Meta group. The prog-
nosis of group Pro-T was the worst, and that of group 
Pro-Meta was the best. The results of WGCNA analysis 
and genes differential expression analysis exhibited high 
concordance. It was shown that primary HCCs already 
acquired an appropriate phenotype before they started 
the process of metastasis, reflected by a more suppres-
sive immune microenvironment, more proliferation, and 
more active extracellular tissue activity of endothelial 
cells and myofibroblasts. HCC cells underwent further 
dedifferentiation in group Pro-Meta, which was spe-
cifically manifested by the downregulation of metabolic 
activities of various substances and disorders of the coag-
ulation process, as well as the higher stemness character-
istics. The increasing number of differential mutations 
implied that HCC cells have undergone stressful selec-
tion to adapt to the complex tumor microenvironment.

Methods
Clinical samples collection
The five native HCC tissue samples used in this study 
were obtained from patients undergoing surgery for HCC 
at the Affiliated Hospital of Guizhou Medical Univer-
sity (Guiyang, China). All participants in this study pro-
vided written informed consent. In concordance with 
the Declaration of Helsinki, this study was reviewed 
and approved by the ethics committee of the Affiliated 
Hospital of Guizhou Medical University (2,022,106). 
Frozen adjacent paracancerous tissues and PTs were 

obtained from five patients with HCC (n = 5, male, 
median age 55 years, HBV-positive, and no HCV infec-
tion detected). The majority of the PTs were larger than 
5  cm (5 patients), and the Edmondson–Steiner histo-
logical grades were III and IV. For more detailed infor-
mation, please refer to Table S1 (Additional file 1: Table 
S1). The clinical information of the single-cell dataset 
(GSE149614) used in this study is presented in Table S3 
(Additional file 8: Table S3).

Transcriptome analysis
A total amount of 1 µg RNA per sample was used as input 
material for the RNA sample preparations. Sequencing 
libraries were generated using the NEBNext® UltraTM 
RNA Library Prep Kit from NEB (New England Biolabs, 
USA) for Illumina®, following the manufacturer’s recom-
mendations, and index codes were added to attribute 
sequences for each sample. Library preparations were 
sequenced on an Illumina Novaseq platform, and 150 bp 
paired-end reads were generated. First, FastQC (v0.11.9) 
[34] was used to evaluate the quality of raw data, and 
low-quality reads were filtered using TrimGalore (v0.6.7) 
[35]. Hisat2 (v2.2.1) [36] was used to map high-quality 
reads to the reference genome (hg19), and Htseq-count 
(v2.0.1) [37] was used to quantify the transcripts. Differ-
entially expressed genes (DEGs) were identified using the 
DESeq2 (v1.32.0) [38] package. KEGG/GO enrichment 
analysis of the selected DEGs was conducted using the 
clusterProfiler (v4.05) package [39]. Because downstream 
analysis is entirely based on tumor samples, we did not 
perform data processing on adjacent tumor samples.

Whole exome analysis
The exome sequences were efficiently enriched from 
0.4  µg genomic DNA using an Agilent liquid capture 
system (Agilent SureSelect Human All Exon V6) accord-
ing to the manufacturer’s protocol. The DNA library was 
sequenced on an Illumina system for paired-end 150 bp 
reads. Quality diagnostics of the sequencing data were 
performed using FastQC (v0.11.9) [34], and reads with 
adapter contamination were filtered using Trimmomatic 
(v0.39) [40]. Reads were aligned to the reference genome 
(UCSC.hg19.fasta) using BWA Mem (v0.7.17) [41]. Vari-
ant calling was performed according to the tutorial 
provided by Ulintz et al. [42], which was based on the 
Genome Analysis Toolkit (GATK, v4.2.6.1) platform [43]. 
For conservative calling of shared somatic mutations 
among multiple nodules, we removed the germline vari-
ant sites provided by gnomAD. The remaining variants 
were further annotated using the SnpEff (v5.1) software 
[44].
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Tumor microenvironment (TME) cell infiltration analysis
A single-cell RNA sequencing dataset was used to con-
struct a signature matrix. The raw counts of gene expres-
sion data and related metadata were downloaded from 
the Gene Expression Omnibus (GEO) database with an 
accession number of GSE149614. The cell type infor-
mation and cell markers used in this study were sup-
plied in Table S4 (Additional file 9: Table S4), which 
completely came from the original article [9]. The total 
53 cell clusters were separated into six main cell types, 
including hepatocyte, T/NK cell, myeloid cell, B cell, 
endothelial cell, and fibroblast according to classic cell 
markers (Additional file 10: Fig. S6). CIBERSORTx [45] 
was then used to estimate the abundance of known cell 
populations in bulk RNA-seq data from the TCGA-
LIHC, LIRI-JP, and LICA-FR cohorts (primary tumor 
samples only). Raw counts from both the scRNA-Seq and 
bulk RNA-Seq data were used as the input for CIBER-
SORTx to ensure that both datasets were represented 
within the same normalization space. The ratios of dif-
ferent cell populations in the signature matrix were nor-
malized to 100%. Statistically significant differences in 
the abundance of each cell type among the Pro-T, Mix, 
and Pro-Meta groups were determined using a two-tailed 
Student’s t-test. Statistical significance was set at p < 0.05. 
The TCGA-LIHC and LIRI-JP cohorts were used for 
Kaplan–Meier survival analysis.

WGCNA
The batch effect between our and the TCGA-LIHC 
cohort RNA-Seq data was removed at the raw count level 
using the R package sva (v3.40.0) [46]. After normalizing 
the merged data from counts to transcripts per million 
(TPM), the data were transformed into log2(TPM + 1). 
For quality control, the top 5000 genes with higher 
median absolute deviation scores were retained for fur-
ther analysis, and outlier samples were removed accord-
ing to the clustering tree. The best soft threshold (power) 
was set to 8, which was used to construct the weighted 
correlation network using the blockwiseModules func-
tion in the R package WGCNA (v1.71) [47].

Regulator activity analysis
The differential activities of transcription factors were 
analyzed using the Virtual Inference of Protein-activity 
by Enriched Regulon (VIPER) algorithm compiled in the 
R package viper (v1.26.0) [48]. First, the ARACNe-AP 
(v1.0.0) was used to generate a regulatory network for the 
LIHC cohort [49]. The transcription factors used in this 
study were obtained from https://github.com/califano-
lab/PISCES/blob/master/data/human_regulators.rda. 
The regulatory network, along with the gene expression 
signature, was used as a model input for msVIPER. TPM 
quantification of Pro-T and Pro-Meta samples was used 

as the gene expression matrix for both ARACNe-AP and 
msVIPER.

GSEA
GSEA was performed on 50 hallmark genesets, which 
were downloaded from the Molecular Signatures Data-
base (MsigDB) [50]. ssGSEA was performed using 
the GenePattern platform to compare pathway activ-
ity among different groups [51]. The CELL_PRO-
LIFERATION geneset was obtained from https://
www.gsea-msigdb.org/gsea/msigdb/human/geneset/
CELL_PROLIFERATION_GO_0008283. The ROESS-
LER_LIVER_CANCER_METASTASIS_UP geneset 
was obtained from https://www.gsea-msigdb.org/gsea/
msigdb/human/geneset/ROESSLER_LIVER_CAN-
CER_METASTASIS_UP. The HCC_CELL_STEMNESS 
geneset was obtained from https://doi.org/10.2147/
SCCAA.S307043. The HCC_T_CELL_Exhausted_
SCORE geneset was obtained from Yiming Lu et al. 
[9]. Liver-specific genesets were obtained from https://
www.gsea-msigdb.org/gsea/msigdb/human/geneset/
HSIAO_LIVER_SPECIFIC_GENES.

Differential mutation analysis
The difference in gene mutations was calculated using 
Fisher’s exact test on a 2 × 2 contingency table generated 
from two independent groups using the function maf-
Compare in the R package maftools (v2.8.05) [52]. The 
null hypothesis was that the gene mutation frequency 
was independent of grouping. Statistical significance was 
set at p < 0.05.

Domain enrichment analysis
Domain enrichment analysis was performed using the 
pfamDomains function in the R package maftools [52] to 
identify the most deregulated pathways and protein fami-
lies involved in similar functions.
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