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Abstract
Background Glioblastoma multiforme (GBM) is a type of fast-growing brain glioma associated with a very poor 
prognosis. This study aims to identify key genes whose expression is associated with the overall survival (OS) in 
patients with GBM.

Methods A systematic review was performed using PubMed, Scopus, Cochrane, and Web of Science up to Journey 
2024. Two researchers independently extracted the data and assessed the study quality according to the New Castle 
Ottawa scale (NOS). The genes whose expression was found to be associated with survival were identified and 
considered in a subsequent bioinformatic study. The products of these genes were also analyzed considering protein-
protein interaction (PPI) relationship analysis using STRING. Additionally, the most important genes associated with 
GBM patients’ survival were also identified using the Cytoscape 3.9.0 software. For final validation, GEPIA and CGGA 
(mRNAseq_325 and mRNAseq_693) databases were used to conduct OS analyses. Gene set enrichment analysis was 
performed with GO Biological Process 2023.

Results From an initial search of 4104 articles, 255 studies were included from 24 countries. Studies described 613 
unique genes whose mRNAs were significantly associated with OS in GBM patients, of which 107 were described in 2 
or more studies. Based on the NOS, 131 studies were of high quality, while 124 were considered as low-quality studies. 
According to the PPI network, 31 key target genes were identified. Pathway analysis revealed five hub genes (IL6, 
NOTCH1, TGFB1, EGFR, and KDR). However, in the validation study, only, the FN1 gene was significant in three cohorts.

Conclusion We successfully identified the most important 31 genes whose products may be considered as potential 
prognosis biomarkers as well as candidate target genes for innovative therapy of GBM tumors.
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Introduction
Glioblastoma multiforme (GBM) is one of the most 
malignant gliomas of the central nervous system (CNS) 
[1]. The disappointing outcome of GBM treatment is a 
median survival of only 15 months despite multi-modal-
ities of treatments [2, 3]. Based on the literature, GBM 
has special biological characteristics presenting high het-
erogeneity, diffusing invasiveness, and capacity to resist 
conventional therapies. In addition, the existence of bio-
logical barriers, e.g., BBB, makes this tumor difficult to 
treat [4]. Hence, the development of new methods for the 
clinical treatment of GBM may be facilitated by identify-
ing the key genes associated with GBM prognosis [5].

Over the last decade, an increased focus has been 
on clarifying the origin, genomic landscape, and gene 
expression profile of GBM by identifying specific molec-
ular markers and pathways involved in this pathology 
[6]. The advent of large-scale transcriptomic analyses in 
various cancers has tremendously increased our under-
standing of tumor biology and possible cancer therapy 
approaches [4]. Accordingly, in recent years, an increas-
ing number of studies have focused on gene expression 
patterns to propose biomarkers and GBM tumor treat-
ment strategies [7]. However, most of this information 
has not been translated into clinical practice for GBM 
patients [7].

The vast quantities of genomic data are now being 
deposited in public database repositories, such as Array 
Express (https://www.ebi.ac.uk/arrayexpress/), The Can-
cer Genome Atlas (TCGA, https://portal.gdc.cancer.
gov), Chinese Glioma Genome Atlas (CGGA, http://
www.cgga.org.cn) and Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/). These genomic data 
are used by researchers around the world for the dis-
covery of new genes of interest in GBM tumors. Several 
studies considered numerous mRNA expression datasets 
and identified gene signature panels to estimate progno-
sis in GBM tumors to improve the prognostic and predic-
tive assessment of the tumors [8–262]. However, there is 
no consensus in the literature on the top gene sets that 
could be eventually used in clinical practice.

Considering the current state of our knowledge, 
we sought that a systematic survey of the literature is 
urgently required to identify genes whose expression 
could be predictive of GBM survival. Subsequently, to 
determine the top genes whose expression could be of 
interest in clinical practice, we assess biological pathways 
and protein-protein interaction (PPI) networks associ-
ated with these genes via bioinformatic analyses.

Materials and methods
The Preferred Reporting Items for Systematic Reviews 
and Meta-Analysis (PRISMA) guideline [263] was fol-
lowed to conduct the review (Supplementary File 1, Table 

S1.). PubMed, Scopus, Cochrane, and Web of Science 
databases were used to search for relevant studies pub-
lished between 24th February 2003 and 1st January 2024. 
The search was conducted by the terms “gene expres-
sion” or “expressed genes” or “mRNA” or “RNA-Seq” and 
“survival” or “prognostic” or “biomarker” and “Glioblas-
toma multiforme (GBM)” or “high-grade glioma”. The full 
search strategy is reported in the supplementary File 1, 
Table S2.

Inclusion criteria were: (a) clinical study with human 
participants, (b) bioinformatics analysis study, (c) full-
text articles, (d) published in the English language, (e) 
published in peer-reviewed journals, and (f ) only genes 
related to GBM were considered. The exclusion cri-
teria were as follows: (a) reviews, letters to the editor, 
and abstracts, (b) duplicate publications, (c) Plasma 
biomarker study, (d) participants with immunohisto-
chemical (IHC) and Western blot analysis, (e) cell line 
study, (f ) studies that did not observe a significant cor-
relation between mRNA expression and overall survival, 
(g) recurrent glioblastoma, (h) pseudogene, and (i) ani-
mal study and progression-free survival (PFS) were not 
considered.

Data extraction and quality assessment
Two independent authors (PA and TA) assessed and 
extracted all relevant articles. For each study, the follow-
ing items were extracted: first author, publication year, 
country, mRNA, increased expression, decreased expres-
sion, public gene databases, detection method, short sur-
vival, long survival, and area under curve (AUC) for gene 
panel. The Newcastle–Ottawa Scale (NOS) was used to 
evaluate the quality of the eligible articles for case-control 
studies. NOS involves three perspectives: study group 
selection, group comparability, and whether the expo-
sure or the outcome of interest for a case–control study 
is listed in the scale. Each study can obtain a maximum of 
nine stars [264]. Studies scoring above the median NOS 
value were considered as high quality (low risk of bias) 
and those scoring below the median value were consid-
ered as low quality (high risk of bias). A summary of the 
method of quality evaluation is presented in Table 1.

Bioinformatic and statistical analysis
Protein–protein interaction (PPI) network and signaling 
pathways analysis
All 613 genes (with p < 0.05) obtained from this review 
study were considered in the bioinformatic analysis. The 
PPI network was constructed by Cytoscape software 
(version 3.9.0; https://cytoscape.org/). The top impor-
tant nodes of the PPI network were obtained based on 
the Cytohubba plug-in. The 5 well-known central indi-
ces, including degree, stress, betweenness, closeness, and 
radiality of nodes, were considered to rank the network 

https://www.ebi.ac.uk/arrayexpress/
https://portal.gdc.cancer.gov
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http://www.cgga.org.cn
http://www.cgga.org.cn
https://www.ncbi.nlm.nih.gov/geo/
https://cytoscape.org/
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nodes. The top 10% of genes were determined in each 
metric. Then, common genes were identified between 
five metrics. Finally, between common genes, proteins 
with a high degree of centrality were selected and were 
considered the most important ones to investigate their 
association with survival in GBM patients. Moreover, the 
top 10 genes ranked by degree are calculated.

A pathway analysis using the GO Biological Process 
(GOBP) 2023 database through the ENRICHR package 
(https://maayanlab.cloud/Enrichr/, accessed on 23 March 
2024) was then performed for further specified related 
mechanisms involved in cancer such as cell prolifera-
tion, differentiation, apoptosis, mitosis, angiogenesis, and 
stemness. Only GOBP terms with adjusted p-value < 0.01 
by ENRICHR analysis were used.

Survival analysis and validation of the gene expression in 
the GEPIA2 and CGGA datasets
To confirm the reliability of the identified gene from the 
PPI network, Kaplan-Meier curves were created accord-
ing to the GEPIA2 (http://gepia2.cancer-pku.cn) and 
the CGGA (http://www.cgga.org.cn) databases. CGGA 
contained two glioma data sets, namely, mRNAseq_325 
and mRNAseq_693. Primary GBM of CGGA (mRNA-
seq_325) and CGGA (mRNAseq_693) data were con-
sidered. To determine differences in overall survival for 
patients with a low and high gene-expressing GBM, OS 

Kaplan-Meier analysis was performed by the GEPIA2 
using the TCGA gene expression dataset and CGGA 
online applications. Kaplan–Meier curves were gener-
ated with a 50% median expression cutoff for high- and 
low-expressing groups. The estimation of hazard ratios 
was done by Cox proportional hazards model regression 
analysis. A 95% confidence interval was set and used. 
P < 0.05 was a statistically significant difference in valida-
tion cohorts from GEPIA2 and CGGA.

Results
Descriptive statistics
The workflow of the literature selection process is shown 
in Fig.  1. In brief, 4104 articles were found via an ini-
tial literature search of the databases, and 1296 studies 
were excluded owing to duplication. After screening the 
titles and abstracts, 2371 studies were not considered 
relevant to the purpose of this systematic review based 
on method. Subsequently, 255 studies were enrolled, the 
characteristics of each study were shown in Supplemen-
tary Table 2. Among these, 161 studies were conducted 
in China [16, 18, 20–21, 23–29, 31, 34, 36–37, 40–44, 
47–48, 50, 53, 55, 64, 66–69, 71–74, 80, 82–87, 89, 92–
95, 97–98, 102–105, 107, 109–113, 115–118, 120–124, 
126–127, 135–137, 139–144, 146–152, 154–155, 157, 
160–164, 166, 168–170, 172–173, 177–179, 184–190, 
193–195, 197–197, 206–208, 212–213, 215–221, 223–
226, 229, 231–246, 244, 246–257, 259–261 ], 23 studies 
were conducted in USA [10, 13–14, 32, 45–46, 58, 63, 75, 
77, 88, 106, 108, 114, 133–134, 159, 165, 182, 192, 228, 
243, 245]; besides that, India [9, 19, 30, 33, 59, 101, 130, 
132, 196, 205], Taiwan [61, 79, 96, 145, 156, 175–176, 
242], Germany [38, 51, 65, 90, 180, 230], Japan [22, 57, 
76, 129, 258], Republic of Korea [62, 167, 171, 209, 241], 
UK [39, 60, 131, 191], Spain [15, 119, 153, 227], Lithuania 
[49, 99, 125, 138], Italy [100, 183, 203], France [ 8,12,158], 
Slovenia [11, 81, 128], Switzerland [35, 52], Sweden [78, 
174], Turkey [211, 214], Russia [222], Finland [17], Neth-
erland [204], Hungary [54], Canada [70], Brazil [210] Iran 
[262], and Austria [181]. Among 255 studies, 192, and 37 
of them used the dataset of the TCGA and the CGGA, 
respectively.

In the 720 genes studies, 613 unique genes were iden-
tified whose expression was associated with overall sur-
vival in GBM, of which 107 were described in two or 
more studies. See Supplementary Table 2 for details 
about the number of studies that described each gene, 
and whether or not it was found to be upregulated, 
downregulated, and the databases used.

NOS assessment
The risk of bias evaluation of the included studies for 
case-control studies according to the NOS is shown in 
Supplementary Tables 2 and Supplementary File 1, Table 

Table 1 Check list for quality evaluation and scoring of studies 
based on NOS
Check list
Selection
1. Is the case definition adequate? (if yes, one star)
2. Representativeness of the sample. Truly representative or somewhat 
representative? (if yes, one star)
3. How representative was the bioinformatic analysis group in compari-
son with the validation group, and were assess by mRNA expression? (if 
yes, one star; no star if the patients were selected only in one group)
4. Use of bioinformatic database analysis and specimen verification 
as RT-qPCR to identify novel biomarkers predicting survival in GBM 
tumors. Are both of them used? (if yes, one star)
Comparability
Comparability of bioinformatic analysis dataset results with other 
datasets or methods of measurements as RT-qPCR basis of the design 
or analysis (if yes, two stars; one star was assigned if validation and 
verification was not reported clearly)
Outcome assessment
6. Ascertainment of the outcome: clearly defined outcome of mRNA 
expression, survival analysis, and methods of measurements as RT-
qPCR, (yes, two stars for information ascertained; one star if two of this 
information were not reported)
7. Appropriate statistical analysis: The statistical test used to analyze 
mRNA and the survival of GBM patients as bioinformatic analysis, RT-
qPCR, or microarray were clearly defined and appropriate for bioinfor-
matic analysis group or verification group (if yes, one star; no star was 
assigned if outcomes were not reported)
mRNA, messenger RNA; RT-qPCR, Reverse transcription-quantitative 
polymerase chain reaction

https://maayanlab.cloud/Enrichr/
http://gepia2.cancer-pku.cn
http://www.cgga.org.cn
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S4. Based on the NOS, the median score of the included 
studies was 7. Among the 255 studies, 131 studies that 
scored ≥ 7 were considered to present a low risk of bias. 
124 of the studies were considered with a high risk of bias 
since they scored b < 7.

Bioinformatic analysis
After removing duplicates, 613 genes were included in 
the bioinformatic analysis (Supplementary File 2). A PPI 
network was built using the STRING database and Cyto-
scape application, with an input of 613 genes (Fig.  2). 
The network was analyzed, and the nodes were ranked 
based on centrality parameters. The PPI network con-
tains 602 nodes and 5570 edges. Top genes based on the 
degree value, betweenness centrality, closeness central-
ity, and stress were selected and organized into 5 groups 
(Table  2). By considering the degree of connectivity in 
the PPI network, as described in the materials and meth-
ods section, 31 important genes including (IL6, EGFR, 
STAT3, MMP9, CD44, FN1, CD4, TGFB1, CXCL8, 
CCL2, IL10, ICAM1, IL1A, CD274, KDR, SPP1, ITGB2, 

CDKN2A, PARP1, MYD88, AGT, NOTCH1, SERPINE1, 
TNFRSF1A, CDK1, CAV1, ITGB3, CDK4, FOXO3, 
MDM2, PROM1), were introduced (Table 2). In addition, 
the top 10 genes with the highest node degree score were 
identified as hub genes, as shown in Fig. 3.

In the validation step as shown in Fig. 4, and Table 2, 
genes (FN1, CXCL8, and TNFRSF1A) from the GEPIA2 
dataset, genes (IL6, STAT3, MMP9, FN1, CD4, CCL2, 
IL10, ICAM1, KDR, MYD88, MDM2) from the mRNA_
seq325 of the CCGA, and genes (FN1, NOTCH1, 
CDKN2A) from the mRNA_seq693 of the CCGA cohort 
were associated significantly with overall survival in 
GBM patients.

The list of the top 31 genes is used as input for com-
puting enrichment. As a result, 1271 GOBP terms were 
found and 11 GOBP terms were considered. The com-
plete list of significantly enriched GOBP terms and 
related genes is given in Table 3.

Fig. 1 Flowchart of the selection process
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Discussion
To the best of our knowledge, this systematic literature 
review is the most comprehensive review of gene expres-
sion for predicting GBM overall survival outcomes. 
The most 31 important genes including IL6, EGFR, 
STAT3, MMP9, CD44, FN1, CD4, TGFB1, CXCL8, 
CCL2, IL10, ICAM1, IL1A, CD274, KDR, SPP1, ITGB2, 
CDKN2A, PARP1, MYD88, AGT, NOTCH1, SERPINE1, 
TNFRSF1A, CDK1, CAV1, ITGB3, CDK4, FOXO3, 
MDM2, and PROM1, respectively, were considered as 
candidate biomarkers for GBM survival. Our analyses 
showed that in fact they all could be considered biomark-
ers. Nevertheless, based on the search strategy (Supple-
mentary File 1, Table S2.), this review aimed to conduct 
a comprehensive, systematic literature review to iden-
tify all relevant studies that have significantly reported 
genes related to overall survival in GBM patients. How-
ever, some impact reports on this topic might have been 
missed due to limitations in the search strategy [265–
266]. In the study future, given the well-established het-
erogeneity of GBM, the assessment of the prognostic 
value of specific genes must be conducted with consider-
ation for GBM molecular subtypes, to ensure a compre-
hensive understanding of their impact, and would pave 
the way for precision medicine [266].

Detection of a specific gene expression in GBM tumors 
may be used to diagnose the existence of a GBM disease 

or enable clinicians to select the most effective treatment. 
As there was heterogeneity among the studied genes, 
bioinformatic analyses were performed to compile these 
data. The results identified 31 key genes, which had high 
weight and good topological properties (degree, stress, 
betweenness, closeness, and radiality) in the pathogenic 
networks. In addition, these genes were validated by RT-
qPCR assays or bioinformatic analysis of datasets. In 
this study according to 5 typical nodal metrics, we found 
the most 31 important genes related to the survival of 
patients with GBM. However, there is currently no con-
sensus on how to use these metrics for the interpretation 
of biological networks [267]. Therefore, these findings 
require further investigation.

Identification of survival-associated genes in GBMs 
has been ongoing over the past decade. However, the 
gene lists identified by researchers [8–262] differ con-
siderably; only 107 common genes from 720 genes could 
be identified in studies. These differences can be attrib-
uted to two major factors. First, researchers have ana-
lyzed GBM datasets from various cohorts worldwide. 
Second, studies have analyzed different types of datas-
ets, obtained using different approaches such as PCR or 
next-generation sequencing data. Due to technical limi-
tations and cohorts’ specificity, the expression profiles of 
similar genes identified from different datasets may be 
inconsistent.

Fig. 2 The 613 differentially expressed genes were input into STRING database for PPI network analysis, and achieved a PPI network of 602 nodes and 
5570 edges, with PPI enrichment p-value < 1.0 × 10–16. The network was constructed by Cytoscape based on the PPI correlations from the STRING 
database
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To improve prognostic and predictive survival power 
in GBM patients, researchers [69, 91–92, 94–95, 97, 109, 
131, 137–138, 144, 147, 172, 186, 189, 195, 197, 200, 222, 
242, 251, 253], identified a panel of 2, 3, 4, 6,7, 8, 13, or 14 
genes using mRNA expression datasets. They established 
a risk score model that performed well in survival predic-
tion. High-risk group patients had significantly poorer 
survival as compared with those in the low-risk group. In 
this study, AUC for the 1-year overall survival predictions 
was reported between o.587 [195], to 0.905 [69]. This dif-
ference may be due to the use of different databases and 
cohorts’ specificities. The obtained 31 mRNA panel in 
this study, is suggested to predict OS in glioblastoma in 
various cohorts.

The present study showed that ten hub genes (IL6, 
EGFR, STAT3, MMP9, CD44, FN1, CD4, TGFB1, 
CXCL8, CCL2) with higher node degree in PPI networks 

have been predicted to be survival biomarkers for GBM 
patients and some have been experimentally validated. 
These hub genes can be offered to the candidate bio-
markers of future research for therapeutic targets in 
patients with GBM. In addition, this study showed that 
five hub genes (IL6, NOTCH1, TGFB1, EGFR, and KDR) 
were involved in most of the pathways, and they can be 
further investigated for biological discoveries. Moreover, 
we noticed that cell proliferation, apoptotic process, cell 
migration, and cell differentiation contain many of these 
genes (see Table  3). In addition, various studies showed 
that overexpression of these five genes leads to increased 
cell proliferation and invasion, and inhibition of apopto-
sis in glioblastoma tumors and was associated with poor 
patient survival [268–271]. Therefore, these GOBP terms 
may exert a synergistic effect on the survival of GBM, 

Table 2 The most 31 important genes related to survival GBM
Gene name Degree Stress Betweenness 

centrality
Closeness 
centrality

Radiality pValue of 
OS in CGGA 
(n = 693)

pValue of 
OS in CGGA 
(n = 325)

pValue 
of 
OS in 
GEPIA2

IL6 177 307,218 0.0725 0.5371 0.9951 0.57 0.024 0.074
EGFR 166 438,982 0.1248 0.5387 0.9951 0.28 0.11 0.93
STAT3 142 220,886 0.0470 0.5159 0.9947 0.28 0.039 0.39
MMP9 136 186,362 0.0334 0.5051 0.9945 0.095 0.0016 0.11
CD44 129 190,878 0.0429 0.5046 0.9945 0.095 0.16 0.052
FN1 129 204,432 0.0491 0.5074 0.9945 0.02 0.011 0.028
CD4 127 180,146 0.0444 0.4924 0.9942 0.27 0.045 0.24
TGFB1 120 116,178 0.0206 0.4799 0.9942 0.93 0.099 0.42
CXCL8 118 92,292 0.0166 0.4754 0.9938 NR NR 0.049
CCL2 113 83,784 0.0131 0.4799 0.9939 0.33 0.0039 0.07
IL10 109 78,812 0.0129 0.4758 0.9938 0.99 0.011 0.26
ICAM1 108 76,042 0.0119 0.4795 0.9939 0.08 0.0016 0.14
IL1A 99 54,768 0.0089 0.4603 0.9934 0.36 0.5 0.53
CD274 83 101,018 0.0236 0.4595 0.9934 0.58 0.061 0.38
KDR 75 66,150 0.0127 0.4599 0.9934 0.71 0.0021 0.98
SPP1 75 67,870 0.0148 0.4645 0.9935 0.25 0.46 0.3
ITGB2 73 64,858 0.0129 0.4439 0.9929 0.25 0.11 0.5
CDKN2A 73 101,996 0.0175 0.4645 0.9935 0.006 0.9 0.55
PARP1 72 123,534 0.0234 0.4641 0.9935 0.81 0.69 0.96
MYD88 71 46,916 0.0093 0.4418 0.9929 0.052 0.00041 0.31
AGT 71 76,346 0.0166 0.4516 0.9931 0.29 0.49 0.71
NOTCH1 69 94,738 0.0208 0.4576 0.9933 0.049 0.061 0.6
SERPINE1 68 47,842 0.0082 0.4486 0.9931 0.094 0.15 0.12
TNFRSF1A 67 44,156 0.0100 0.4439 0.9929 0.24 0.12 0.039
CDK1 65 104,270 0.0188 0.4453 0.9930 0.29 0.62 0.45
CAV1 63 109,384 0.0267 0.4497 0.9931 0.26 0.11 0.44
ITGB3 56 66,744 0.0159 0.4428 0.9929 NR NR 0.24
CDK4 56 74,876 0.0149 0.4435 0.9929 0.54 0.96 0.43
FOXO3 55 59,820 0.0131 0.4519 0.9934 0.79 0.22 0.71
MDM2 52 68,820 0.0158 0.4482 0.9930 0.36 0.029 0.15
PROM1 48 37,454 0.0085 0.4382 0.9928 0.7 0.97 0.86
OS, overall survival; GEPIA2, Gene Expression Profiling Interactive Analysis 2 ; NR, not result
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which could be clues to therapeutic strategies for this 
disease.

One might inquire about the hub genes obtained from 
this study. Certainly, various computer modeling algo-
rithms and prediction methods have been and are being 
developed and used to predict outcomes in medical 
research. It is noted that each modeling approach has 
its strengths and weaknesses and there is no best one 
for all cases [272]. The best modeling approach is uncer-
tain, and may be obtained by combining more than one 
model, and research in this field continues [272]. By 
changing the method of prediction, the most important 
variables will be changed to predict outcomes [272]. We 
identified two hub gene groups that were associated with 
overall survival in GBM patients. The ten and five hub 
genes are ranked by degree and pathways analysis meth-
ods, respectively. It is noted that, when a different gene 
selection criterion is applied, the number of genes in the 
two top-ranking lists of the two methods will also change 
[273]. In this study, the algorithms yielded different top-
ranking gene lists due to their different approach. Inter-
estingly, the two lists of hub genes have three in common, 
that were selected as the most important genes for the 
prediction of survival in methods and can be considered 
as three hub genes (IL6, TGFB1, and EGFR).

In this study, the five and ten lists of hub genes were 
selected based on two different methods, therefore, the 
two groups are different [272–273]. On the other hand, 
as we all know, the TCGA and the CGGA databases are 
the world’s largest and most comprehensive gene expres-
sion public databases in GBM patients. Hence, these 
databases were used for validation of our study results. In 
the validation analysis, we used the GEPIA2, the mRNA_
seq325, and the mRNA_seq693 of the CCGA. Only, the 
FN1 gene was significant in three cohorts. Although the 
mRNA_seq693 includes more patients with Grade 4 gli-
oma compared to the mRNA_seq325, only three genes 
were significant compared to eleven genes observed in 
the other cohort of the CGGA (Table 3). The differences 
seen between the three databases can be due to the dif-
ferences in genetics between the different populations.

Study consistency
Of the 255 manuscripts, all studies were prospective. 
No randomized trial was found. 107 mRNAs (14.9%; 
107/720) were common in all studies. However, a large 
number of studies have not been validated; hence, there 
was a lack of high-quality evidence in this study. 124 stud-
ies were rated as fair quality; 131 studies were considered 

Fig. 3 The top 10 genes in the PPI network, in terms of degree ranking, were regarded as hub genes. The node color changes gradually from yellow to 
red in ascending order according to the degree of the genes
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Fig. 4 (a–n) Kaplan-Meier analysis of overall survival for GBM patients in the GEPIA2 using the TCGA cohort (a. FN1; b. CXCL8; and c. TNFRSF1A), the 
mRNA_seq325 of the CCGA (d. IL6; e. STAT3; f. MMP9; g. FN1; h. CD4; i. CCL2; j. IL10; k. ICAM1; l. KDR; m. MYD88; and n, MDM2), and the mRNA_seq693 
of the CCGA (o, FN1, p, NOTCH1, q, CDKN2A) based on low- and high-expression of genes. The red line represents samples with high expression of the 
genes, and the blue line represents the samples with low expression of genes. Among 31 genes, p < 0.05 was considered to be statistically different
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to be of high quality. Types of studies and datasets were 
not consistently reported, resulting in a potential bias.

Among studies in this systematic review, genes with a 
significant correlation between gene expression and over-
all survival were considered. Previous studies have found 
that gene expression levels are associated with prognosis 
and some genes can be applied to predict the survival risk 
of GBM patients. However, some studies have conflicts 
regarding significant differences in gene expression and 
overall survival. These conflicts seem to depend on the 
GBM sample size, the heterogeneity of GBM, the datasets 
used, and the methodologies employed. All the above- 
mentioned may explain why the validation step did not 
yield significant results.

Study quality
The small sample size in PCR-based studies, the high 
number of single-center studies, various databases, and 
the high number of studies from China (161/255), the 
USA (23/155), and India (10/255), which may affect 
the quality of studies. The heterogeneity of the studies 
reduced the quality of the data. In some of these datasets 
and GBM samples, the type and severity of GBM disease 
were not specified. In addition, some studies lacked vali-
dation of their candidate genes in a GBM patient cohort. 
Therefore, further research with large sample sizes and 
validation in GBM patients is warranted.

Strengths, limitations, and future perspectives
To the best of our knowledge, the current study is the 
first that systematically reviewed published data on gene 
expression related to the survival of GBM patients. Of 
note, the major strength of the current systematic review 
is that bioinformatic analyses were performed, which 
added new information to the previously studied gene 

expression on this topic. The findings reported here pro-
vide a better view of gene expression biomarkers in pre-
dicting the prognosis of patients with GBM.

There are some limitations in our work. Firstly, the 
search strategy was restricted to the English language 
literature only, hence, there is a possibility of excluding 
qualified studies published in other languages. Secondly, 
the study showed a high level of heterogeneity in the 
methods used among the included studies. In particu-
lar, there were heterogeneities in (1) Variety in disease 
severity; and (2) Age- and gender-related changes in 
GBM patients were not considered. Thirdly, the overall 
survival has been associated with multiple factors such 
as poor immune response, which was not considered in 
this study. Additionally, the role of gene expression was 
not completely clarified in various biological processes 
and the potential application of these molecules as gene 
therapies. Hence, future studies are required to clarify 
the biological roles of the mRNAs to investigate the pos-
sibility of their clinical utilization in GBM patients.

Conclusion
Our review suggests that the current evidence for gene 
expression associated with GBM survival is highly vari-
able. At present, no clear decisions can be made from this 
systematic review for application into clinical practice. 
The key recommendation from this study is that genetic 
data sharing develops strategies and guidelines in this 
field that can be used to answer important questions. 
Moreover, in future a combination of significant genes 
expression signatures can be applied to identify a pow-
erful and independent predictor for outcome in GBM 
patients.

Table 3 The top enriched gene ontology biological process terms
GO-term Description Count Adjusted 

p-value
Odds 
ratio

Genes

GO:0042127 Regulation Of Cell Population Proliferation 14 7.972e-10 21.04 IL10, IL6, IL1A, NOTCH1, EGFR, TGFB1, STAT3, 
CXCL8, CDK4, CDKN2A, MDM2, KDR, AGT, FN1

GO:0042981 Regulation Of Apoptotic Process 10 0.000002669 13.21 IL10, IL6, EGFR, MMP9, CD44, CDK1, MDM2, 
AGT, KDR, FOXO3

GO:2,000,045 Regulation Of G1/S Transition Of Mitotic Cell 
Cycle

3 0.003373 20.67 CDKN2A, CCL2, EGFR

GO:0030334 Regulation Of Cell Migration 8 0.000007457 15.96 EGFR, NOTCH1, TGFB1, STAT3, SERPINE1, 
FOXO3, KDR, CAV1

GO:0045597 Positive Regulation Of Cell Differentiation 4 0.004627 10.46 IL6, TGFB1, KDR, AGT
GO:0045596 Negative Regulation Of Cell Differentiation 6 0.00001759 23.60 IL6, NOTCH1, TGFB1, ITGB3, CAV1, EGFR
GO:0045765 Regulation Of Angiogenesis 5 0.0002312 19.01 IL1A, IL6, CXCL8, SERPINE1, KDR
GO:0010574 Regulation Of Vascular Endothelial Growth Fac-

tor Production
3 0.0001532 92.92 IL1A, IL6, TGFB1

GO:0045687 Positive Regulation Of Glial Cell Differentiation 2 0.002153 91.74 NOTCH1, TGFB1
GO:0048710 Regulation Of Astrocyte Differentiation 2 0.001233 152.95 NOTCH1, IL6
GO:0060251 Regulation of glial cell proliferation 2 0.0007411 229.46 NOTCH1, IL6
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