
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Wang et al. BMC Cancer          (2024) 24:629 
https://doi.org/10.1186/s12885-024-12385-5

BMC Cancer

*Correspondence:
Xiaoqin Wang
wxq021981@163.com
1Department of Gynecology, Women and Children’s Hospital Affiliated to 
Ningbo University, Ningbo, Zhejiang, China

Abstract
Purpose Observational studies and clinical validation have suggested a link between thyroid dysfunction and an 
elevated ovarian cancer (OC) risk. However, whether this association indicates a cause-and-effect relationship remains 
uncertain. We aimed to investigate the plausible causal impact of thyroid dysfunction on OC through a Mendelian 
randomization (MR) study.

Methods Genome-wide association study (GWAS) data for thyrotropin (TSH), free thyroxine (FT4), hypothyroidism, 
and hyperthyroidism were obtained as exposures and those for OC (N = 199,741) were selected as outcomes. Inverse 
variance-weighted method was used as the main estimation method. A series of sensitivity analyses, including 
Cochran’s Q test, MR-Egger intercept analysis, forest plot scatter plot, and leave-one-out test, was conducted to assess 
the robustness of the estimates.

Results Genetic prediction of hyperthyroidism was associated with a potential increase in OC risk (odds ratio = 1.094, 
95% confidence interval: 1.029–1.164, p = 0.004). However, no evidence of causal effects of hypothyroidism, TSH, and 
FT4 on OC or reverse causality was detected. Sensitivity analyses demonstrated consistent and reliable results, with no 
significant estimates of heterogeneity or pleiotropy.

Conclusions This study employed MR to establish a correlation between hyperthyroidism and OC risk. By genetically 
predicting OC risk in patients with hyperthyroidism, our research suggests new insights for early prevention and 
intervention of OC.
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Introduction
Ovarian cancer (OC) ranks among the three major 
gynecological malignancies in women and stands as the 
second leading cause of death worldwide [1, 2]. Accord-
ing to the National Cancer Institute’s most recent SEER 
Recorded Epidemiological Survey, the annual incidence 
of OC is 11.6 cases per 100,000 women [3]. Unfortu-
nately, detecting OC in its early stages is often challeng-
ing, with 60% of cases being diagnosed at an advanced 
stage. In 2020 alone, the United States reported over 
21,000 new cases and 13,000 deaths [4, 5]. With a 5-year 
overall survival rate of < 30%, OC holds the highest mor-
tality rate among female reproductive system tumors [6]. 
Despite major advancements in clinical surgical technol-
ogy, such as laparoscopy and the Da Vinci robotic system, 
survival rates for patients with OC have not improved. 
Consequently, OC has become a global health issue for 
women.

The pathogenesis of OC remains poorly understood. 
Reported risk factors include genetic factors, endocrine 
factors, fertility factors, endometriosis, and environmen-
tal factors [7–9].The thyroid, as the principal endocrine 
gland of the human body, synthesizes and secretes thy-
roid hormones crucial for regulating various fundamen-
tal functions such as human growth, differentiation, 
development, and metabolism. These hormones are 
essential to the human body. Recent studies have indi-
cated that thyroid hormones possess cancer-promoting 
effects across various cancers by promoting cell prolif-
eration and differentiation [10, 11]. Consequently, thy-
roid dysfunction has been categorized as a potential 
risk factor for cancer development and prevention. Cur-
rently, evidence-based data regarding the impact of thy-
roid hormone and its regulatory hormones on function 
of the ovary, a crucial female reproductive endocrine 
organ, remain unclear. Existing evidence on the associa-
tion between thyroid function and OC primarily stems 
from observational studies. A nested case-control study 
revealed no association between hyperthyroidism and 
ovarian malignancy, whereas hypothyroidism was asso-
ciated with the occurrence of ovarian malignancy [12]. 
Another study utilizing high-sensitivity chemilumines-
cence reported that hypothyroidism did not influence 
OC progression and prognosis [13]. The results of these 
different approaches have been contradictory, making it 
difficult to establish a causal relationship between thyroid 
dysfunction and OC.

The Mendelian randomization (MR) method, employed 
in this study, addresses this challenge. MR serves as an 
innovative epidemiological approach utilizing genetics 
to examine causality for exposure–outcome associations 
[14]. The advantage of MR over observational studies lies 
in its ability to overcome reverse causality and confound-
ing factors [15, 16]. In this study, we used Mendelian 

stochastic analysis to explore the causal relationships 
among hyperthyroidism, hypothyroidism, TSH, FT4, and 
OC risk, aiming to further investigate the etiology of OC 
and provide novel insights into its clinical prevention and 
treatment.

Methods
Study design
In this study, we employed a two-sample MR to evaluate 
the causal link between thyroid dysfunction and OC risk. 
We used summary data from genome-wide association 
studies (GWASs) of European ancestry cohorts.GWAS 
summary statistics were obtained to extract promi-
nent single nucleotide polymorphisms (SNPs)serving as 
genetic instrumental variables(IVs) for thyroid dysfunc-
tion and OC.we designated the TSH, FT4, hyperthy-
roidism, and hypothyroidism as the exposure and OC as 
the outcomes to ascertain their potential roles in either 
inhibiting or fostering the onset of OC.Adherence to 
three fundamental assumptions is crucial in ensuring the 
reliability of the results in every MR analysis:1)genetic 
variation is associated with the exposure of interest; 2) 
genetic variation is independent of confounding factors; 
and 3) genetic variation affects outcome only through the 
exposure of interest [17]. As shown in the Supplementary 
Fig.  1. STROBE-MR guidelines were used to guide the 
design of this study [18] (Supplementary Table SS1).

Data source
Data were primarily obtained from the IEU OpenGWAS 
database and The ThyroidOmics Consortium database. 
Our exposures of interest were TSH, FT4, hyperthyroid-
ism (decreased TSH), and hypothyroidism (increased 
TSH). We obtained the GWAS data for hypothyroidism 
(GWAS ID: ebi-a-GCST90018862) and hyperthyroidism 
(GWAS ID: ebi-a-GCST90038636) from the IEU data-
base (https://gwas.mrcieu.ac.uk/). The hypothyroidism 
group consisted of 30,155 cases and 379,986 controls, 
totaling 410,141 samples. Similarly, The hyperthyroid-
ism group included 3,731 cases and 480,867 controls, 
totaling 484,598 samples. We sourced the GWAS data 
for TSH and FT4 from The ThyroidOmics Consortium 
database(https://transfer.sysepi.medizin.uni-greifswald.
de/thyroidomics/datasets/), which included a total of 
72,167 samples [19].

As for the outcome, we selected OC (GWAS ID: ieu-
b-4963) and obtained its GWAS data from the IEU data-
base (UK Biobank (https://gwas.mrcieu.ac.uk/). The OC 
group comprised 1,218 cases and 198,523 controls, total-
ing 199,741 samples. All the summary data used in this 
study are publicly available and we have obtained ethi-
cal permissions from the respective institutional review 
boards. (Table 1)

https://gwas.mrcieu.ac.uk/
https://transfer.sysepi.medizin.uni-greifswald.de/thyroidomics/datasets/
https://transfer.sysepi.medizin.uni-greifswald.de/thyroidomics/datasets/
https://gwas.mrcieu.ac.uk/
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Instrumental variables
In this study, we rigorously selected effective instrumen-
tal variables (IVs) following the three assumptions: First, 
we ensured that each IV exhibited a strong correlation 
with the exposure (p < 5 × 10− 8). To address linkage dis-
equilibrium between each SNP, we set a physical distance 
threshold of 10 Mb and an LD r2 to < 0.001 [20, 21]. we 
utilized the PhenoScanner v2 database (available at: 
http://www.phenoscanner.medschl.cam.ac.uk/) to iden-
tify and exclude IVs that might influence the potential 
level of pleiotropy in SNP-associated phenotypes [22]. 
we also harmonized the SNPs for exposure and outcome, 
removing palindromic and incompatible alleles [23]. 
Finally, we calculated the F-statistic for each SNP, where 
weak IVs (F < 10) were excluded. To guarantee the robust-
ness of the association between the IVs and exposure fac-
tors [24]. The F-statistic was calculated using the formula: 
F = (N − 2) × R2 / (1 − R2); R2 = β2 × (1 − EAF) × 2EAF, where 
R2 is the degree of variation explained by each SNP, EAF 
is the gene frequency of the mutation, β is the beta coef-
ficient associated with the exposure factor, and N is the 
total sample size [25].

MR analysis and sensitivity analyses
The inverse variance-weighted (IVW) method was used 
as the primary analysis in this study to initially assess 
the potential causal thyroid effect of dysfunction on OC 
[26]. Assuming the validity of all selected IVs, IVW dem-
onstrated the most reliable result and highest statistical 
power [27]. Moreover, complementary approaches such 
as weighted mode, weighted median method, the simple 
median method, and MR-Egger for multiple genetic vari-
ants were employed to assess the causal effect [28–30]. 
In addition, we performed a variety of sensitivity analy-
ses for significant or nominally significant results.We 
used Cochran’s Q test and MR multivariate residual sums 
and outliers (MR-PRESSO) test to calculate the poten-
tial heterogeneity, where p < 0.05 indicated the presence 
of heterogeneity [31]. The intercept value of MR-Egger 
regression was used to assess the strength of horizon-
tal pleiotropy, with a significance level of p > 0.05 sug-
gesting no horizontal pleiotropy [29]. Additionally, the 
robustness of the results was assessed using the leave-
one-out test to determine if the inclusion of a single 
SNP influenced the robustness of the findings [32]. As a 

complement, scatter plots were used to observe the con-
sistent effects estimated by the five methods.The results 
are presented as odds ratios (OR) with 95% confidence 
intervals, and statistical significance was defined as 
P < 0.05. Statistical analyses were performed using two-
sample MR analyses of thyroid dysfunction and OC with 
the two-Sample MR packages in R (version 4.3.1).

Result
Genetic variants selection
In this study, SNPs with linkage imbalance and palin-
dromic structure were excluded. After conducting a 
series of quality evaluations, we selected a total of 17, 66, 
26, and 11 SNPs as effective instrumental variables (IVs) 
for hyperthyroidism, hypothyroidism, TSH, and FT4, 
respectively. Additional information on these SNPs as 
IVs can be found in the Supplementary Material (Sup-
plementary Tables S1–S4). It is worth noting that all the 
SNPs used as IVs had an F-statistic > 10 (Supplementary 
Tables S1–S4), indicating their effective performance.

Causal effect of thyroid function on ovarian cancer
We employed several methods including simple mode, 
MR-Egger, weighted mode, weighted median, and IVW 
to assess the presence of a causal relationship between 
thyroid function and OC risk. Our IVW analysis revealed 
a significant correlation between hyperthyroidism lev-
els and an elevated risk of OC (OR = 1.094, 95% CI: 
1.029–1.164, p = 0.004). Consistent results were also 
observed with MR-Egger (OR = 1.174, 95% CI: 1.054–
1.308, p = 0.011), weighted median (OR = 1.148, 95% CI: 
1.057–1.245, p = 0.001), and weighted mode (OR = 1.133, 
95% CI: 1.044–1.229, p = 0.011) methods. Conversely, our 
MR analysis did not find a statistically significant causal 
relationship between hypothyroidism, TSH, FT4, and OC 
risk. (Table 2; Supplementary Fig. 2)

Sensitivity analysis, heterogeneity, and pleiotropy
No heterogeneity was noted among SNPs when hyper-
thyroidism was used as the exposure (Cochran’s Q 
value = 12.773, P = 0.689). MR-PRESSO also did not find 
outliers with excessive heterogeneity.Moreover, heteroge-
neity was not found in hypothyroidism (P = 0.279), TSH 
(P = 0.561), and FT4 (P = 0.473). The MR-Egger regression 
analysis indicated that there was no horizontal pleiotropy 

Table 1 Source and related information of instrumental variables
Variable Sample size Total SNPs Selected SNPs Population Consortium
Hyperthyroidism 484,598 9,587,836 17 European IEU open database
Hypothyroidism 410,141 24,138,872 66 European IEU open database
TSH 72,167 7,958,096 26 European hyroidOmics Consortium database
FT4 72,167 7,963,150 11 European hyroidOmics Consortium database
Ovarian cancer 199,741 9,822,229 European UK Biobank
FT4;free thyroxine; TSH, thyrotropin; IEU, IEU open database

http://www.phenoscanner.medschl.cam.ac.uk/
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in any of the exposures, as shown in (Table 3).These find-
ings suggest that IVs do not significantly influence out-
comes through mechanisms other than the exposure. The 
stability of the results was further confirmed by the leave-
one-out test, as demonstrated in (Supplementary Fig. 3). 
Scatter plots suggested consistent direction of multiple 
methods and the funnel plots were also symmetrical 
(Supplementary Fig.  2; 4), while Supplementary Fig.  5 
presents the forest plots in the MR analysis. Therefore, 
we consider the results obtained from the IVW method 
to be reliable.

Discussion
In this study, we used a two-sample MR analysis to inves-
tigate, for the first time, the association between thyroid 
function and OC. The results indicated that hyperthy-
roidism increases OC risk, whereas no association was 
observed between hypothyroidism, TSH, and FT4 and 
OC risk.

The significant increase in OC risk with hyperthy-
roidism, as found in our study, aligns with previously 

published findings. For instance, a clinical study demon-
strated a significant association between hyperthyroid-
ism and OC risk [33], contrasting with findings showing 
no association with hypothyroidism [34]. Similarly, a 
cohort study of Asians (including 115,746 participants) 
revealed a link between hypothyroidism and increased 
cancer incidence and mortality [35]. However, conflict-
ing results have been reported in other studies. A nested 
case-control study found no correlation between hyper-
thyroidism and ovarian malignancy, whereas hypothy-
roidism was correlated with the occurrence of ovarian 
malignancy [12]. Another study using high-sensitivity 
chemiluminescence found that hypothyroidism does 
not affect OC progression and prognosis [13]. Previ-
ous observational studies have certain methodological 
limitations, including sample size, study population, and 
confounding factors that are difficult to control. These 
limitations can yield heterogeneous results. In this study, 
the MR method was employed to verify the correlation 
between thyroid dysfunction and OC from the perspec-
tive of IVs, yielding more universal and robust results.

Table 2 MR estimates from different methods of assessing the causal effect of thyroid dysfunction on OC
Exposure MR methods nSNP Beta SE OR(95% Cl) P-value
Hyperthyroidism MR Egger 17 0.160 0.055 1.174(1.054,1.308) 0.011

Weighted median 17 0.138 0.041 1.148(1.057,1.245) 0.001
IVW 17 0.090 0.032 1.094(1.029,1.164) 0.004
Simple mode 17 0.120 0.068 1.128(0.987,1.289) 0.108
Weighted mode 17 0.125 0.042 1.133(1.044,1.229) 0.011

Hypothyroidism MR Egger 66 9.599e-04 0.001 1.001(0.999,1.002) 0.208
Weighted median 66 6.291e-04 0.001 1.001(0.999,1.002) 0.234
IVW 66 6.201e-05 0.000 1.000(0.999,1.002) 0.857
Simple mode 66 4.859e-04 0.001 1.000(0.998,1.003) 0.669
Weighted mode 66 7.929e-04 0.001 1.0001(0.999,1.002) 0.274

TSH MR Egger 26 -0.003 0.003 0.997(0.991,1.002) 0.241
Weighted median 26 -0.001 0.001 0.999(0.997,1.002) 0.700
IVW 26 <0.001 0.001 1.000(0.999,1.002) 0.747
Simple mode 26 -0.001 0.003 0.999(0.994,1.004) 0.697
Weighted mode 26 -0.002 0.002 0.998(0.993,1.003) 0.489

FT4 MR Egger 11 2.194e-03 0.002 1.002(0.997,1.007) 0.393
Weighted median 11 -6.022e-06 0.002 0.999(0.997,1.003) 0.997
IVW 11 -1.967e-04 0.001 0.999(0.997,1.002) 0.873
Simple mode 11 9.234e-04 0.003 1.001(0.995,1.007) 0.781
Weighted mode 11 2.246e-04 0.002 1.000(0.997,1.004) 0.903

SNP, single nucleotide polymorphism; TSH, thyrotropin; FT4,free thyroxine; MR, Mendelian randomization; IVW, inverse variance weighting.

Table 3 Sensitivity analysis of correlation between exposure (thyroid dysfunction) and ovarian cancer (OC)
Exposure Outcome Pleiotropy Heterogeneity MR-PRESSO

Horizontal pleiotropy
(Egger intercept)

Horizontal pleiotropy(P-value) Heterogeneity
(Q)

Heterogeneity(P-value)

Hyperthyroidism OC -0.001 0.141 12.773 0.689 0.722
Hypothyroidism OC -0.001 0.186 71.211 0.279 0.787
TSH OC 0.001 0.170 23.281 0.561 0.741
FT4 OC -0.001 0.286 9.636 0.473 0.714
TSH, thyrotropin; FT4,free thyroxine; OC, Ovarian cancer.
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Abnormal thyroid hormone levels exert significant 
effects on female reproductive endocrinology, strictly 
controlled by the hypothalamic-pituitary-thyroid axis 
[36]. Abnormal thyroid function can cause various dis-
eases, including atrial fibrillation and abnormal lipid 
metabolism [37, 38]. Observational studies have found 
associations among thyroid hormone levels, related dis-
eases, and cancer risk, including colorectal, prostate, and 
lung cancers [ [35, 39–42]]. Recent studies have specifi-
cally linked hyperthyroidism to OC. However, the exact 
mechanism linking thyroid dysfunction and OC has not 
been fully elucidated. Two main mechanisms of action 
of thyroid hormones have been identified through cell 
experiments. The first involves non-genomic action, 
where thyroid hormones (T3 and T4) interact with 
integrin αvβ3 to activate protein kinase/extracellular 
signal-regulated kinase pathways [43]. Activation of 
these signaling pathways can promote cell proliferation, 
thereby promoting cancer progression and inhibiting 
apoptosis and metastasis [ [44–46]]. The second mecha-
nism involves the binding interaction of thyroid hormone 
with nuclear thyroid hormone receptor proteins, induc-
ing transcription and activating or inhibiting various 
downstream effects of target genes [47]. Thus, abnormal 
thyroid function may activate associated cancer signal-
ing pathways, potentially increasing OC risk. Our study 
observed a positive causal association between hyperthy-
roidism and OC but found no association between the 
other three exposure factors (TSH, hypothyroidism, and 
FT4) and OC. However, previous observational studies 
have reported increased OC risk or associated prognosis 
with hypothyroidism [48]. This inconsistency may stem 
from methodological differences between studies, par-
ticularly potential confounding factors present in obser-
vational studies.

Our study’s strengths include using MR studies for 
causal reasoning and selecting genetic variation as IVs, 
independent of each other, helping to avoid the interfer-
ence of other reverse causation and confounding factors, 
thereby reducing bias. Moreover, we employed various 
stable methods, such as IVW and MR-Egger, to obtain 
reliable results. However, our study has some limitations. 
First, all participants were of European descent, poten-
tially limiting the generalization of findings to other races 
and ethnicities and introducing bias. Second, due to our 
strict threshold, certain genetic defects in thyroid func-
tion were excluded at the IV selection stage, potentially 
missing some results. Third, due to research limitations, 
we cannot distinguish between different types of OC.

Conclusions
In summary, based on analysis of data from the Thyroid 
Consortium database and the UK Biobank, this study 
suggests a causal relationship between hyperthyroidism 

and OC, underscoring the importance of thyroid hor-
mones in the prevention and treatment of the female 
reproductive system. However, the mechanism by which 
the hypothalamic-pituitary-thyroid axis promotes OC 
development remains incompletely understood and 
requires further study.
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