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Abstract 

Background MicroRNAs (miRNAs) emerge in various organisms, ranging from viruses to humans, and play cru-
cial regulatory roles within cells, participating in a variety of biological processes. In numerous prediction methods 
for miRNA-disease associations, the issue of over-dependence on both similarity measurement data and the associa-
tion matrix still hasn’t been improved. In this paper, a miRNA-Disease association prediction model (called TP-MDA) 
based on tree path global feature extraction and fully connected artificial neural network (FANN) with multi-head 
self-attention mechanism is proposed. The TP-MDA model utilizes an association tree structure to represent the data 
relationships, multi-head self-attention mechanism for extracting feature vectors, and fully connected artificial neural 
network with 5-fold cross-validation for model training.

Results The experimental results indicate that the TP-MDA model outperforms the other comparative models, AUC 
is 0.9714. In the case studies of miRNAs associated with colorectal cancer and lung cancer, among the top 15 miR-
NAs predicted by the model, 12 in colorectal cancer and 15 in lung cancer were validated respectively, the accuracy 
is as high as 0.9227.

Conclusions The model proposed in this paper can accurately predict the miRNA-disease association, and can serve 
as a valuable reference for data mining and association prediction in the fields of life sciences, biology, and disease 
genetics, among others.
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Introduction
MicroRNA (miRNA) is a class of short 20–24 nucleo-
tide non-coding RNA molecules that play critical 
regulatory roles in cells [1, 2]. They form a complex 
regulatory network and are involved in various biologi-
cal processes such as cell proliferation, differentiation 
and apoptosis [3]. In addition, miRNA is closely related 
to the occurrence and development of cancer, cardio-
vascular diseases, nervous system diseases and other 
diseases [4–7]. For example, cancer stem cell-like cells 
(CSCs) are increasingly recognized as key cell tumor 
populations that drive not only tumorigenesis, but also 
cancer progression, treatment resistance, and meta-
static recurrence. Existing evidence suggests that dif-
ferent metabolic pathways regulated by let-7 miRNA 
can impact CSC self-renewal, differentiation, and treat-
ment resistance [8]. Therefore, in-depth research on 
the association between miRNAs and diseases is of 
great importance for understanding cellular regulatory 
mechanisms, discovering new therapeutic targets, and 
developing relevant biomedical applications [9–12].

With the continuous advancement of bioinformatics 
and the advent of the artificial intelligence era, research-
ers are increasingly using machine learning and deep 
learning algorithms to predict miRNA-disease asso-
ciations [13–15]. It can provide validation guidance for 
biological experiments, thereby conserving resources 
and further advancing the field of miRNA and disease 
association prediction [16–18].It also has the potential 
to drive further advances in miRNA-disease association 
prediction. Based on different prediction strategies, exist-
ing methods can be categorized into four types: machine 
learning-based methods, information propagation-based 
methods, scoring function-based methods, and matrix 
transformation-based methods [19, 20]. Machine learn-
ing-based prediction methods have recently become a 
focus and are gaining popularity among researchers [21, 
22]. Yu et al. [23] constructed a heterogeneous informa-
tion network including miRNA, diseases, and genes. 
They defined seven symmetric meta-paths based on dif-
ferent semantic interpretations. After initializing the fea-
ture vectors for all nodes, they extracted and aggregated 
the vector information carried by all nodes on meta-path 
instances and updated the starting node’s feature vector. 
Then, they aggregated the vector information obtained 
from nodes on different meta-paths. Finally, they used 
miRNA and disease embedding feature vectors to com-
pute their association scores. Xie et al. [24] constructed 
miRNA-disease bias scores using aggregated hierarchical 
clustering. A bipartite network recommendation algo-
rithm was then used to assign transfer weights based on 
these bias ratings to predict potential miRNA-disease 
associations. Chen et  al. [25] combined known miRNA 

and disease similarities to establish transfer weights and 
appropriately configured initial information. They then 
used a two-stage bipartite network algorithm to infer 
potential miRNA-disease associations.

In the study of miRNA-disease associations, there are 
two areas that need improvement: (1) The ability to cap-
ture indirect association features is inadequate. Among 
various computational methods, researchers use miRNA-
disease heterogeneous networks to structure miRNA-
disease association data and then extract feature vectors 
from the heterogeneous network. However, the asso-
ciations within the heterogeneous network are limited 
to direct relationships between miRNAs and diseases, 
and their ability to capture indirect associations is often 
weak. This limitation may result in reduced model per-
formance. (2) Over-reliance on similarity measurement 
data. Many computational methods rely on similarity 
information such as miRNA similarity and disease simi-
larity for model training. The reliance on similarity data 
can, to a certain extent, influence the discriminative abil-
ity of the model and have an impact on its predictive 
accuracy.

To address the first issue, this paper investigates a data 
organization approach based on a tree-like topologi-
cal structure. It represents miRNAs or diseases as root 
nodes and then searches for all related diseases or miR-
NAs as the second layer of the tree. All miRNAs or dis-
ease nodes associated with each disease or miRNA in the 
second layer are then found in the dataset. This process 
is repeated until the entire dataset has been thoroughly 
searched. At this point, there is a unique tree with the 
miRNA or disease as the root node, called the miRNA-
disease association tree. This tree contains all association 
relationships related to that miRNA or disease within 
the dataset. Next, the vector information carried by all 
nodes on each path instance is extracted on the paths 
of the tree. Vector information obtained from nodes on 
different tree-paths is aggregated to generate feature 
vectors for model training. The miRNA-disease asso-
ciation tree has the potential to improve the capture of 
indirect association features. In response to Problem 2, 
since the similarity of data is often subjective based on 
some human-set metric, these data may produce mis-
leading results in some cases, which in turn affects the 
performance of the algorithm. In contrast to similarity 
measures, multi-head self-attention mechanisms better 
capture long-distance dependencies in input sequences 
by allowing the model to focus on information from dif-
ferent locations, which in turn improves the predictive 
performance of the model. In this paper, we explore 
the use of the multi-head self-attention mechanism to 
fully extract the long dependencies carried by associa-
tion trees, avoiding the bias created by using similarity 
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measures and overcoming the problem of over-reliance 
on similarity measure data. As a result, the paper intro-
duces a miRNA-disease association prediction model. 
This model uses a multi-head self-attention mechanism 
for comprehensive feature extraction on the tree-paths. 
It then trains the dataset using the Fully Connected 
Artificial Neural Network (FANN) model in a 5-fold 
cross-validation experiment. This model is referred to as 
TP-MDA.

Materials and methods
Establishing the Association Matrix
Based on the miRNA-disease association information, 
remove duplicate, missing, and invalid data in order to 
construct the miRNA-disease association matrix. Given 
m miRNAs, M={m1、…、mi、…、mm },and n diseases, 
D = {d1, …,  dj, …,  dn},the miRNA-disease association 
matrix is defined as R, where R∈Rm×n, as shown in Eq. (1):

(1)Rij =

1, miRNA have been linked to disease
0, The relationship between miRNA and disease is unknown

Subsequently, the miRNA-disease association tree is 
constructed by continuously exploring the association 
matrix. The process of association tree construction is 
shown in Fig. 1.

Multi‑head self‑attention mechanism
The self-attention mechanism is a special type of atten-
tion mechanism used to handle relationships between 
different positions in sequence data. The multi-head self-
attention mechanism is a common extension of the atten-
tion mechanism in deep learning that employs multiple 
attention heads at the same level, allowing for the fusion 
of different attention weights. In this paper, a multi-head 
self-attention mechanism is used to process the feature 
vectors extracted from the miRNA-disease association 
tree. The self-attention mechanism is as shown in Eqs. (2) 
and (3):

Fig. 1 The construction of the association tree
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In the equations, X represents the vector information 
extracted from the miRNA-disease association tree, and 
Q, K, V represent the query matrix, key matrix, and value 
matrix, respectively. These three matrices are obtained 
by linear transformations of X using  WQ,  WK, and  WV. 
Here,  dk represents the dimension of the query, key, or 
value.

The multi-head self-attention mechanism transforms 
the linear matrices from a set ( WQ,WK ,WV  ) to multi-
ple sets {(WQ

0  , WK
0  , WV

0  ), …, ( WQ
i  , WK

i  , WV
i  ) }. Different 

sets of linear matrices with random initialization ( WQ , 
WK  , WV  ) can map the input vectors to different sub-
spaces, allowing the model to understand input informa-
tion from different spatial dimensions. The multi-head 
attention mechanism is represented as shown in Eqs. (4) 
and (5):

In these equations, WQ
i  , WK

i  , WV
i  represent the 

query matrix, key matrix, and value matrix for the i-th 
head, where h is the number of heads. WO is the lin-
ear transformation matrix used to map the output of 
the multi-head self-attention mechanism into the same 
dimensional space.

The key point of the self-attention mechanism is 
the ability to consider information about all other ele-
ments in the sequence while calculating the association 

(2)







Q = X ∗WQ

K = X ∗WK

V = X ∗WV

(3)Attention(Q,K, V) = softmax

(

Q∗KT

√

dk

)

V

(4)headi = Attention
(

QW
Q
i , KWK

i , VWV
i

)

(5)MultiHead(Q,K, V) = Concat
(

head1, ··· , headh

)

∗ W
O

between each element, rather than considering only 
a fixed number of adjacent elements as in traditional 
fixed window or convolution operations. Therefore, the 
self-attention mechanism can effectively manage long 
dependencies, allowing for improved capture of seman-
tic information within the sequence, and there are 
numerous long dependencies to be addressed within 
the miRNA-disease association tree. In this paper, after 
the initial feature vector information is extracted from 
the tree nodes, the multi-head self-attention mecha-
nism is used for information processing, resulting in 
the acquisition of the updated feature vector, which is 
used as input for model training. The operation princi-
ple is shown in Fig. 2.

TP‑MDA model
In the TP-MDA model, the miRNA-disease association 
matrix is transformed into a miRNA-disease associa-
tion tree to explore long dependencies between nodes. A 
multi-head self-attention mechanism network is used to 
aggregate and extract information along the tree-paths. 
The outputs are concatenated to create feature vectors, 
which are subsequently used as input for training the 
FANN model. The schematic diagram of the TP-MDA 
model is illustrated in Fig. 3.

In this paper, a Fully Connected Artificial Neural Net-
work (FANN) is used to train the data. In addition to the 
input and output layers, three hidden layers have been 
configured. The ReLU (Rectified Linear Unit) function is 
used as the activation function, as depicted in Eq. (6):

For the output layer, a sigmoid function is set as the 
activation function, as shown in Eq. (7):

(6)ReLU = max (0, x)

(7)sigmoid (X) =
1

1+ exp (−x)

Fig. 2 Multi-head self-attention mechanism



Page 6 of 18Biyu et al. BMC Cancer          (2024) 24:683 

The loss function used is cross-entropy loss, and the 
TP-MDA model is trained using the Adam optimizer. 
The learning rate is set to 0.000001 and the number 
of iterations is set to 800. The prediction results of the 
model represent the predicted values for miRNA-disease 
associations.

Data source and model evaluation
The data in this paper is sourced from the Human 
microRNA Disease Database (HMDD, v4.0, http:// 
www. cuilab. cn/ hmdd). The database is a widely used 
miRNA-disease association database that not only com-
piles experimentally validated miRNA-disease associa-
tions, but also enables normalized naming of miRNAs. 
The original dataset obtained from this database down-
load contains 35,547 miRNA-disease association infor-
mation. Since this data is a large dataset consisting 
of five assay methods, there are a certain number of 
duplicate entries. After removing duplicate entries and 
irrelevant information, the miRNA-disease association 
information is obtained, as shown in Table 1.

As shown in Table  1, a total of 21,152 miRNA-dis-
ease associations were obtained after preprocessing 
the dataset. A large sparse matrix with a dimension of 
1207*889 was obtained from the construction of these 
data, and the miRNA-disease association tree was sub-
sequently constructed by traversal operations on the 
matrix. During the training process of the TP-MDA 
model, samples with the same number of positive sam-
ples were randomly selected as negative samples among 
all unknown samples. In order to increase the gener-
alization ability of the TP-MDA model to different sets 
of negative samples, it is set in the subsequent 5-fold 
cross-validation experiments that the negative samples 
selected in each experiment are not duplicated with the 
previous fold experiment.

During model training, a 5-fold cross-validation is used 
for training and validation, as shown in Eq. (8):

In the equation, k = 5 indicates the use of 5-fold cross-
validation in the experiment, and MSE represents Mean 
Squared Error, a common measure used to evaluate the 
model’s performance.

When plotting the Receiver Operating Characteristic 
(ROC) curve, the data includes one-fifth of the posi-
tive samples and an equal number of randomly selected 

(8)CV(k) =
1

k

∑k
i=1 MSEi

Fig. 3 Model diagram

Table 1 Experimental data of TP-MDA model

DataSet miRNA Disease Correlation Correlation rate

HMDD v3.2 1207 889 21,152 1.971%

http://www.cuilab.cn/hmdd
http://www.cuilab.cn/hmdd
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negative samples for validation. The true positive 
rate (TPR) and false positive rate (FPR) are calculated 
using the prediction results from this data, as shown in 
Eqs. (9) and (10):

In the equations, TP represents the number of cor-
rectly identified positive samples, while FN represents 
the number of incorrectly identified positive samples.

Where FP represents the number of incorrectly identi-
fied negative samples, and TN represents the number of 
correctly identified negative samples. By setting different 
classification thresholds, FPR and TPR are represented 
on the horizontal and vertical axes to create the Receiver 
Operating Characteristic (ROC) curve, which serves as 
one of the performance evaluation metrics for the model. 
The area under the ROC curve, defined as AUC, is typi-
cally considered an indicator of classifier performance, 
with larger AUC values associated with better classifier 
performance.

Additionally, accuracy is employed as one of the model 
evaluation metrics. In this paper, accuracy is calculated 
using validation data, as illustrated in Eq. (11):

The TP-MDA model consists of the following three 
parts: (1) Data processing: The miRNA-disease associa-
tion data are transformed into an association matrix. The 
miRNA-disease association tree is constructed by contin-
uously searching through the association matrix. In this 
paper, a miRNA-disease association tree is defined, with 
separate trees constructed using miRNA and disease as 
root nodes. All diseases or miRNAs associated with them 
in the association matrix are considered as the next-
layer child nodes. Each disease or miRNA node is then 
traversed to identify its associated miRNAs or diseases. 
This process is repeated until the entire dataset has been 
completely traversed, yielding a distinct association tree 
with the miRNA or disease as the root node. (2) Feature 
Extraction: In the association tree, there are many long 
dependencies. The multi-head attention mechanism is 
employed to extract information held by the nodes of 
the tree structure. The information from different types 
of root nodes in the association tree is extracted sepa-
rately and then concatenated to form feature vectors for 
potential miRNA-disease association prediction mod-
els. (3) Model training: The feature vectors are fed into 

(9)TPR =
TP

TP + FN

(10)FPR =
FP

FP + TN

(11)ACC =
TP

TP+FN

a five-layer fully connected neural network whose output 
represents the miRNA-disease association score.

Results
Analysis of node number optimization experiment results
In this paper, the data is trained using a 5-layer fully con-
nected neural network, and the number of neurons in 
each fully connected layer is a critical parameter, espe-
cially in the last fully connected layer. The number of 
neurons in the final fully connected layer determines the 
dimension of the potential miRNA-disease interaction 
vectors, and this is a critical factor in predicting miRNA-
disease associations [26]. However, running experi-
ments with different hyperparameter combinations using 
LOOCV can be time-consuming. To save experimental 
resources, we only compare the performance of differ-
ent numbers of neurons in the last fully connected layer. 
Therefore, we select different numbers of nodes for opti-
mization with the goal of obtaining better parameters for 
model training. The AUC values of the model under dif-
ferent numbers of nodes are shown in Fig. 4.

In the ridge plot, each peak represents one fold of the 
experiment, and it summarizes the AUC values during 
the 800 training rounds. The higher the peak, the more 
training rounds the model has reached at that specific 
AUC value, and peaks located to the right indicate a 
larger median in the statistical data, which corresponds 
to better model performance. As the number of nodes 
increases, the statistical results of the AUC value under 
the 5-fold cross-validation experiment are basically the 
same. The experimental results show that the best per-
formance is observed in the fourth fold, while the sec-
ond fold shows the worst performance. The median of 
all peaks is above 0.95, and in the fourth replicate there 
are more AUC values reaching 0.96. The results indicate 
that the HMDD v3.2 dataset can be effectively used for 
stable predictions in the TP-MDA model, which shows 
promising predictive performance in miRNA-disease 
association experiments. This suggests that the TP-
MDA algorithm has superior performance in predicting 
miRNA-disease associations.

The experimental results for different numbers of 
nodes are statistically analyzed. A more detailed exami-
nation of all the results from the fourth fold in Fig. 4 is 
performed to determine the optimal number of nodes. 
The statistical results are shown in Fig. 5.

The trend of AUC values remains consistent as the 
number of nodes changes in Fig. 5a. When the number 
of nodes is set to 128, the AUC performance is supe-
rior to that at other node counts and is optimal in the 
second, third, and fourth fold experiments. The models 
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Fig. 5 The final experimental results under different nodes. a The final AUC experimental results under different number of nodes, b The final AUC 
statistics under different node numbers

Fig. 4 AUC statistical results of 800 rounds of experiments with different number of nodes. a AUC statistics when the number of nodes is 32, b AUC 
statistics when the number of nodes is 64, c AUC statistics when the number of nodes is 128, d AUC statistics when the number of nodes is 256
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with 32 and 128 nodes perform similarly in Fig. 5b. By 
analyzing Fig.  5a and b together, it can be concluded 
that the model performs better when the number of 
nodes is 128.

Analysis of learning rate optimization experiment results
The learning rate is crucial for determining whether the 
network model can converge to the optimal point, so a 
learning rate optimization process is carried out. The 
results are shown in Fig. 6.

During the learning rate optimization process, other 
parameters were held constant while the learning rate 
was changed. When the learning rate was set to 0.000001, 
it produced the same results as the model experiments 
shown in Fig.  4d. In the experimental results shown in 
Fig. 4d, there were no model AUC values that exceeded 
0.97. In the experimental results shown in Fig. 6a, some 
of the AUC values exceeded 0.97, at which point the 
learning rate (lr) was set to 0.00001. This indicates that 
when the learning rate is set to 0.00001, the model’s pre-
dictive performance improved over multiple rounds of 
experiments. Figure 6b compares the final AUC values of 
the model under different learning rates, and the results 
show that the AUC values are consistently higher when 
lr = 0.00001 in the 5-fold cross-validation experiments 
compared to when lr = 0.000001. By optimizing the learn-
ing rate under the same experimental conditions, it was 
found that the prediction performance of the model is 
better when lr = 0.00001. The learning rate is crucial for 
TP-MDA to find the optimal point, and a more suit-
able learning rate parameter can improve the accuracy of 
miRNA-disease association prediction.

Comparison between association tree and association 
matrix in experiments
To validate whether the improvement of the miRNA-
disease association tree has a positive impact on the 
model, this paper conducted experiments with the same 
experimental parameters on the miRNA-disease associa-
tion matrix. In these experiments, the rows and columns 
of the association matrix were concatenated to form a 
vector. Attention mechanisms were then used to extract 
feature vectors, and the resulting vectors were fed into 
a fully connected neural network for training. A com-
parison of the model training results using the miRNA-
disease association matrix and the miRNA-disease 
association tree as inputs is shown in Fig. 7.

The green line represents the AUC results obtained 
using the miRNA-disease association tree as input, while 
the yellow line represents the AUC results obtained using 
the miRNA-disease association matrix as input, as shown 
in Fig.  7a. In the experiments with 5-fold cross-valida-
tion using the association tree as input, the AUC values 
exceeded 0.97, while using the association matrix as input 
did not reach 0.94. The model using the miRNA-disease 
association tree shows significantly better and more sta-
ble performance under 5-fold cross-validation, as shown 
in Fig.  7b. The experimental results show a significant 
improvement in predictive performance when using the 
association tree as input, indicating the superiority of the 
TP-MDA model in predicting potential miRNA-disease 
associations.

Comparing the model experimental results using accu-
racy as the evaluation parameter for models with associa-
tion matrix and association tree as inputs, the results are 
shown in Figs. 8 and 9.

Fig. 6 Experimental results at different learning rates. a When the learning rate is equal to 0.00001, the AUC statistical result of 800 rounds 
of experiments, b The final experimental results of AUC under different learning rates
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When training the model using the miRNA-disease 
association matrix as input, the accuracy remains below 
0.9 in all cases, as shown in Fig. 8. The blue line in Fig. 9 
represents the model trained with the association tree 
as input. In four out of five folds, the accuracy is better 
than 0.9, and all of them outperform the results obtained 
with the association matrix as input. This shows a signifi-
cant improvement in accuracy. It can be concluded that 
by using the miRNA-disease association tree as input, a 
more reliable prediction model can be obtained, which 
can more accurately predict the potential miRNA-disease 
association.

Analysis of experiments with the optimal model 
parameters
The TP-MDA model is trained with the optimal param-
eters under 5-fold cross-validation. ROC curves are 
plotted on the basis of the prediction results and the 
experimental results are statistically analyzed, as shown 
in Fig. 10.

The lowest AUC value in Fig.  10a reaches 0.9691 in 
the 5-fold cross-validation experiments. The statistical 
results in Fig. 10b show that more than 50% of the AUC 
values are greater than 0.97, indicating that this set of 
experimental parameters performs well during model 
training, leading to an improvement in the predictive 
performance of the model. At the same time, the model 
exhibits considerable stability across the entire dataset, 
avoiding the randomness of good model performance 
due to unbalanced sample selection. Compared to using 
the miRNA-disease association matrix as the model 

input, extracting the numerous node relationships from 
the association tree as feature vectors can result in a more 
accurate and superior prediction model for miRNA-dis-
ease associations.

Accuracy, as another parameter to evaluate, is critical 
to improving model performance. The changes in accu-
racy as the model is trained with optimal parameters are 
shown in Figs. 11 and 12.

There is a fluctuation in accuracy in each fold of the 
experiment, but the overall trend is upward and stabilizes 
around 600 training cycles, as shown in Fig. 11. The selec-
tion of these models for further training can have more 
reliable prediction results. The accuracy distribution of 
the 800 training cycles in a 5-fold cross-validation experi-
ment is shown in Fig. 12. The highest accuracy is 0.9227. 
More than 50% of the data in the four folds exceed 0.9. 
The experimental results show that the model performs 
better when the parameters are optimized. This also con-
firms the stability and efficiency of the TP-MDA model.

Comparison and analysis with other models
In this paper, TP-MDA was compared to three other 
miRNA-based models for predicting disease associa-
tion using 5-fold cross validation. Comparison models 
are shown in Table 2.

The comparison of the AUC results for the four dif-
ferent models is shown in Fig. 13.

TP-MDA obtained the highest AUC value. 
WBNPMD and BNPMDA had lower AUC values 
because they predicted miRNA-disease associations by 
resource allocation and transfer, which over-relied on 

Fig. 7 Comparison of AUC values of association matrix and association tree. a Comparison of AUC results under 5-fold cross-validation experiment 
using association matrix and association tree as input, b Statistics of AUC results under 5-fold cross-validation experiment using association matrix 
and association tree as input
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the similarity matrix and affected their predictive per-
formance. Compared to these two models, MDPBMP 
used 0.5 as the threshold to filter miRNA similar-
ity, improved the reliability of similarity values, and 
increased the prediction accuracy by constructing 
feature vectors for nodes and aggregating informa-
tion from all nodes in each meta path instance. The 

TP-MDA model presented in this paper does not rely 
on any known similarity measures. Instead, it uses 
the construction of a miRNA-disease association tree 
to describe the global relationships between nodes. 
It uses an efficient model to learn long dependencies 
within the association tree, resulting in a high-per-
forming model with the highest AUC value.

Fig. 8 Accuracy statistics of model prediction results using miRNA-disease association matrix as input were obtained in the 5-fold cross-validation 
experiment, and 800 rounds of model training were performed in each fold experiment
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Case studies
For our case studies, we chose colorectal cancer [27–30] 
and lung cancer [31, 32], two common cancers. We used 
TP-MDA to score and rank the relevance of miRNA for 
unknown samples. The top 15 miRNAs were selected for 
validation by comparison with biomedical literature from 
the PubMed database. The predicted results of miRNA 
associated with colorectal cancer are shown in Table 3.

The validation results for lung cancer based on the pre-
dictions of the TP-MDA model are shown in Table 3. In 
the miRNA naming convention, “-1” and “-2” are added 
to the miRNA names to indicate that these miRNAs are 
transcribed and processed from DNA sequences on dif-
ferent chromosomes but share the same mature sequence 
[45]. Therefore, even though the top-ranked miRNA, hsa-
mir-101-2, hasn’t been directly validated to be associated 

Fig. 10 AUC experiment results of optimal parameters. a When the optimal parameters are used, the ROC curve under the experiment is 5-fold 
cross-verified, b Statistics of AUC results of TP-MDA model in 800 rounds of experiments

Fig. 9 Comparison of accuracy results under 5-fold cross-validation experiment using association matrix and association tree as input
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with colorectal cancer, it is known that miRNA hsa-
mir-101, which shares the same mature sequence, is 
associated with colorectal cancer. Therefore, there is 
an association between the miRNA hsa-mir-101-2 and 
colorectal cancer. In summary, of the top 15 miRNAs 
predicted to be associated with colorectal cancer by TP-
MDA, 12 were validated.

The prediction results of miRNA associated with lung 
cancer are shown in Table 4:

The top 15 miRNAs predicted to be associated with 
lung cancer by the TP-MDA model are shown in Table 4. 
Among them, the sixth ranked miRNA, hsa-mir-30b, 
and the tenth ranked miRNA, hsa-mir-30b, share a high 
degree of sequence homology. The eleventh ranked 

Fig. 11 The accuracy statistics of the model were obtained by using the optimal parameters and the miRNA-disease association tree as input



Page 14 of 18Biyu et al. BMC Cancer          (2024) 24:683 

miRNA, hsa-let-7c, follows an earlier nomenclature and 
is primarily used to represent the let-7 miRNA family. 
The study by Yin et  al. [60] demonstrated that the let-7 
miRNA family is involved in the regulation of resist-
ance to epidermal growth factor receptor tyrosine kinase 
inhibitors (EGFR-TKIs) and may serve as predictive bio-
marker for EGFR-TKI resistance in non-small cell lung 
cancer (NSCLC). EGFR-TKI resistance represents a sig-
nificant challenge in treating NSCLC. In summary, all of 
the top 15 miRNAs predicted to be associated with lung 
cancer by TP-MDA were validated. The statistics and vis-
ualization of the verification results are shown in Fig. 14.

Among the top 15 miRNAs associated with colo-
rectal cancer and lung cancer, 12 and 15 miRNAs were 

validated, accounting for 80% and 100% of the total vali-
dated miRNAs, respectively, as shown in Fig. 12a and b. 
Among the top 15 predicted miRNAs associated with 
colorectal cancer and lung cancer, hsa-mir-219 is asso-
ciated with both diseases simultaneously, as shown in 
Fig. 14c. The miRNA hsa-mir-181a-1, which is associated 
with colorectal cancer, shares the same mature sequence 
with hsa-mir-181a, which is associated with lung cancer. 
In addition, the hsa-let-7 family members, hsa-let-7f and 
hsa-let-7c, are associated with colorectal cancer and lung 
cancer, respectively. This suggests that the relationships 
between miRNAs and diseases are complex and that the 
TP-MDA model has the ability to predict complex asso-
ciations between miRNAs and diseases.

Table 2 Introduction to comparative models

Modle Details Reference

MDPBMP Through the construction of a heterogeneous miRNA-disease-gene information network, seven symmetric meta-paths are 
defined on the basis of different semantics. After constructing the initial feature vectors for all nodes, the vector informa-
tion carried by nodes on meta path instances is extracted and aggregated to update the feature vectors of the initial nodes. 
After constructing the initial feature vectors for all nodes, the vector information carried by nodes on meta path instances 
is extracted and aggregated to update the initial node feature vectors. Finally, the miRNA and disease embedding feature vec-
tors are used for the calculation of their respective relevance scores.

 [23]

WBNPMD The biased scores for miRNAs and diseases were constructed using the aggregated hierarchical clustering method. A bipartite 
network recommendation algorithm was then applied to assign transfer weights based on these biased scores to predict 
potential miRNA-disease associations.

 [24]

BNPMDA By combining known miRNA and disease similarities and properly configuring the initial information, transfer weights were 
constructed. Subsequently, potential miRNA-disease associations were inferred by means of a two-step bipartite network 
algorithm.

 [25]

Fig. 12 The accuracy distribution of the model was obtained by using the optimal parameters and the miRNA-disease association tree as input
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Conclusions
This paper introduces the TP-MDA miRNA-disease 
association prediction model. This model does not rely 
on any similarity measures and employs a multi-head 
self-attention mechanism to extract global vector infor-
mation from the miRNA-disease association tree. Finally, 
the model is trained using a FANN framework in a 
5-fold cross-validation experiment. The experimental 
results show that this algorithm performs excellently in 
predicting miRNA-disease associations. It shows good 

and stable performance in cross-validation. Compared 
with other models, it has better prediction effect. The 
TP-MDA model can serve as a reference method for 
data mining and association prediction in various fields, 
including life sciences, biology, and medical genetics. 
However, the field of miRNA-disease association predic-
tion still needs to be further explored despite the positive 

Fig. 13 Graph comparing AUC values with other models

Table 3 The results of the association between colorectal cancer 
and miRNA

Rank miRNA PMID Reference

1 hsa-mir-101-2 37,575,080  [33]

2 hsa-mir-29b-1 32,034,483  [34]

3 hsa-mir-181a-1 36,613,487  [35]

4 hsa-mir-769 30,565,566  [36]

5 hsa-mir-323a 31,238,337  [37]

6 hsa-mir-153-2 35,072,892  [38]

7 hsa-mir-193 33,317,596  [39]

8 hsa-mir-138-2 33,225,938  [40]

9 hsa-let-7f 36,295,073  [41]

10 hsa-mir-219 32,744,690  [42]

11 hsa-mir-663b 31,240,955  [43]

12 hsa-mir-1225 32,838,607  [44]

Table 4 Results of the association between lung cancer and 
miRNA

Rank miRNA PMID Reference

1 hsa-mir-181a 32,506,887  [46]

2 hsa-mir-22 32,514,270  [47]

3 hsa-mir-25 35,628,157  [48]

4 hsa-mir-130b 31,389,608  [49]

5 hsa-mir-30b 37,686,123  [50]

6 hsa-mir-27a 31,772,627  [51]

7 hsa-mir-342 32,938,459  [52]

8 hsa-mir-708 31,419,576  [53]

9 hsa-mir-218 35,034,634  [54]

10 hsa-mir-27b 31,772,627  [51]

11 hsa-let-7c 36,388,933  [55]

12 hsa-mir-128 34,533,066  [56]

13 hsa-mir-125b-2 31,959,728  [57]

14 hsa-mir-219 32,159,887  [58]

15 hsa-mir-486 30,963,622  [59]
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experimental results. For example, understanding the 
complex interactions between different biological infor-
mation in disease mechanisms is a significant challenge. 
In future work, the development of algorithms capable of 
handling multiple types of biological information will be 
critical to achieving more accurate and effective predic-
tions in this area.
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