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Abstract
Background  Pancreatic ductal adenocarcinoma (PDAC) ranks among the deadliest types of cancer, and it will be 
meaningful to search for new biomarkers with prognostic value to help clinicians tailor therapeutic strategies.

Methods  Here we tried to use an advanced optical imaging technique, multiphoton microscopy (MPM) combining 
second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) imaging, for the label-free detection 
of PDAC tissues from a cohort of 149 patients. An automated image processing method was used to extract collagen 
features from SHG images and the Kaplan-Meier survival analysis and Cox proportional hazards regression were used 
to assess the prognostic value of collagen signatures.

Results  SHG images clearly show the different characteristics of collagen fibers in tumor microenvironment. We 
gained eight collagen morphological features, and a Feature-score was derived for each patient by the combination 
of these features using ridge regression. Statistical analyses reveal that Feature-score is an independent factor, and can 
predict the overall survival of PDAC patients as well as provide well risk stratification.

Conclusions  SHG imaging technique can potentially be a tool for the accurate diagnosis of PDAC, and this optical 
biomarker (Feature-score) may help clinicians make more approximate treatment decisions.
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Background
Pancreatic cancer has a complex mechanism, high mor-
tality rate, and an extremely poor prognosis [1]. Approxi-
mately 90% of pancreatic cancer are pancreatic ductal 
adenocarcinoma (PDAC) [2]. Its onset is insidious, and 
most patients are already in the advanced stages when 
they are diagnosed and still have low 5-year survival rate 
[3] though genomic screen has been used to obtain func-
tional targets for increased therapeutic effectiveness in 
pancreatic cancer [4]. Factors that impact survival rates 
for PDAC include age, gender, underlying health condi-
tions, lifestyle habits, microbiomes, et al., and tumor 
stage at diagnosis is the most important factor affecting 
the outcome of PDAC [5, 6]. Identifying new prognostic 
markers to screen high-risk groups is a novel approach 
to enhance pancreatic cancer prognosis. Recently, new 
biomarkers with prognostic significance have been dis-
covered for the management of this disease such as car-
bohydrate antigen 19 − 9 (CA19-9) [7], haemoglobin A1c 
[5], laminin-5 gamma-2 (LAMC2) [8], long non-coding 
RNAs (lncRNAs) [9] and extracellular vesicles (EVs) [10]. 
One of the most notable features of PDAC is the dense 
desmoplastic stroma, which is now highly valued and 
being studied alongside the malignant epithelial compo-
nent of PDAC. The extracellular matrix (ECM), a promi-
nent element of the PDAC stroma, provides physical and 
chemical signals that govern the actions of cancerous 
cells [11, 12]. Irregular ECM in tumor microenvironment 
would facilitate cancer progression by directly spurring 
cell transformation and metastasis as well as affecting 
stromal cell activities such as angiogenesis and inflamma-
tion, which can contribute to the composition of tumor 
microenvironment.

Collagen fibers, which account for approximately 90% 
or more of the total ECM mass [13], could be used to 
distinguish normal pancreatic tissues from PDAC tis-
sues. The abundance of collagen fibers throughout the 
stroma strongly correlates with the progression of PDAC. 
Interstitial fibrosis in the microenvironment of pancre-
atic cancer is considered the primary culprit in imped-
ing chemotherapeutic drug delivery. The degradation of 
collagen fibers contributes to enhanced drug delivery and 
perfusion [14]. The ECM, which contains ample collagen 
fibers, not only forms a physical barrier that obstructs the 
efficacy of chemotherapeutic drugs but also promotes 
drug resistance in cancer cells through multiple pathways 
[13]. Some studies suggested that collagen fibers could 
function as a “highway” and facilitate cancer cell migra-
tion and metastasis rather than hindering it [15], whereas 
some indicated that collagen fibers could act as a bar-
rier to tumor invasion and thus prevent tumor cells from 
spreading [16]. Currently, hematoxylin and eosin (H&E) 
staining and Masson’s trichrome staining are the gold 
standard for the diagnosis of collagen features in PDAC, 

but these techniques are cumbersome, labor-intensive, 
and time-consuming. Multiphoton microscopy (MPM) 
is an optical imaging technique that has the ability to 
perform label-free imaging with high resolution and low 
photobleaching [17]. The endogenous signals in biologi-
cal tissues mainly come from nicotinamide adenine dinu-
cleotide (NADH) and its phosphate derivative (NADPH), 
flavin adenine dinucleotide (FAD), collagen, elastin, kera-
tin and so on. Therefore, MPM can provide high-contrast 
images of cells as well as extracellular mesenchyme [18, 
19]. This capability helps basic and clinical researchers 
acquire detailed microstructural information of biologi-
cal tissues [20], and previous studies demonstrated that 
MPM imaging could offer significant advantages in can-
cer detection, disease process research and the qualita-
tive and quantitative analysis of collagen fibers within 
tumor microenvironment [21–23].

In this work, we made an attempt to introduce MPM 
combining second-harmonic generation (SHG) and two-
photon excited fluorescence (TPEF) imaging to label-free 
detect PDAC tissues, and found that the characteristics 
of collagen fibers are diverse. Then, we paid attention to 
quantitatively analyze the variations in collagen mor-
phological features using an automatic image processing 
technique, and extracted 8 collagen features from SHG 
images. We also developed a Feature-score combining 
the 8 collagen features by ridge regression, and employed 
it to establish a predictive model of overall survival. Our 
results demonstrate that SHG imaging can label-free 
observe the collagen microstructural characteristics of 
PDAC, and the Feature-score exhibits good prognostic 
predictive ability for pancreatic cancer patients.

Materials and methods
Sample preparation
In this research, all samples were obtained under proto-
cols approved by the Institutional Review Board of the 
First Affiliated Hospital of Fujian Medical University. We 
collected 149 Formalin-fixed paraffin-embedded (FFPE) 
pancreatic cancer tissue samples from 149 patients who 
were diagnosed between 2010 and 2019. All samples 
were subjected to standard pathological processing, 
including formalin fixation, alcohol dehydration, and 
paraffin embedding. Each paraffin block sample was cut 
into two 5 μm thick serial tissue sections in the pathology 
laboratory using an Ultra-Thin Semiautomated Micro-
tome. All sections were deparaffinized with alcohol and 
xylene before imaging, and one section was stained with 
hematoxylin and eosin (H&E) and examined histologi-
cally under a standard light microscope and the adjacent 
section was used for MPM imaging.



Page 3 of 12Chen et al. BMC Cancer          (2024) 24:652 

Multiphoton microscopic imaging system
The MPM imaging system used in this study is com-
posed of a laser scanning microscope (Zeiss LSM 880, 
Jena, Germany) and an external mode-locked Ti: Sap-
phire laser tunable from 690 nm to 1064 nm (Chameleon 
Ultra, Coherent, USA). We used a laser with a wave-
length of 810 nm as the excitation light source, and used 
a 20× objective lens (Plan-Apochromat, NA = 0.8, Zeiss, 
Germany) to obtain high-contrast MPM images. In our 
experiments, two independent channels were used to 
receive back-facing SHG and TPEF signals at the same 
time, where the detection wavelength range of SHG sig-
nal (green color-coded) was 395–415 nm, and the detec-
tion wavelength range of TPEF signal (red color-coded) 
was 428–695 nm. Additionally, all images are automati-
cally recorded and stitched by Zeiss software after twice 
averaging, and the pixel depth of the images is 12 bits.

Collagen morphological features
In the H&E image of a whole tissue section, we num-
bered several nonoverlapping regions of interest (ROIs) 
across the invasive margins and adjacent tumor areas, 
and performed MPM imaging on all numbered areas on 
another section (Fig.  1A). Then, we developed an auto-
matic image processing method to quantitatively ana-
lyze collagen changes in SHG images [24, 25]: a Gaussian 
mixture model-based segmentation algorithm was used 
to segment SHG images into collagen fibers and back-
ground; afterwards, to track each fiber, we used a mature 
fiber network extraction algorithm to process the binary 
mask image of collagen fibers. After fiber extraction, the 
skeleton of each fiber was identified and represented 
by a list of ordered vertices, and if any vertex in the list 
belongs to more than one fiber, it would be identified as 
a cross-link point. The list of vertices was used to calcu-
late fiber number, length, width, straightness, cross-link 
density, and cross-link spacing. In addition, the orienta-
tion of collagen alignment was quantified using Fourier 
transform. A lot of 8 collagen morphological features as 
previously described including collagen proportionate 
area (fea1), fiber number (fea2), fiber length (fea3), fiber 
width (fea4), fiber straightness (fea5), fiber cross-link 
density (fea6), collagen fiber cross-link spacing (fea7), 
and collagen fiber orientation (fea8), were extracted from 
SHG images using MATLAB 2016b, and all ROIs were 
averaged to generate 8 morphological values for each 
patient (Fig. 1B). In this work, we choose a total of 75,647 
SHG images with 512*512 pixels for quantitative analy-
sis. Finally, we used ridge regression with cross validation 
to retrieve the coefficient of fea1-8 in the training cohort 
(Table 1), and then a Feature-score was obtained for each 
patient by a linear combination of the 8 features weighted 
by their regression coefficients, where.

F e a t u r e - s c o r e = - 7 . 7 6 5 6 6 0 6 * f e a 1 -
44.6439289*fea2 + 0.309178*fea3 + 0.8884292*fea4-
1 . 1 6 6 5 5 6 2 * f e a 5   +   1 0 . 1 5 8 3 0 2 5 * f e a 6 -
0.1356464*fea7 + 0.6020531*fea8.

Statistical analysis
All statistical analysis was performed with R 4.2.2 and 
IBM SPSS Statistics 24. We conducted all statistical tests 
by a two-sided basis, and P-value less than 0.05 was con-
sidered statistically significant. For survival analysis, 
overall survival (OS) was used as the endpoint, defined 
as the time from diagnosis to death, or if the patient was 
enrolled, from diagnosis to the end of follow-up. The 
independent predictors were selected using univariate 
and multivariate Cox proportional hazard regressions. A 
nomogram was constructed using all risk factors to esti-
mate OS, and the calibration of nomogram was evaluated 
by a calibration plot, which was a graphic representation 
of the relationship between the actual incidence and pre-
dicted probability. We also performed receiver operating 
characteristic (ROC) curve analysis to calculate the areas 
under the curves (AUCs) for estimating predictive accu-
racy, and to determine the optimal cutoff value by maxi-
mizing the Youden index in the training cohort which 
was also applied to the validation cohort. Moreover, the 
Kaplan-Meier survival curve was used to assess the cor-
relation between variables and OS.

Results
Baseline clinical characteristics
For this study, 149 patients were divided into training 
(107 cases) and validation (42 cases) cohorts. Table  1 
shows the clinical characteristics of patients in the two 
cohorts. Baseline clinicopathologic data of each patient, 
including age of diagnosis, sex, TNM stage, differen-
tiation, perineural invasion, lymphvascular invasion 
and tumor location were collected. The average age of 
patients at the diagnosis of pancreatic cancer was 60.9 
years (median, 61 years; range, 28–86 years), and the 
median follow-up duration was 13 months (range, 1–72 
months) for OS.

Identifying collagen morphological features of PDAC via 
MPM
The accurate diagnosis of PDAC is currently based on 
histopathological examination, however, this is a labor-
intensive and time-consuming process. Several previous 
studies have used MPM to image and analyze normal 
and PDAC tissues [26, 27]. In this work, SHG and TPEF 
imaging were combined to image PDAC tissues to detect 
histological changes in tumor microenvironment. As 
shown in Fig.  2, the architectural features of PDAC are 
clearly present in the MPM images, where SHG imag-
ing (Fig. 2A, G) shows the distribution of collagen fibers, 
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while TPEF imaging (Fig.  2B, H) is able to identify 
tumors, and composite images (Fig. 2C, I) allow the user 
to visualize the spatial distribution of tissue components, 
and magnified images (Fig. 2E, F) of the regions of inter-
est (yellow and blue dashed boxes, respectively) show 
tumors cells more clearly. All these features correspond 

to the H&E‑stained images (Fig.  2D, J). Interestingly, 
SHG images reveal the different characteristics of col-
lagen fibers in tumor microenvironment: some collagen 
fibers are an ordered, abundant and have directed distri-
bution (Fig. 2A), and by contrast, some are sparse, disor-
dered, and fragmented (Fig. 2G).

Fig. 1  Workflow in this study. Abbreviations: H&E, hematoxylin and eosin; MPM, multiphoton microscopy; SHG, second harmonic generation
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Previous studies have shown a link between cancer 
progression and collagen changes in the tumor micro-
environment [23, 28]. Therefore, to quantify these col-
lagen morphological differences, we performed image 
analysis of SHG images and obtained 8 values of collagen 
features (fea1-8). The distribution histogram of fea1-8, 
including fiber area, number, length, width, orientation, 
straightness, cross‑link spacing, and cross‑link density, 
are presented in Fig. 3A. We found that fea1, 2, 4, 6 were 
evenly distributed, whereas fea3, 5, 7, 8 were unevenly 
distributed. The correlation between individual collagen 
feature and OS was also assessed by Spearman’s rank 
correlation coefficient. The results reveal that fea1, 2, 
5, 6 correlate with poor overall survival, while fea3, 4, 7 
correlate with good overall survival (Fig. 3B). To reduce 
the disadvantages caused by uneven distribution, a ridge 
regression was performed based on the 8 feature values 
from training set (54,735 SHG images) to obtain a for-
mula of Feature-score, which was then used to calculate 
the Feature-sore of each patient. As shown in Fig.  3C, 
the distribution of Feature-score is more uniform com-
pared to individual collagen features. Thus, it is reason-
able to comprehensively consider the effect of all collagen 
features.

Prognosis predictive performance of Feature-score
As shown in Table  2, the Feature-score is significantly 
associate with OS in univariate Cox proportional hazard 
regression analysis (HR 2.984, [1.429–6.230], P = 0.004). 
After adjusting for clinical variables by multivariate Cox 
regression analysis, the Feature-score remains an inde-
pendent prognostic indicator for predicting OS (HR 
2.562, [1.190–5.513], P = 0.016) in the whole cohort. 
Noteworthy, collagen morphological features remain 
the most significant factors (with the smallest P values) 
compared to the clinical factors. Moreover, a nomogram 
model containing Feature-score, age, sex, TNM stage, 
differentiation, perineural invasion, lymphvascular inva-
sion and tumor location was established from training 
cohort (Fig.  4A), wherein each prognosticator is given 
a point based on the corresponding point scale, and the 
sum of total points of all prognosticators is used to pre-
dict the survival of PDAC patients. We can see that the 
Feature-score considerably outweighs clinical factors. 
As shown in Fig. 4B and C, the calibration curves reveal 
improved consistency between the nomogram-estimated 
probability and observed probability for 3-year OS as 
opposed to 1-year OS. Correlation analysis demonstrates 
that low Feature-score corresponds to long OS (Fig. 4D) 
and similar result was observed in nomogram model, 
but nomogram shows better correlation and significance 
compared with the Feature-score model (training cohort, 
correlation coefficient [r], 0.29 vs. 0.21; validation cohort, 
[r], 0.24 vs. 0.14) (Fig. 4D and E).

The AUC of Feature-score was further calculated to 
assess its predictive accuracy, and a clinical (CLI) model 
combining the seven clinical factors was also developed 
for comparison. As depicted in Fig.  5A, the CLI model 
reveals an AUC of 0.643 (95% CI, 0.517 to 0.768) in the 
training cohort and Feature-score gains an AUC of 0.656 
(95% CI, 0.538 to 0.773) for predicting OS, demonstrating 
that the Feature-score as an optical biomarker has equal 
predictive capability compared to the CLI model, and 
nomogram model combining the Feature-score and CLI 
model could improve the AUC to 0.691 (95% CI, 0.574 
to 0.809). As anticipated, similar findings are observed 
in the validation cohort, thereby confirming the depend-
ability of this score. We could also use the optimal cutoff 
values (Youden index: CLI model is 0.5834; Feature-score 
model is 2.2043; Nomogram model is 0.2917) of three 
predictive models for identifying high-risk and low-risk 
patients in both the training and validation cohorts, and 
then use the Kaplan-Meier survival curve to perform 
survival analysis. As shown in Fig. 5B, the CLI, Feature-
score and nomogram models deliver an increasing HR 
from 1.8 to 2.5 in training cohort, indicating an enhanced 
ability for risk stratification, but similar results are not 
obtained in validation cohort. In addition, violin plots of 
the eight collagen features (fea1-8) and Feature-score of 

Table 1  Characteristics of patients with pancreatic ductal 
adenocarcinoma (PDAC)
Characteristics Training 

cohort 
(107)

Valida-
tion 
cohort 
(42)

p Total 
cohort 
(149)

Age (%) 0.262
  <=50 17 (15.9) 12 (28.6) 29 (19.5)
  > 50 90 (84.1) 30 (71.4) 120 (80.5)
Sex (%) 0.982
  Male 69 (64.5) 25 (59.5) 94 (63.1)
  Female 38 (35.5) 17 (40.5) 55 (36.9)
TNM stage (%) 0.364
  <=IIA 47 (43.9) 15 (35.7) 62 (41.6)
  >=IIB 60 (56.1) 27 (64.3) 87 (58.4)
Differentiation (%) 0.316
  I 16 (15.0) 12 (28.6) 28 (18.8)
  II 45 (42.0) 17 (40.5) 62 (41.6)
  III 46 (43.0) 13 (30.9) 59 (39.6)
Perineural invasion (%) 0.761
  Yes 84 (78.5) 30 (71.4) 114 (76.5)
  No 23 (21.5) 12 (28.6) 35 (23.5)
Lymphovascular inva-
sion (%)

0.527

  Yes 20 (18.7) 4 (9.5) 24 (16.1)
  No 87 (81.3) 38 (90.5) 125 (83.9)
Tumor location (%) 0.672
  Head 75 (70.1) 32 (76.2) 107 (71.8)
  Body/tail 29 (27.1) 8 (19.0) 37 (24.8)
  Other 3 (2.8) 2 (4.8) 5 (3.4)
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the whole cohort were presented in Fig. 3D to display the 
data distribution between high-risk and low-risk groups, 
and statistical analyses show obvious difference (P < 0.05) 
in collagen proportionate area, collagen fiber number, 
cross-link density, orientation and Feature-score.

Discussion
PDAC is the fourth leading cause of cancer deaths, and it 
is estimated that it will become the second leading cause 
of cancer deaths after lung cancer by 2030 [29]. PDAC 
is a grave malignant tumor with a mortality rate that is 
tightly correlated with its incidence. It is typically asymp-
tomatic until the cancer has progressed to an advanced 
stage [30]. Despite the progress made in detecting PDAC, 
the prognosis remains unsatisfactory, with a five-year 
survival rate of just 12%. Most patients were diagnosed 
when malignant, and only a few can expect to receive 
surgery [31, 32]. At present, histological examination of 
the resected specimens is still the gold standard for diag-
nosing PDAC, but it requires staining and much time and 

effort. Therefore, the implementation of a better auxiliary 
diagnostic approach would have significant impact. MPM 
is a powerful tool in biomedical imaging, capable of cap-
turing cells and extracellular matrix in tissues, providing 
exceptional resolution and imaging capability. Bodelon et 
al. utilized this optical technique to investigate collagen 
fiber profiles in breast and discovered that collagen pro-
files were linked with the risk of breast cancer [33]; Rog-
art et al. proved that MPM has the capacity to scrutinize 
gastrointestinal mucosa at the cellular level [34]; Cromey 
et al. used multiphoton imaging technique to rapidly dif-
ferentiate normal tissues from pancreatic cancer [35]; 
and Gomes et al. combined multiphoton imaging with an 
automated image analysis to successfully recognise and 
quantify stromal fibers and neoplastic cell regions from 
MPM images of prostate cancer tissues [36]. Our study 
also indicates that MPM can label-free identify PDAC 
and thereby can assist in prognostic study.

One of the most notable characteristics of PDAC is its 
considerable dense connective proliferative stroma. Many 

Fig. 2  MPM images and the corresponding H&E-stained images of PDAC. (A, G) SHG images; (B, H) TPEF images; (C, I) Overlap images of SHG and TPEF; (D, 
J) H&E-stained images; (E, F) Magnified images of the regions of interest (yellow and blue dashed boxes, respectively). Scale bar = 200 μm
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Fig. 3  (A) Distribution histograms of collagen features; (B) Correlation analysis between individual collagen feature and OS for three cohorts; (C) Distribu-
tion histogram of Feature-score; (D) Violin plots of collagen features and Feature-score to display data distribution between high-risk and low-risk groups. 
Fea1: collagen proportionate area; fea2: fiber number; fea3: fiber length; fea4: fiber width; fea5: fiber straightness; fea6: fiber cross-link density; fea7: col-
lagen fiber cross-link spacing; fea8: collagen fiber orientation; *P < 0.05; **P < 0.01; ***P < 0.001; NS: Not significant
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previous studies have proved a close relationship between 
collagen distribution and various diseases: Drifka et al. 
revealed that a high alignment of stromal collagen fibers 
was linked to an unfavorable prognosis in patients with 
PDAC [37]; Li et al. demonstrated that different subtypes 
of ovarian cancer had distinctive collagen properties by 
analyzing SHG images [21]; and Garcia et al. found that 
there was a clear association of collagen fiber length with 
the survival times of dogs by image analyses, the canine 
mammary carcinomas presenting shorter collagen fibers 
indicate a worse survival rate [38]. We have combined 
two-photon microscopy with imaging analysis to study 
gastrointestinal stromal tumors (GISTs) and found that 
there are collagen morphological differences (fiber area, 
density and cross-link density) between normal and 
tumor tissues [24]. Moreover, we have also used a com-
puter-assisted image processing method to automatically 
extract tumor-associated collagen microscopic signatures 
from SHG images of breast cancer and then provided a 
collagen-related score (TCMF-score) for each patient, 
and statistical result demonstrated that TCMF-score 
is an independent prognostic factor [25]. Thus, in this 
study, we focused on detecting collagen changes in tumor 
microenvironment by SHG imaging and aimed to inves-
tigate the prognostic significance of collagen features 

in PDAC. Imaging results show that SHG images can 
clearly illustrate the morphology and spatial distribution 
of collagen fibers in PDAC. We easily found the different 
variations in collagen morphology, and to quantify these 
results, we further extracted eight collagen features from 
the SHG images and used ridge regression to acquire a 
Feature-score based on these feature values. Statistical 
analysis reveals that Feature-score, as an independent 
factor, enables us to equally predict the overall survival 
of patients with PDAC in contrast to the CLI model 
combining 7 clinical factors (close AUC values), and has 
comparable risk stratification. Our finding also indicates 
that higher Feature-score corresponds to decreased sur-
vival rate in PDAC patients. A nomogram model, which 
could improve the discrimination (higher AUC), was also 
established to individually evaluate the OS rate of PDAC 
patients. This scoring model demonstrates the potential 
value of collagen signatures in PDAC, and may be useful 
in determining individual treatment strategies. Of course, 
we recognize that this study has some limitations: firstly, 
the sample size is small; secondly, it is a retrospective 
study in a single center. We need to collect more samples 
to refine the Feature-score model and carry out multiple-
center validation in the next work.

Table 2  Univariate and multivariate Cox proportional hazards regression analysis to analyze the relationship between prognostic 
factors and OS in patients with PDAC
Characteristics Univariate analysis Multivariate analysis

HR (95%CI) P-value HR (95%CI) P-value
Age
  ≤ 50 Reference
  > 50 0.788 0.501 1.238 0.301 NA NA
Sex
  Female Reference
  Male 1.204 0.821 1.764 0.342 NA NA
Perineural invasion
  No Reference
  Yes 1.106 0.719 1.700 0.647 NA NA
Lymphovascular invasion
  No Reference
  Yes 1.765 1.124 2.771 0.014 1.471 0.924 2.341 0.104
TNM stage
  <=IIA Reference
  >=IIB 1.148 0.796 1.656 0.460 NA NA
Differentiation
  I Reference
  II 1.763 1.033 3.009 0.038 1.471 0.849 2.547 0.168
  III 1.759 1.039 2.980 0.036 1.541 0.985 2.652 0.119
Tumor location
  Head Reference
  Body/tail 1.408 0.929 2.132 0.230 NA NA
  Other 1.058 0.387 2.894 0.912 NA NA
Feature-score 2.984 1.429 6.230 0.004 2.562 1.190 5.513 0.016
NA: Not applicable
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Fig. 4  (A) Nomogram combining Feature-score, age, sex, perineural invasion, lymphovascular invasion, TNM stage, differentiation and tumor location 
from the training cohort; (B-C) Calibration curves of the nomogram to predict 1-year and 3-year OS rate respectively from training cohort; (D-E) Scatter 
plots presenting the correlation of Feature-score and nomogram model with OS, and histogram plots above the scatter plots show OS, while the plots 
in the right of the scatter plots show the Feature-score and nomogram model and the correction coefficient (r) is obtained by performing Pearson’s cor-
rection analysis
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Fig. 5  (A) ROC curves of the clinical, Feature-score and nomogram models to predict OS in the training and validation cohorts; (B) Kaplan-Meier curves 
of OS according to the clinical, Feature-score and nomogram models in the training and validation cohorts. The red lines indicate high risk and blue lines 
indicate low risk in the Kaplan-Meier curves. A two-sided log-rank test was performed to determine statistical significance. Abbreviations: OS, overall 
survival; HR, hazard ratio
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Conclusions
In short, we tried to use multiphoton imaging to label-
free detect PDAC tissues, and our findings demonstrate 
the effectiveness of SHG imaging as a powerful tool for 
capturing collagen changes in tumor microenvironment. 
Then, we extracted eight microstructural features of col-
lagen fibers from SHG images and obtained a Feature-
score by combining these features using ridge regression. 
Statistical results reveal that as an independent factor, a 
Feature-score could effectively predict the overall sur-
vival of PDAC patients and also has well performance 
in risk stratification. The combination of SHG imaging 
technique and quantitative information may be helpful 
in diagnosing PDAC and making reasonable treatment 
strategy.
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