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Abstract
Background An accurate and non-invasive approach is urgently needed to distinguish tuberculosis granulomas 
from lung adenocarcinomas. This study aimed to develop and validate a nomogram based on contrast enhanced-
compute tomography (CE-CT) to preoperatively differentiate tuberculosis granuloma from lung adenocarcinoma 
appearing as solitary pulmonary solid nodules (SPSN).

Methods This retrospective study analyzed 143 patients with lung adenocarcinoma (mean age: 62.4 ± 6.5 years; 
54.5% female) and 137 patients with tuberculosis granulomas (mean age: 54.7 ± 8.2 years; 29.2% female) from 
two centers between March 2015 and June 2020. The training and internal validation cohorts included 161 and 
69 patients (7:3 ratio) from center No.1, respectively. The external testing cohort included 50 patients from center 
No.2. Clinical factors and conventional radiological characteristics were analyzed to build independent predictors. 
Radiomics features were extracted from each CT-volume of interest (VOI). Feature selection was performed using 
univariate and multivariate logistic regression analysis, as well as the least absolute shrinkage and selection operator 
(LASSO) method. A clinical model was constructed with clinical factors and radiological findings. Individualized 
radiomics nomograms incorporating clinical data and radiomics signature were established to validate the clinical 
usefulness. The diagnostic performance was assessed using the receiver operating characteristic (ROC) curve analysis 
with the area under the receiver operating characteristic curve (AUC).

Results One clinical factor (CA125), one radiological characteristic (enhanced-CT value) and nine radiomics features 
were found to be independent predictors, which were used to establish the radiomics nomogram. The nomogram 
demonstrated better diagnostic efficacy than any single model, with respective AUC, accuracy, sensitivity, and 
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Introduction
The differentiation between peripheral lung cancer and 
tuberculosis granuloma is still a challenging issue [1]. 
Lung tuberculosis manifested as nodular or mass is easily 
misdiagnosed as peripheral lung cancer [2]. However, the 
treatment options and clinical prognosis between lung 
cancer and tuberculosis are completely distinct. Radical 
surgical resection is the first choice for the former, while 
the latter tends to be treated with anti-tuberculosis drugs 
[3]. Misdiagnosis will cause unnecessary treatment and 
financial burden, especially when the diagnosis of lung 
adenocarcinoma is delayed. Patients might lose the best 
chance for treatment, leading to uncontrollable tumor 
progression and poorer prognosis [4]. Therefore, find-
ing an accurate and non-invasive approach to differenti-
ate lung cancer from tuberculosis is of great significance, 
which undoubtedly has become an important topic for 
radiologists and clinicians.

The contrast enhanced-compute tomography (CE-CT) 
is widely applied to distinguish different lung diseases 
mainly dependent on morphological features, such as 
speculation, contour, and border definition, which have 
shown improved diagnostic performance [5]. Unfortu-
nately, nodular/mass pulmonary tuberculosis granuloma 
usually appears as round or irregular mass shadows in 
CT images, and its edges may be lobed or manifested as 
a spicule sign [6]. As a result of non-specific clinical and 
radiological manifestations, diagnostic accuracy is closely 
related to the radiologists’ knowledge level and working 
experience. Despite the rapid development of CT-guided 
biopsy technology, a series of adverse complications 
severely restrict the wide application of this operation for 
pathological diagnosis [7].

Radiomics is a promising and non-invasive method that 
can extract automatic high-throughput quantitative fea-
tures from images [8]. It captures relationships between 
image voxels that the naked eye of physicians may not 
perceive-even experienced radiologists, which can con-
tribute to the diagnostic and predictive accuracy of the 
disease. Therefore, this study was aimed to develop and 
validate a radiomics nomogram based on preoperative 
CE-CT images to differentiate tuberculosis granuloma 
from lung adenocarcinoma presenting as solid nodules or 
masses.

Materials and methods
Study population
The retrospective research protocol was reviewed, 
approved, and overseen by the institutional review board 
of Harbin Medical University Cancer Hospital and The 
Fourth Affiliated Hospital of Harbin Medical University, 
and the need for written informed consent was waived. 
The enrollment flowchart of this study was displayed in 
Fig.  1. Detailed inclusion criteria were listed as follows: 
(a) solitary and solid nodules or masses, which may con-
tain cavities or vacuoles and do not exhibit a ground glass 
density; (b) histological diagnosis confirmed by surgical 
resection; and (c) available preoperative chest CT images 
(within 4 weeks prior to surgery). Detailed exclusion 
criteria were described as follows: (a) ambiguous patho-
logical diagnosis from insufficient tissue samples; (b) sub-
solid pulmonary nodules, including non-solid nodules 
and partly solid nodules; (c) patients with a history of 
surgery, radiotherapy, or chemotherapy; (d) patients with 
a history of other malignant tumors and (e) substandard 
image quality, such as motion artifacts.

Image acquisition and image analysis
All chest CT images were obtained from Discovery 
CT 750 HD (GE Medical Systems, USA). Scans were 
acquired from the thoracic inlet to the level of the bilat-
eral adrenal glands during deep inspiration breath-hold. 
Detailed scanning parameters were as follows: tube volt-
age 100-140  kV, tube current 350-550  mA, slice thick-
ness 3  mm, reconstruction interval 3  mm, matrix size 
512 × 512, and field of view 450  mm. Non-ionic con-
trast media (Iohexeol, 350  mg/ml, GE, Boston, USA) 
was administered at a rate of 3.0-3.5 ml/s and 1.2 ml/kg 
to all patients, as standardized protocol. Arterial phase 
(AP) images were scanned around 30s post-injection of 
contrast media. Two experienced radiologists who both 
has 10-year practicing experience in chest disease diag-
nosis, blinded to the pathological results, independently 
evaluated the CT images. The details of the evaluation of 
subjective CT findings were displayed in Supplementary 
Materials (Supplementary data 1).

specificity of 0.903, 0.857, 0.901, and 0.807 in the training cohort; 0.933, 0.884, 0.893, and 0.892 in the internal 
validation cohort; 0.914, 0.800, 0.937, and 0.735 in the external test cohort. The calibration curve showed a good 
agreement between prediction probability and actual clinical findings.

Conclusion The nomogram incorporating clinical factors, radiological characteristics and radiomics signature 
provides additional value in distinguishing tuberculosis granuloma from lung adenocarcinoma in patients with a 
SPSN, potentially serving as a robust diagnostic strategy in clinical practice.

Keywords Lung adenocarcinoma, Tuberculosis granuloma, Radiomics, Nomogram, Computed tomography
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Tumor segmentation and radiomics feature extraction
Three steps were adopted to preprocess the CT images 
before feature extraction. Firstly, all images were resa-
mpled to a uniform voxel size of 1 mm × 1 mm × 1 mm 
using linear interpolation to minimize the influence of 
different layer thicknesses. Secondly, the continuous 
images were converted into discrete values based on the 
gray-scale discretization process (bin width = 25). Finally, 
the Laplacian of Gaussian and wavelet image filters were 
used to eliminate the mixed noise in the image digitiza-
tion process to obtain low- or high-frequency features. 
Axial CT Digital Imaging and Communications in Medi-
cine images were applied for tumor segmentation. The 
tumor lesion was delineated on axial CT images using 
ITK-SNAP software (version 3.6.0, www.itksnap.org). 
Radiomics features were extracted from each CT-derived 
volume of interest (VOI) by applying dedicated AK soft-
ware (Artificial Intelligence Kit, GE Healthcare), which 
complies with image biomarker standardization initia-
tive guidelines [9]. A total of 851 radiomics features were 
extracted from each VOIs, and the classification of vari-
ous features was listed in Supplementary Materials (Sup-
plementary data 2).

Radiomics feature selection and model establishment
Intra- and inter-class correlation coefficients (ICCs) 
were calculated to evaluate the intra- and inter-observer 
reproducibility. Two readers drew the volumes of inter-
est (VOIs) on 40 randomly selected CT images (20 
cases of tuberculosis granulomas and 20 cases of lung 

adenocarcinomas). Reader 1 repeated the segmentations 
two weeks later. An ICC greater than 0.80 indicated good 
agreement with feature extraction. The VOI segmenta-
tion for the remaining cases was performed by Reader 
1. After the intra- and inter-operator agreement evalua-
tion, radiomics features with ICC > 0.80 were selected for 
further analysis. Next, the feature selection was carried 
out by using a step-by-step selection method. Firstly, uni-
variate logistic regression analysis was applied to select 
features with P-value < 0.05 for the subsequent analysis. 
Secondly, multivariate logistic regression analysis was 
utilized to choose features closely related to pulmonary 
nodules classification. Finally, the most informative fea-
tures were retained using the least absolute shrinkage 
and selection operator (LASSO) method. LASSO regres-
sion shrinks the coefficient estimates toward zero, with 
the degree of shrinkage dependent on an additional 
parameter, alpha. To determine the optimal values for 
alpha, a 10-time cross-validation was used, and we chose 
alpha via the minimum criteria and a value of ln (alpha)= 
-2.1 was chosen.

Model building and evaluation of predictive models
A clinical model for predicting pulmonary nodule classi-
fication was developed using univariable and multivari-
able logistic regression analysis. The following candidate 
predictors were considered: tumor size, location, cav-
ity, vacuole, spicule, satellite lesions, calcification, lob-
ulation, pleural indentation, and air bronchogram. 
Furthermore, a nomogram was created based on both 

Fig. 1 The flow diagram of this study
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clinical-radiological parameters and the combined 
radiomics signature. The diagnostic performance of the 
different models was evaluated in the training and testing 
sets by assessing sensitivity, specificity, and accuracy. The 
calibration curve was employed to assess the agreement 
between the nomogram’s prediction results and actual 
clinical findings. Decision curve analysis (DCA) was 
used to validate the clinical usefulness of the radiomics 
nomogram.

Statistical analysis
Statistical analysis for the present study was conducted 
using the IPM Statistics program (V 2.1.0.R), R (version 
3.5.1), and Python (version 3.5.6). Categorical variables 
were compared using either a chi-squared test or Fisher’s 
exact test, with P < 0.05 denoting a significant difference. 
The receiver operating characteristic (ROC) curve was 
constructed to evaluate the discriminative performance 
of each model. A two-sided P value < 0.001 was consid-
ered statistically significant.

Results
Clinical characteristics of patients
Patient demographics and CT characteristics of all 
patients were presented in Table 1. A total of 280 patients 
from the two centers between March 2015 to June 2020 
were enrolled in this study. The training and internal vali-
dation cohorts included 161 and 69 patients from center 
No.1, respectively. The external test cohort included 50 
patients from center No.2. In the univariate regression 
analysis, the classification of solitary pulmonary nodules 
had significant associations with sex, age, mean pack-
years, spiculation, air bronchogram, maximum diam-
eter, enhanced-CT value, CEA, CA125 and CA199 (both 
P < 0.001). In the multivariate regression analysis, only 
enhanced-CT value and CA125 were demonstrated to 
be independent predictors (both P < 0.001). The results of 
univariate and multivariate regression analysis were dis-
played in Table 2.

Intra and inter-observer reproducibility of feature 
extraction
The intra-observer ICC ranged from 0.815 to 0.940, and 
inter-observer ICCs ranged from 0.720 to 0.906. There-
fore, a favorable intra- and inter-observer reproducibil-
ity of radiomics feature extraction was observed in our 
study.

Feature selection and model building
The clinical model was developed based on multivari-
able logistic regression, and it identified enhanced-CT 
value (odds ratio [OR], 2.389; 95% confidence interval 
[CI], 1.756–3.247; P < 0.001) and CA125 (OR, 1.312; 95% 
CI, 1.134–1.518; P < 0.001) as independent predictors. 

Initially, 850 radiomics features were extracted from each 
VOI of the CT image. All obtained radiomics features 
underwent preprocessing and standardization using 
the z-score approach. Subsequently, 720 radiomics fea-
tures were selected based on a repeatability standard of 
ICC ≥ 0.80. Univariate and multivariate logistic regression 
analyses were further performed to reduce the dimen-
sions of these features. Then, 9 features were selected as 
the most predictive subset to construct radiomics model 
after LASSO (Fig. 2A, B). The selected radiomics features 
and corresponding coefficients were listed in Table  3. 
The nomogram was created to differentiate tuberculosis 
granulomas from lung adenocarcinomas, incorporat-
ing two factors (enhanced-CT value and CA125) and the 
radiomics signature (namely rad-score).

R a d - s c o r e  =  0 . 5 0 1 4  −  0 . 0 3 9 4 2 * o r i g i n a l _
f irstorder_10Percent i le  +  20 .82*or ig inal_g lcm_
MaximumProbability-3.425*original_shape_Flat-
ness + 2.369*wavelet.HHH_glcm_MCC-1.049*wavelet.
HHL_firstorder_Mean-28.89*wavelet.HHL_firstorder_
Median-30.42*wavelet.HHL_glcm_Imc1 + 0.1982*wave-
let.LHH_firstorder_Skewness + 0.0000008524*wavelet.
LLH_ngtdm_Complexity.

Performance of three prediction models
The ROC curve was employed to assess the performance 
of different predictive models in the training, internal 
validation, and external testing cohorts. The area under 
the curve (AUC), sensitivity, specificity, and accuracy 
were calculated. All results pertaining to diagnostic effi-
cacy are presented in Table 4. The ROC curves are dis-
played in Figs. 3, 4 and 5.

Clinical prediction model
The clinical prediction model incorporated independent 
clinic-radiological predictors (enhanced-CT value and 
CA125). In the training cohort, this model exhibited an 
area under the curve (AUC) of 0.804 (95% CI 0.746–
0.862) with sensitivity, specificity, and accuracy of 0.736, 
0.789, and 0.761, respectively. When applied to the inter-
nal validation cohort, the model yielded an AUC of 0.803 
(95% CI 0.684–0.922) with sensitivity, specificity, and 
accuracy of 0.750, 0.881, and 0.826, respectively. Upon 
validation in the external test cohort, the model yielded 
an AUC of 0.597 (95% CI 0.432–0.763) with sensitiv-
ity, specificity, and accuracy of 0.812, 0.441, and 0.560, 
respectively.

Radiomics prediction model
The radiomics prediction model was built based on nine 
significant radiomics features. In the training cohort, this 
model exhibited an area under the curve (AUC) of 0.876 
(95% CI 0.828–0.924) with sensitivity, specificity, and 
accuracy of 0.843, 0.826, and 0.835, respectively. When 
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Table 1 Baseline clinical characteristics of patients
Training cohort
(n = 161)

Internal validation cohort
(n = 69)

External test cohort
(n = 50)

Adenocarcinoma Granuloma Adenocarcinoma Granuloma Adenocarcinoma Granuloma
Sex
Male 29 66 16 20 20 11
Female 39 27 25 8 14 5
Age (years) 61.8 ± 8.7 52.3 ± 10.0 63.5 ± 7.3 51.7 ± 8.8 65.0 ± 4.2 59.8 ± 9.7
Mean pack-years 26.3

(20.9, 31.9)
14.9
(10.6, 17.8)

29.5
(20.5, 43.5)

15.6
(12.1, 17.5)

23.8 10.8
(19.6, 35.9) (9.9,16.9)

Pleural indentation
Absence 3 14 2 4 9 3
Presence 65 79 39 24 25 13
Spicule
Absence 7 36 3 10 5 6
Presence 61 57 38 18 29 10
Vacuole
Absence 59 83 39 21 26 14
Presence 9 10 2 7 8 2
Cavity
Absence 63 86 40 27 31 15
Presence 5 7 1 1 3 1
Satellite lesions
Absence 68 78 40 25 34 14
Presence 0 15 1 3 0 2
Air bronchogram
Absence 59 89 34 27 31 13
Presence 9 4 7 1 3 3
Lobular
Absence 0 2 1 0 0 1
Presence 68 91 40 28 34 15
Calcification
Absence 57 89 40 26 33 14
Presence 1 4 1 2 1 2
Location
Right upper lobe 27 30 12 14 17 5
Right middle lobe 6 3 0 1 3 1
Right lower lobe 7 19 11 5 3 0
Left upper lobe 15 29 11 6 6 8
Left lower lobe 13 12 7 2 5 2
Maximum diameter (mm) 30.6

(24.6, 40.9)
22.7
(18.7, 31.2)

34.1
(24.7, 52.3)

23.0
(18.7, 31.4)

21.1
(13.7, 30.2)

20.6
(14.7, 23.7)

Enhanced CT value (HU) 60.7
(52.6, 76.6)

36.8
(22.0, 54.8)

62.6
(55.7, 79.4)

39.9
(19.9, 59.7)

66.1
(51.9, 80.1)

47.5
(35.0, 59.8)

CEA (ng/ml) 4.4
(2.3, 15.9)

2.5
(1.47, 3.9)

5.9
(2.3, 36.8)

2.2
(1.6, 3.7)

12.4
(3.5, 66.2)

3.2
(2.1, 8.4)

CA125 (ng/ml) 13.5
(9.9, 18.0)

3.4
(2.3, 7.45)

12.9
(9.8, 20.6)

6.9
(2.9, 9.7)

15.3
(9.9, 33.1)

4.7
(3.7, 7.4)

CA199 (ng/ml) 10.9
(4.5, 17.4)

7.4
(3.3, 10.8)

12.1
(5.8, 17.9)

6.6
(2.2, 9.8)

13.3
(5.6, 18.9)

5.8
(2.9, 10.2)

Note  Continuous variables are expressed as Median (interquartile range). Otherwise, data are number of patients. CEA (carcinoembryonic antigen); CA153 
(carbohydrate antigen 153); CA199 (carbohydrate antigen 199)



Page 6 of 13Yang et al. BMC Cancer          (2024) 24:670 

applied to the internal validation cohort, the model 
yielded an AUC of 0.931 (95% CI 0.859-1.000) with sensi-
tivity, specificity, and accuracy of 0.964, 0.878, and 0.913, 
respectively. Upon validation in the external test cohort, 
the model yielded an AUC of 0.877 (95% CI 0.783–0.970) 
with sensitivity, specificity, and accuracy of 0.937, 0.835, 
and 0.800, respectively.

Development and validation of the nomogram
The nomogram is presented in Fig.  6A and satisfac-
tory prediction performance was obtained. In the train-
ing cohort, the nomogram exhibited an area under the 
curve (AUC) of 0.903 (95% CI 0.861–0.945) with sen-
sitivity, specificity, and accuracy of 0.901, 0.807, and 
0.857, respectively. Applied in the internal validation 
cohort, the model yielded AUC of 0.933 (95% CI 0.874–
0.992) with sensitivity, specificity, and accuracy of 0.893, 
0.892, and 0.884 respectively. Validated in the external 

Table 2 Results of and univariate and multivariate logistic regression
Univariate logistic regression Multivariate logistic regression
OR 95% CI P value OR 95% CI P value

Sex 3.495 2.021–6.042 0.000 1.542 0.484–4.911 0.464
Age (years) 1.138 1.096–1.181 0.000 1.130 1.048–1.218 0.102
Mean pack-years 1.553 1.351–1.785 0.000 1.352 1.167–1.1566 0.060
Pleural indentation 3.635 1.301–10.157 0.014 1.085 0.133–8.863 0.939
Spicule 6.072 2.877–12.813 0.000 3.975 0.808–19.557 0.090
Vacuole 0.687 0.306–1.539 0.361 0.599 0.422–1.004 0.644
Cavity 0.823 0.276–2.451 0.726 0.479 0.365–0.988 0.512
Satellite lesions 0.053 0.007 0.404 0.006 0.465 0.029–7.433 0.589
Air bronchogram 3.991 1.410-11.299 0.009 10.081 0.678–14.997 0.093
Lobular 1.815 0.162–20.302 0.628 1.003 0.997–1.451 0.885
Calcification 0.358 0.071–1.814 0.215 0.309 0.211–0.885 0.703
Location 1.050 0.249–4.422 0.947 0.966 0.704–1.113 0.472
Maximum diameter 1.056 1.031–1.081 0.000 1.022 0.971–1.075 0.412
Enhanced CT value 2.034 1.347–2.981 0.000 2.389 1.756–3.247 0.000
CEA (ng/ml) 1.246 1.112–1.395 0.000 1.033 0.902–1.184 0.637
CA125 (ng/ml) 1.319 1.223–1.422 0.000 1.312 1.134–1.518 0.000
CA199 (ng/ml) 1.073 1.033–1.114 0.000 0.993 0.967–1.021 0.628

Fig. 2 Selection of significant parameters in radiomics features in the training cohort and definition of linear predictor. (a) Ten time cross-validation for 
tuning parameter selection in the LASSO model. (b) LASSO
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test cohort, the model yielded AUC of 0.914 (95% CI 
0.838–0.990) with sensitivity, specificity, and accuracy of 
0.937, 0.835, and 0.800 respectively. Calibration curves 
(Fig. 6B, C) indicated that the predicted probabilities of 
the nomogram were closely aligned with the actual clini-
cal observation in both the training and external testing 
cohorts. The decision curve of nomogram demonstrated 
a higher net benefit for the differentiation between lung 
cancer and tuberculosis than the clinical model and the 
radiomics model (Fig. 6D). This suggests that the results 
predicted by our nomogram demonstrated favorable 
clinical usefulness, and a representative case was dis-
played in Fig. 7.

Comparison of different prediction models
Figure 8 demonstrates the ROC curves of clinical model, 
radiomics model and nomogram in the training cohort, 
internal validation cohort and external test cohort, 
respectively. The nomogram demonstrated the optimal 
discriminative power for pulmonary nodules classifica-
tion among the three indicators, with improvements 
in the AUC from 0.804 for the clinical model to 0.903 
(P < 0.05, DeLong’s test) in the training cohort, from 
0.803 for the clinical model to 0.933 (P < 0.05, DeLong’s 
test) in the internal validation cohort, and from 0.597 for 
the clinical model to 0.914 (P < 0.05, DeLong’s test) in the 
external test cohort. However, the performance of nomo-
gram model did not differ from that of the radiomics 
model (AUCs 0.903 vs. 0.876; P = 0.760) in the training 
cohort, (AUCs 0.933 vs. 0.931; P = 0.940) in the internal 
validation cohort, (AUCs 0.914 vs. 0.877; P = 0.740) in the 
external test cohort. In contrast, the radiomics model 
yield a better predictive performance than the clinical 
model, with improvements in the AUC from 0.803 for 
the clinical model to 0.931 (P < 0.05, DeLong’s test) in 
the internal validation cohort, from 0.597 for the clinical 
model to 0.877 (P < 0.05, DeLong’s test) in the external 
test cohort, while the performance of radiomics model 
did not differ from that of the clinical model (AUCs 0.804 
vs. 0.876; P = 0.180) in the training cohort.

Table 3 The selected radiomics features and corresponding 
coefficients
Variables Coefficients
original_firstorder_10Percentile -0.03942
original_glcm_MaximumProbability 20.82
original_shape_Flatness -3.425
wavelet.HHH_glcm_MCC 2.369
wavelet.HHL_firstorder_Mean -1.049
wavelet.HHL_firstorder_Median -28.89
wavelet.HHL_glcm_Imc1 -30.42
wavelet.LHH_firstorder_Skewness 0.1982
wavelet.LLH_ngtdm_Complexity 0.000000852
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Discussion
The current investigation successfully developed a 
CE-CT radiomics-based nomogram that integrated 
the radiomics signature and clinical risk indicators 
to differentiate tuberculosis granulomas from lung 

adenocarcinomas prior to operation. Our results showed 
that the enhanced-CT value, CA125 and radiomics signa-
ture were significant predictors in differentiating between 
tuberculosis granulomas and lung adenocarcinomas. 
The radiomics nomogram is a non-invasive, easy-to-use, 

Fig. 5 ROC of the nomogram in the training, internal validation and external testing cohorts

 

Fig. 4 ROC of the radiomics model in the training, internal validation and external testing cohorts

 

Fig. 3 ROC of the clinical model in the training, internal validation and external testing cohorts
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Fig. 6 Nomogram for differentiation between tuberculosis granulomas and lung adenocarcinomas based on training cohort and the model evaluation 
of calibration curve. (A) Radiomics nomogram based on clinical characteristics and Radscore. The calibration curves were used to evaluate the consis-
tency between the probability of nomogram prediction and the actual clinical observation in the training (B) and external validation (C) cohorts. (D) 
DCA for the classification of solitary pulmonary nodules for each model. X-axis represents the threshold probability and Y-axis represents the net benefit. 
The red curve represents the nomogram. The blue curve represents the clinical model. The red curve represents the radiomics model. The green curve 
represents the nomogram
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personalized approach with excellent performance to 
preoperatively differentiate tuberculosis granulomas 
from lung adenocarcinomas, yielding a superior perfor-
mance with an AUC of 0.903 in the training cohort, 0.933 
in the testing cohort, and 0.914 in the external validation 
cohort, as compared to the clinical or radiomics model 

alone. This combined radiomics nomogram is conductive 
to avoid unnecessary surgeries or repeat CT examina-
tions in patients with SPSN.

There is a growing interest in using radiomics for expe-
ditious diagnosis of non-invasive pulmonary CT images 
among radiologists, which could potentially improve 

Fig. 8 DeLong ROC curves of the three prediction models

 

Fig. 7 A-C: lung window of axial thin-section enhanced chest CT images in a 62-year-old male with proven diagnosis of pulmonary tuberculosis. (A) 
Chest CT image shows, in the right superior lobe, a consolidative opacity. (B) The same image showing the consolidative opacity after radiomic volumet-
ric segmentation (in orange). The rad-score calculated by nomogram was 0.76, meanwhile we collected the enhanced-CT value (54.9) and the value of 
CA125 (19.54). The predicted risk value (0.88) was higher than the cut-off value (0.71), which indicated that a benign lesion. (C) The lesion was confirmed 
on pathological diagnosis as a pulmonary tuberculosis (hematoxylin and eosin, ×400). D-E: In a 58-year-old male, CT scan shows an irregular solid nodule 
in the left upper lobe. (D) Chest CT image shows, in the left superior lobe, a consolidative opacity. (E) The same image showing the consolidative opacity 
after radiomic volumetric segmentation (in orange). We used the same method to obtain the rad-score (0.15), the enhanced-CT value (33.3) and CA125 
(8.31). The predicted risk value was 0.62 (< 0.71), indicating the lesion was malignant. (F) The lesion was confirmed on pathological diagnosis as a lung 
adenocarcinoma (hematoxylin and eosin, ×400)
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clinical diagnoses. In this study, radiomics features 
extracted from arterial phase CT images were applied 
to enhance the differential diagnosis of lung adenocar-
cinoma and tuberculosis granuloma. The integrated 
model demonstrated good predictive performance, with 
a higher predictive ability than the clinical or radiomics 
model alone. It is noteworthy that the nomogram pre-
sented superior diagnostic efficiency and exhibited high 
prediction ability for the external data. The nomogram 
is not dependent on the nodules’ conditions, indicating 
its potential as a non-invasive diagnostic method with a 
high degree of accuracy for clinicians to obtain results 
quickly and reliably.

In this study, a clinical model was established that 
incorporated demographic information and subjective 
CE-CT findings. By using enhanced-CT value and CA125 
as the independent factors, the clinical model achieved a 
relatively low AUC (0.804 in the training cohort, 0.803 in 
the internal validation cohort, and 0.597 in the external 
testing cohort) for differentiating tuberculosis granulo-
mas from lung adenocarcinomas. Therefore, the results 
confirmed that some CT imaging features did not dem-
onstrate significant correlations with the pathological 
classification of solid pulmonary nodules. In contrast, 
the radiomics model yielded better performance in the 
training cohort (AUC = 0.876), internal validation cohort 
(AUC = 0.931), and external testing cohort (AUC = 0.877). 
The radiomics approach can extract large amounts of 
high-throughput macroscopic features from CT images 
to quantify lesion information. Thus, the radiomics 
model enables the extraction of high-dimensional infor-
mation that is valuable for differentiating tuberculosis 
granulomas from lung adenocarcinomas in patients with 
solitary pulmonary nodules compared with the subjec-
tive findings model.

The nomogram was developed based on two indepen-
dent predictors and rad-score. This research explored 
several significant clinical and radiological characteris-
tics contributing to the differential diagnosis of solitary 
pulmonary nodules. Univariate analysis showed that six 
clinical factors (sex, age, mean pack-years, CEA, CA125 
and CA199) and three radiological characteristics (spicu-
lated sign, maximum diameter, and enhanced-CT value) 
were statistically different between the tuberculosis 
granuloma and lung adenocarcinoma groups. Consistent 
with the radiologists’ experience, lung adenocarcinoma 
is more likely to have spiculated sign due to the spread 
of malignant cells in the pulmonary interstitial. Pathol-
ogy has demonstrated that spicules’ formation tends to 
be related to fibrous tissue proliferation or tumor cell 
infiltration [10]. Previous study has demonstrated that 
spiculated sign was more likely to be identified as a sign 
of malignancy on multivariate analysis for screening 
solitary pulmonary nodules [11]. Although a lobulated 

shape is often a feature of malignant lesions, it is not 
an exclusive characteristic, as it can also be observed in 
benign nodules. The occurrence of a lobulated shape in 
tuberculosis granuloma was high in our study (119/121). 
On multivariate analysis, the enhanced-CT value and 
CA125 remained highly significant in relation to the 
classification of solitary pulmonary nodules. However, 
the shape of the lesion (spiculated) was found to only 
weakly predict the possibility of lung adenocarcinoma. 
The identification of the spiculated sign on CT images by 
radiologists was just subjective, and inter-reader variabil-
ity cannot be ignored. Wang et al. expounded dynamic 
enhanced CT scanning indicating the value of differen-
tiating lung cancer and pulmonary tuberculosis, in which 
the enhanced-CT value of adenocarcinoma in the arterial 
phase is higher than that of tuberculosis (59.27 ± 41.58 
vs. 38.88 ± 23.58, P < 0.001) [1]. Some studies have shown 
that the enhancement of tuberculoma was none or mild, 
and the enhancement peak value were lower than that of 
lung cancer [12]. This is in agreement with the result of 
this study. In addition, there was a significant difference 
in CA125 value between adenocarcinoma and tuberculo-
sis (P < 0.001). Specifically, the value of CA125 in adeno-
carcinoma was generally higher than that in tuberculosis, 
which was different from the findings of previous study 
[12]. The increase of the CA125 value in tuberculosis was 
not prominent, which might be related to the degree or 
stage of cases enrolled.

In the current study, the 9 core radiomics features were 
finally retained. Among these radiomics features, Wave-
let transform can cover the entire frequency domain and 
reduce the correlation between different extracted fea-
tures [13]. The first-order features describe the distribu-
tion of voxel intensities in images. The GLCM features 
quantify the second-order joint probabilities of images 
which quantifies the intensity distribution of the gray 
level at a given offset to extract information about tone 
homogeneity, linear connection, contrast, and boundar-
ies adjacent to gray zones, as well as complicacy of dis-
tribution [14]. The GLRLM features describe gray-level 
runs in an image. Skewness, as one of the simple param-
eters, represents the asymmetric distribution of gray 
levels in the histogram that describes the heterogeneity 
of lesions [15]. Tuberculous granuloma comprises mac-
rophages, including T lymphocytes, B lymphocytes, 
dendritic cells, fibroblasts, and extracellular matrix com-
ponents [16]. The above features describe the patterns or 
spatial distribution of voxel intensities within the ROIs, 
which serve as recognized parameters to capture tumor 
heterogeneity [17]. Indirectly, our findings confirmed 
that the selected features were all closely related to high-
dimensional space information that can hardly be under-
stood by naked-eye examination, which may potentially 
assist in the differential diagnosis.
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Several limitations should be considered in this study. 
Firstly, this study was a retrospective analysis, and selec-
tion bias was inevitable. Secondly, the strict inclusion and 
exclusion criteria resulted in a limited sample size for this 
study, we did not include GGO nodules. In the future, 
we will try to include GGO lesions in subsequent stud-
ies. Thirdly, this study contained only one external valida-
tion, and multi-center collaboration is imperative for us 
to collect more data to improve the prediction capacity. 
Fourthly, due to technical limitations, although the intra-
nodular radiomics features on Lung CT Images were not 
extracted, the most important features representing the 
characteristics of lesions were analyzed.

Conclusions
In summary, the developed nomogram, which integrates 
clinical risk factors and radiomics features, demonstrates 
robust classification performance prior to surgery. Its 
visualization and interpretability suggest that it has the 
potential to serve as a valuable and user-friendly tool for 
personalized decision-making in clinical treatment strat-
egy management.
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