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Abstract
Background  Metabolic dysregulation is recognized as a significant hallmark of cancer progression. Although 
numerous studies have linked specific metabolic pathways to cancer incidence, the causal relationship between 
blood metabolites and lung cancer risk remains unclear.

Methods  Genomic data from 29,266 lung cancer patients and 56,450 control individuals from the Transdisciplinary 
Research in Cancer of the Lung and the International Lung Cancer Consortium (TRICL-ILCCO) were utilized, and 
findings were replicated using additional data from the FinnGen consortium. The analysis focused on the associations 
between 486 blood metabolites and the susceptibility to overall lung cancer and its three major clinical subtypes. 
Various Mendelian randomization methods, including inverse-variance weighting, weighted median estimation, and 
MR-Egger regression, were employed to ensure the robustness of our findings.

Results  A total of 19 blood metabolites were identified with significant associations with lung cancer risk. Specifically, 
oleate (OR per SD = 2.56, 95% CI: 1.51 to 4.36), 1-arachidonoylglyceropholine (OR = 1.79, 95% CI: 1.22 to 2.65), 
and arachidonate (OR = 1.67, 95% CI: 1.16 to 2.40) were associated with a higher risk of lung cancer. Conversely, 
1-linoleoylglycerophosphoethanolamine (OR = 0.57, 95% CI: 0.40 to 0.82), ADpSGEGDFXAEGGGVR, a fibrinogen 
cleavage peptide (OR = 0.60, 95% CI: 0.47 to 0.77), and isovalerylcarnitine (OR = 0.62, 95% CI: 0.49 to 0.78) were 
associated with a lower risk of lung cancer. Notably, isoleucine (OR = 9.64, 95% CI: 2.55 to 36.38) was associated with 
a significantly higher risk of lung squamous cell cancer, while acetyl phosphate (OR = 0.11, 95% CI: 0.01 to 0.89) was 
associated with a significantly lower risk of small cell lung cancer.

The associations between dysregulation 
of human blood metabolites and lung cancer 
risk: evidence from genetic data
Gujie Wu1†, Jun Liu2†, Haochun Shi1†, Binyang Pan1†, Min Li1, Xiaolin Wang3, Yao Li3, Lin Cheng4*, Weigang Guo1* and 
Yiwei Huang1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-024-12416-1&domain=pdf&date_stamp=2024-7-17


Page 2 of 10Wu et al. BMC Cancer          (2024) 24:854 

Introduction
Lung cancer (LC) continues to be a major global health 
challenge and the leading cause of cancer-related deaths 
worldwide, accounting for more than 1.8 million deaths 
each year [1]. Despite advances in medical research and 
clinical practices, the incidence of LC is on the rise, 
emphasizing the critical need for more innovative diag-
nostic methods and effective treatment strategies [2, 3]. 
Metabolomics, a critical component of systems biology, 
has emerged as a powerful tool for uncovering the meta-
bolic alterations that underpin cancer progression. This 
field provides essential insights into how changes at the 
metabolic level can promote the proliferation and metas-
tasis of cancer cells [4].

In LC, specific alterations in glycolysis and lipid metab-
olism have been identified as pivotal to the disease’s 
progression. These changes offer promising targets for 
therapeutic intervention due to their roles in support-
ing the heightened energetic and biosynthetic demands 
of cancer cells [5–7].Significant research, including work 
by Whitehouse et al., illustrates the potential of target-
ing key metabolites for cancer treatment. For instance, 
manipulating metabolites such as dichloroacetate (DCA), 
which affects the activity of pyruvate dehydrogenase, 
demonstrates a viable method to alter cancer cell metab-
olism effectively [8, 9]. However, the specific causal rela-
tionships between these metabolic changes and the risk 
of developing LC are still not well established, with only 
a few prospective studies linking metabolomic profiles 
directly to cancer progression. Advances in genome-
wide association studies (GWAS) and the application of 
Mendelian randomization (MR) have provided new ave-
nues for exploring the genetic foundations of metabolic 
changes in human diseases, including cancer [10, 11]. 
MR, in particular, offers a robust methodology for iden-
tifying potential causal relationships between metabolic 
disruptions and LC by using genetic variants as proxies to 
reduce confounding factors in observational studies [12].

Our research integrates MR with extensive GWAS data 
to assess how specific blood metabolites might influence 
the risk of LC, aiming to uncover the genetic and pro-
teomic mechanisms that link these metabolic changes 
to the disease. This comprehensive approach allows us 
to explore the intricate network of genetic interactions 
and metabolic pathways, potentially identifying biomark-
ers for early detection and novel targets for therapeutic 
intervention. Through this comprehensive approach, 

we aim to refine the accuracy of LC screening and tailor 
treatment strategies, thereby improving the prognosis 
and quality of life for LC patients.

Materials and methods
Study design
In our study, we selected single nucleotide polymor-
phisms (SNPs) from GWAS as genetic instrumental 
variables to investigate the potential causal relationship 
between human blood metabolites and LC [13]. The 
sequential workflow of our research is illustrated in Fig. 1. 
Our two-sample MR analysis is based on three main 
assumptions: (1) The assumption of relevance: IVs have 
a strong association with the exposure; (2) The assump-
tion of independence: IVs are not correlated with any 
variables that may influence the exposure and outcome; 
(3) The assumption of exclusion restrictions: IVs do not 
affect the outcome through any other causal pathways, 
except for their effect on the exposure. All summary-level 
data used in our study are publicly accessible. Further 
ethical approval is not required as this study is based on 
publicly available GWAS data.

Data source and study samples of lung cancer
This study’s findings are based on a GWAS conducted 
by the Transdisciplinary Research in Cancer of the Lung 
and the International Lung Cancer Consortium (TRICL-
ILCCO) [14]. We included a total of 85,716 individuals, 
comprising 29,266 LC cases and 56,450 controls from 
TRICL-ILCCO. The study considered overall LC and 
its three major clinical subtypes: LC with 29,266 cases 
and 56,450 controls, lung adenocarcinoma (LUAD) with 
11,273 cases and 55,483 controls, lung squamous cell 
cancer (LUSC) with 7,426 cases and 55,627 controls, 
and small cell lung cancer (SCLC) with 2,664 cases and 
21,444 controls. To ensure the accuracy and reliability of 
the research results, this study rigorously checked and 
compared the participant IDs from the OncoArray data-
set with those used in previous GWAS, including the 
ATBC, CARET, and Eagle studies. By this comparison, 
we ensured that the new dataset did not include any sam-
ples previously analyzed. This method prevents statistical 
biases and complexities that might arise from overlap-
ping samples, thereby ensuring the accuracy and valid-
ity of the causal inferences derived from MR methods 
[14–16]. Additionally, we obtained summary data from 
the FinnGen consortium, which included 5,842 LC cases 

Conclusion  This study reveals the complex relationships between specific blood metabolites and lung cancer risk, 
highlighting their potential as biomarkers for lung cancer prevention, screening, and treatment. The findings not only 
deepen our understanding of the metabolic mechanisms of lung cancer but also provide new insights for future 
treatment strategies.
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and 287,137 controls, analyzing genetic and health data 
from approximately 500,000 participants. The diagnosis 
of LC followed the International Classification of Dis-
eases (ICD-10), as detailed in Supplementary Table S1. 
Our study primarily relied on publicly available GWAS 
summary data from populations of European descent. 
Through this analysis, we were able to confirm the key 
findings previously observed, which not only enhanced 
our confidence in the data analysis but also provided 
further evidence of the robustness and accuracy of our 
research conclusions.

Genetic instruments selection
Genetic data on blood metabolites were obtained from 
the Metabolomics GWAS Server (https://metabolomics.
helmholtz-muenchen.de/gwas/). This report represents 
the most comprehensive analysis of genetic loci for blood 
metabolites to date, identifying nearly 2.1  million SNPs 
across 486 metabolites, as determined by genome-wide 
association scans and high-throughput metabolic profil-
ing by Shin et al. [17]. The names and chemical properties 
of these 486 metabolites, including those marked with 
“X-” whose properties are unknown, are listed in Supple-
mentary Table S1. The study involved 7,824 participants 
of European ancestry, including 1,768 from the KORA F4 
study in Germany and 6,056 from the UK Twin Study. Of 
the 486 metabolites, 107 are classified as unknown due 
to their poorly defined chemical properties [17]. Accord-
ing to the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database, the 309 identified metabolites are 
categorized into eight classes: cofactors and vitamins, 
energy, amino acids, carbohydrates, lipids, nucleotides, 
peptides, and xenobiotic metabolism [18]. Initial selec-
tion of instrumental variables (IVs) for each metabolite 

was based on a strict P-value cutoff of < 1 × 10− 5. SNPs 
with an r2 < 0.01 and a distance > 500  kb were retained 
after evaluating the linkage disequilibrium (LD). Addi-
tionally, the strength of the genetic instruments was 
evaluated using F-statistics to minimize bias from weak 
IVs. The F-statistic was calculated as (Beta/SE)2, with a 
mean value considered indicative of overall strength. An 
F-statistic > 10 denotes strong statistical power [19, 20]. 
Ultimately, 11,126 SNPs associated with the 486 blood 
metabolites were retained as IVs. Detailed information 
on the IVs for the 486 blood metabolites is provided in 
Supplementary Table S2.

Statistical analyses
Four methods were used to assess the causal association 
between blood metabolites and four types of LC: inverse-
variance-weighting (IVW), weighted median, maximum 
likelihood-based methods, and MR-Egger regression. The 
IVW approach, assuming all IVs are valid, combines their 
effects to produce an overall weighted effect [21]. Con-
sidering potential heterogeneity, both random and fixed 
effect models of IVW were calculated as main analyses. 
The weighted median estimator provides robust causal 
estimates even when up to 50% of the IVs are invalid 
[22]. Additionally, assuming a linear relationship between 
exposure and outcome, the maximum likelihood-based 
method estimates causal associations using a nor-
mal bivariate distribution [23]. The MR Egger method 
includes an intercept term in the regression model to 
evaluate directional pleiotropy [24]. An intercept signifi-
cantly different from zero suggests pleiotropy and a viola-
tion of the basic MR assumption. Heterogeneity among 
IVs was assessed using Cochran’s Q test [25]. If substan-
tial heterogeneity was found (P < 0.05), a random-effects 

Fig. 1  The overview of the research workflow
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model was used; otherwise, a fixed-effects model was 
employed (P > 0.05). Leave-one-out analysis identified 
influential SNPs affecting causal estimates, with a sig-
nificance threshold set at P < 0.05 (two-sided). If fewer 
than four SNPs are available, only the IVW method is 
used. All analyses utilized the Mendelian Randomization, 
MRPRESSO, TwoSampleMR, and ggplot2 packages in R 
software (version 3.6.3).

Results
Causal estimates of genetically predicted blood 
metabolites on lung cancer
Initially, to elucidate the association between metabolic 
alterations and LC, we employed the IVW method in our 
primary MR analysis. This method facilitated the estima-
tion of causal relationships between 486 blood metabo-
lites, including amino acids, carbohydrates, cofactors 
and vitamins, energy, lipids, nucleotides, peptides, and 
xenobiotic metabolism, and the risk associated with 
overall LC and its three specific subtypes: LUAD, LUSC, 
and SCLC. These analyses are illustrated in Fig. 2. Subse-
quently, to advance our understanding of LC prevention 
and diagnosis, we conducted a detailed analysis focused 
on how these 486 metabolites are associated with LC 
susceptibility overall and in these subtypes. This com-
prehensive approach aimed to pinpoint key biomark-
ers crucial for the early detection and prevention of LC. 
Understanding these associations is critical, as these bio-
markers can significantly improve diagnostic processes 
and potentially provide guidance for preventive measures 
in clinical settings.

By identifying metabolites with the most significant 
associations, our research endeavors to provide action-
able insights that could foster more effective strategies 
for managing LC risk and enhancing patient outcomes. 
As shown in Fig. 3, a total of 19 blood metabolites were 
identified with significant associations with LC risk using 
the IVW method. Specifically, genetically predicted levels 
of 1-linoleoylglycerophosphoethanolamine (OR = 0.57; 
95% CI = 0.40–0.82, P = 0.003), ADpSGEGDFX-
AEGGGVR (a fibrinogen cleavage peptide, OR = 0.60; 
95% CI = 0.47–0.77, P < 0.001), and isovalerylcarnitine 
(OR = 0.62; 95% CI = 0.49–0.78, P < 0.001) were asso-
ciated with lower risk of LC. These associations were 
consistent across additional analytical methods such as 
Maximum Likelihood and Weighted Median, detailed 
in Supplementary Table S3. Conversely, higher risk were 
associated with the metabolites oleate (OR = 2.56; 95% 
CI = 1.51–4.36, P = 0.001), 1-arachidonoylglycerophos-
phocholine (OR = 1.79; 95% CI = 1.22–2.65, P = 0.003), and 
arachidonate (OR = 1.67; 95% CI = 1.16–2.40, P = 0.006). 
Similar findings were observed for the association of 
ergothioneine with LC risk. Heterogeneity and pleiotropy 
tests showed no significant influence on the causal effects 

of the metabolites on LC (P > 0.05). Additionally, the MR-
PRESSO global test suggested no outlier SNPs, reinforc-
ing the robustness of our findings.

Causal estimates of genetically predicted blood 
metabolites on subtype lung cancer
The influence of all blood metabolites on LC subtypes 
is detailed in Supplementary Tables S4–S6. Figures  4–6 
provide visual representations from the MR analysis, 
indicating that 50 blood metabolites are linked to spe-
cific LC subtypes. Notably, 1-arachidonoylglyceropholine 
was associated with higher risk across multiple subtypes: 
SCLC with an OR of 2.25 (95% CI = 1.14–4.43, P = 0.019), 
LUSC with an OR of 1.79 (95% CI = 1.13–2.83, P = 0.013), 
and LUAD with an OR of 1.80 (95% CI = 1.21–2.67, 
P = 0.004). Conversely, isovalerylcarnitine was associ-
ated with lower risk for all three subtypes, showing pro-
tective associations as observed using the IVW method: 
LUAD (OR = 0.66, 95% CI = 0.48–0.91, P = 0.011), LUSC 
(OR = 0.65, 95% CI = 0.44–0.95, P = 0.025), and SCLC 
(OR = 0.41, 95% CI = 0.23–0.73, P = 0.002).

Additionally, 1-linoleoylglycerophosphoethanolamine 
was identified as a significant protective factor for LUAD 
(OR = 0.52, 95% CI = 0.32–0.85, P = 0.009) and LUSC 
(OR = 0.49, 95% CI = 0.28–0.85, P = 0.011). These asso-
ciations were primarily confirmed through the Maxi-
mum Likelihood method (Supplementary Tables S4–S6). 
Notably, isoleucine (OR = 9.64, 95% CI: 2.55 to 36.38) was 
associated with a significantly higher risk of LUSC. For 
SCLC, the IVW method suggested that genetically pre-
dicted oleate was associated with a substantially higher 
risk (OR = 6.26, 95% CI = 1.63–24.05, P = 0.008), while 
acetylphosphate was associated with a significant reduc-
tion in risk (OR = 0.11, 95% CI = 0.01–0.89, P = 0.038). 
Similar associations were corroborated with MR-
PRESSO and Maximum Likelihood analyses. Genetically 
predicted acetylphosphate also showed a strong pro-
tective association against LUAD, with IVW estimates 
indicating a significant reduction in risk (OR = 0.18, 
95% CI = 0.05–0.65, P = 0.009; Fig.  4). Additionally, the 
metoprolol acid metabolite was associated with slightly 
lower risk for both LUSC (OR = 0.96, 95% CI = 0.93–0.99, 
P = 0.008; Fig.  5) and LUAD (OR = 0.97, 95% CI = 0.95-
1.00, P = 0.022; (Fig. 4). The pleiotropy tests, including the 
Egger intercept analysis, indicated no significant influ-
ence on the associations (P > 0.05).

Heterogeneity and sensitivity analysis
While the IVW method is effectively used to estimate 
associations between exposures and disease outcomes, it 
is still vulnerable to biases arising from weak instrumen-
tal variables. To ensure the reliability of our conclusions, 
we employed data from the FinnGen consortium and 
conducted comprehensive sensitivity analyses to validate 
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the principal findings from the TRICL-ILCCO studies. In 
the FinnGen dataset, we confirmed that 1-linoleoylglyc-
erophosphoethanolamine is negatively associated with 
LC risk (OR = 0.59; 95% CI = 0.35–0.98, P = 0.042). Simi-
larly, 1-arachidonoylglycerophosphocholine was found 
to be positively associated with LC risk (OR = 1.66; 95% 
CI = 1.12–2.47, P = 0.013), as illustrated in Supplemental 
Fig.  S1. To further assess the robustness of these find-
ings, we conducted extensive sensitivity and heterogene-
ity analyses across both datasets. As depicted in Fig.  7, 

scatter plots and funnel plots consistently demonstrated 
robust results, showing no significant influence from any 
single SNP. These findings not only reinforce the consis-
tency and reliability of our observations but also high-
light the statistical rigor applied throughout our research.

Discussion
LC remains a major global health challenge, with an 
ever-growing need for effective screening and preven-
tion strategies [1–3]. While risk factors such as smoking 

Fig. 2  Circular Manhattan plot displaying the associations between blood metabolites and the risk of LC
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and environmental elements have been identified, the 
specific etiology of many cases remains elusive. Our 
study, employing MR and GWAS data, conducted an 
in-depth exploration of the causal relationship between 
blood metabolites and LC. This is the first systematic 
assessment of the role of human blood metabolites in 
the onset of LC, revealing how key metabolic distur-
bances potentially accelerate LC progression. Our find-
ings expose the complex interplay between LC risk and 

metabolic changes, offering new insights into the meta-
bolic pathology of LC. Our research identified 19 blood 
metabolites with significant associations with LC risk. 
Specifically, 1-linoleoyl glycerophosphoethanolamine, 
ADpSGEGDFXAEGGGVR (a fibrinogen cleavage pep-
tide), and isovalerywere found to be associated with 
lower risks of LC, showing reductions in risk of 43%, 
40%, and 38%, respectively. Conversely, oleate, 1-arachi-
donoylglyceropholine, and arachidonate were linked to 

Fig. 4  Forest plot for the causality of blood metabolites on LUAD derived from IVW analysis. CI, confidence interval; IVW, inverse variance weighted; OR, 
odds ratio; SNPs, single nucleotide polymorphisms

 

Fig. 3  Forest plot for the causality of blood metabolites on LC derived from IVW analysis. CI, confidence interval; IVW, inverse variance weighted; OR, odds 
ratio; SNPs, single nucleotide polymorphisms
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increased LC risks, at 2.56, 1.79, and 1.67 times the origi-
nal risk, respectively. Notably, isoleucine was associated 
with an increase to 9.64 times the original risk of LC. In 
the case of SCLC, genetically predicted oleate was found 
to increase the risk to 6.26 times the original. Acetylphos-
phate significantly lowered the risk, reducing it by 89%. 

1-arachidonoylglyceropholine markedly elevated the risk 
across all LC subtypes, highlighting its potential as a bio-
marker in LC prevention and treatment strategies. Isova-
lerylcarnitine demonstrated a protective effect across all 
LC subtypes, underscoring its potential as a protective 
biomarker in LC prevention and treatment strategies.

Fig. 6  Forest plot for the causality of blood metabolites on SCLC derived from IVW analysis. CI, confidence interval; IVW, inverse variance weighted; OR, 
odds ratio; SNPs, single nucleotide polymorphisms

 

Fig. 5  Forest plot for the causality of blood metabolites on LUSC derived from IVW analysis. CI, confidence interval; IVW, inverse variance weighted; OR, 
odds ratio; SNPs, single nucleotide polymorphisms
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Linoleoylglycerophosphoethanolamine, a key member 
of the phosphatidylethanolamine (PE) family, consists of 
fatty acids, ethanolamine, phosphate, and glycerol [26]. 
Its high expression in colorectal cancer tissues may be 
linked to cancer progression [27]. Research indicates 
that elevated serum levels of 1-linoleoylglycerophos-
phoethanolamine reduce the risk of atherosclerosis and 
renal failure [28]. As a fundamental component of cell 
membrane phospholipids, PE is essential for maintain-
ing cellular structural stability. PE and its precursors, 
ethanolamine and ethanolamine phosphate, have dem-
onstrated effectiveness in inhibiting the proliferation and 
metastasis of various cancer cells [29, 30]. Ethanolamine 
intervention in a colon xenograft mouse model signifi-
cantly reduced tumor size. AdpSGEGDFXAEGGGVR 
has been associated with reduced risks of prostate and 
pancreatic cancers, establishing it as a potential blood 
metabolite for future testing [31–33]. Isovalerylcarnitine, 
synthesized in the human kidneys and liver, is vital for 
cellular energy metabolism. It facilitates the transport of 
long-chain fatty acids into mitochondria for β-oxidation 
and regulates the balance between free coenzyme A and 
acyl-coenzyme A [34, 35]. Abnormalities in acylcarni-
tine levels suggest disorders in fatty acid β-oxidation and 
branched-chain amino acid metabolism, linked to meta-
bolic diseases such as leucine and isoleucine metabo-
lism disorders, isovaleric acidemia, and type 2 diabetes 
[26–29]. Carnitine is proposed to stimulate neuropro-
tective factors [36]. Previous research has shown that 
isovalerylcarnitine activates the calpain system, signifi-
cantly increasing early apoptosis and cytotoxicity [37]. 

1-arachidonoylglycerophosphocholine, an important 
lyso-phosphatidylcholine (LPC), has been reported to 
inhibit CXCR3-mediated T cell migration to inflamma-
tory sites [38]. In healthy individuals, plasma levels of 
LPC range from 125 to 143 nmole/mL, but these levels 
are elevated in conditions such as cardiovascular disease, 
diabetes, ovarian cancer, and renal failure [39–42]. Other 
studies suggest that higher levels of arachidonoylglycero-
phosphocholine are linked to thyroid and colon tumors. 
Oleate is known for its extensive physiological regula-
tory functions, stimulating fatty acid transport protein 
1-mediated fatty acid uptake and inhibiting ATP-binding 
cassette transporters ABCA1/G1-mediated cholesterol 
efflux, leading to accumulation of neutral lipids, fatty 
acids, total cholesterol, and cholesterol esters in macro-
phages, thus influencing disease progression [43–45]. 
Our study’s findings echo recent research emphasizing 
the importance of metabolic reprogramming in LC pro-
gression. Recent studies suggest that targeting energy 
metabolism pathways in LC cells could be key therapeu-
tic targets; our findings lend further support to these 
theories. Additionally, our results align with cancer 
metabolism research, indicating that metabolites could 
serve as potential biomarkers.

This study is innovative for several reasons. First, it 
uniquely combines metabolomics and genomics through 
Mendelian randomization to elucidate the causal rela-
tionships between blood metabolites and various types 
of LC, offering substantial clinical research value. Sec-
ond, the employment of diverse MR models and strin-
gent quality control measures enhances the reliability 

Fig. 7  Genetic association of blood metabolites with overall LC and the risk of its three major clinical subtypes. (A) Scatter plot of overall LC and its three 
major clinical subtypes. (B) Funnel plot of overall LC and its three major clinical subtypes
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and stability of our findings. Despite these strengths, 
the study faces challenges due to the extensive variety 
of metabolites analyzed, complicating the data interpre-
tation. Furthermore, while our results provide founda-
tional insights, there remains a critical need for further 
research to elucidate the specific biological mechanisms 
through which these metabolites influence LC progres-
sion, including their roles in cell proliferation, invasion, 
and resistance. Future studies should also examine these 
metabolites across different populations and cancer sub-
types to fully understand their impacts and potential 
clinical applications.

Conclusion
Our study provides a novel understanding of the meta-
bolic underpinnings of LC by demonstrating a poten-
tial causal link between specific blood metabolites and 
the risk of developing LC. These insights are pivotal for 
advancing early detection and preventative strategies. 
Additionally, our findings could significantly inform the 
development of targeted treatment approaches, poten-
tially leading to more personalized and effective thera-
peutic options for LC patients.
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