
Peng et al. BMC Cancer          (2024) 24:621  
https://doi.org/10.1186/s12885-024-12337-z

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Cancer

Artificial intelligence-based prognostic 
model accurately predicts the survival 
of patients with diffuse large B-cell lymphomas: 
analysis of a large cohort in China
Huilin Peng1†, Mengmeng Su4†, Xiang Guo2, Liang Shi3, Tao Lei1, Haifeng Yu1, Jieyu Xu1, Xiaohua Pan4*† and 
Xi Chen1*† 

Abstract 

Background  Diffuse large B-cell lymphomas (DLBCLs) display high molecular heterogeneity, but the International 
Prognostic Index (IPI) considers only clinical indicators and has not been updated to include molecular data. There-
fore, we developed a widely applicable novel scoring system with molecular indicators screened by artificial intelli-
gence (AI) that achieves accurate prognostic stratification and promotes individualized treatments.

Methods  We retrospectively enrolled a cohort of 401 patients with DLBCL from our hospital, covering the period 
from January 2015 to January 2019. We included 22 variables in our analysis and assigned them weights using 
the random survival forest method to establish a new predictive model combining bidirectional long-short term 
memory (Bi-LSTM) and logistic hazard techniques. We compared the predictive performance of our “molecular-
contained prognostic model” (McPM) and the IPI. In addition, we developed a simplified version of the McPM (sMcPM) 
to enhance its practical applicability in clinical settings. We also demonstrated the improved risk stratification capabili-
ties of the sMcPM.

Results  Our McPM showed superior predictive accuracy, as indicated by its high C-index and low integrated Brier 
score (IBS), for both overall survival (OS) and progression-free survival (PFS). The overall performance of the McPM 
was also better than that of the IPI based on receiver operating characteristic (ROC) curve fitting. We selected five key 
indicators, including extranodal involvement sites, lactate dehydrogenase (LDH), MYC gene status, absolute mono-
cyte count (AMC), and platelet count (PLT) to establish the sMcPM, which is more suitable for clinical applications. 
The sMcPM showed similar OS results (P < 0.0001 for both) to the IPI and significantly better PFS stratification results 
(P < 0.0001 for sMcPM vs. P = 0.44 for IPI).
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Conclusions  Our new McPM, including both clinical and molecular variables, showed superior overall stratification 
performance to the IPI, rendering it more suitable for the molecular era. Moreover, our sMcPM may become a widely 
used and effective stratification tool to guide individual precision treatments and drive new drug development.

Keywords  Diffuse large B-cell lymphoma, Heterogeneous, Prognostic model, Molecular era

Background
Diffuse large B-cell lymphomas (DLBCLs) are the most 
common subtype of non-Hodgkin lymphoma (NHL), 
and they display clinical and biological heterogene-
ity. Immunochemotherapy with rituximab plus cyclo-
phosphamide, doxorubicin, vincristine, and prednisone 
(RCHOP) is a widely accepted, standardized treatment 
for patients with newly diagnosed DLBCL [1]. Despite 
a high response rate, approximately 10–15% of patients 
are resistant to first-line immunochemotherapy [2–4], 
and disease relapse occurs in up to 30–40% of patients 
after treatment [4, 5]. Therefore, individualized treat-
ments based on risk stratification are urgently needed.

The International Prognostic Index (IPI) is the most 
widely used tool for risk stratification in clinical prac-
tice; this was established before the era of immuno-
chemotherapy [6]. The revised IPI (R-IPI) and National 
Comprehensive Cancer Network IPI (NCCN-IPI) are 
often used as prognostic models during rituximab 
treatments. They offer advantages in predicting prog-
nosis after immunochemotherapy [7]. A variety of gene 
signatures and microenvironmental biomarkers have 
emerged. Tumour-associated macrophages (TAMs) 
are important components of the DLBCL microen-
vironment, and upregulation of CD163+ M2 TAMs 
has been found to be associated with inferior chemo-
therapy effects [8] and an unfavourable prognosis [9]. 
Carreras et al. also found that high-level infiltration of 
(CD163+, PTX3+, IL10+) M2c-like TAMs and low infil-
tration of FOXP3+ Tregs were associated with a poor 
prognosis [10]. In addition, DLBCL patients expressing 
PD-L1 also have a poor prognosis [11]. Therefore, sev-
eral studies have attempted to incorporate molecular 
markers into various models [4, 7, 12–15]. Of these, the 
five-gene risk model (CD163、CLEC4A、COL15A1
、GABRB2、IFIT3) reliably predicts the overall sur-
vival (OS) of DLBCL [15] patients. However, even in 
the current molecular era, there is no consensus among 
research groups on the optimal molecular technique for 
stratifying DLBCL patients. Thus, the models have not 
been widely used in routine medical practice. The IPI, 
R-IPI, and NCCN-IPI are still widely used to accurately 
predict prognosis. However, all three scoring systems 
share the limitation of only considering clinical indica-
tors; molecular heterogeneity is not sufficiently taken 
into account [7, 16].

Gene abnormalities in MYC, BCL2, and BCL6 are 
strong prognostic predictors in patients with DLBCL 
[17–19]. DLBCL with a MYC rearrangement (MYC-R) 
but not a BCL2 rearrangement (BCL2-R) nor a BCL6 
rearrangement (BCL6-R) is termed single-hit lymphoma 
(SHL). DLBCL with MYC-R and BCL2-R and/or BCL6-
R is termed double- or triple-hit lymphoma (DHL and 
THL, respectively). All three types were reported to be 
associated with a poor prognosis [20]. However, to the 
best of our knowledge, these markers have not been used 
in prognostic scoring systems.

Mathematical modelling methods with digitized clini-
cal data have gradually been introduced to identify the 
most important prognostic factors of diseases and pre-
dict the incidence of events [21–24]. The use of artificial 
intelligence to screen for DLBCL-prognostic genes is 
now common [25]. One study used artificial intelligence 
to reveal the prognostic impact of the MYC and BCL2 
genes [26]. However, AI-based classification methods 
and models are not appropriate for routine clinical prac-
tice. In addition, few models combine clinical and genetic 
screening factors as prognostic indicators.

The aim of our research was to establish a new prog-
nostic model with diverse indicators, including both 
clinical and molecular variables, by using an intelli-
gent screening method. Our new model represents an 
advancement in both methodology and indicator selec-
tion. It is well positioned to provide improved guidance 
for clinical treatment, especially in the context of new 
drugs, and aligns with the demands of the molecular era.

Materials and methods
Patients and clinical features
Case selection
We retrospectively collected clinical information and 
the results of MYC, BCL2, and BCL6 fluorescence situ 
hybridization (FISH) tests from 401 patients with DLBCL 
newly diagnosed in our hospital during the period Janu-
ary 2015 to January 2019. We excluded patients with 
incomplete clinical data and those who did not receive 
chemotherapy. All patients were diagnosed with DLBCL 
by pathologists at our hospital or after external consul-
tations. The study was conducted in accordance with the 
Helsinki Declaration. All patients signed informed con-
sent forms before inclusion.
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Fluorescence situ hybridization
FISH experiments were performed using paraffin-
embedded specimens after the pathological diagnoses. 
All probes and 4’,6-diamidino-2-phenylindole (DAPI) 
counterstains used in this study were purchased from 
Abbott (USA), including the MYC dual-color separation 
(01N63-020), BCL2 dual-color separation (05N51-020), 
and BCL6 dual-color separation (01N23-020) probes. 
According to the results of hematoxylin-eosin (HE) stain-
ing, we selected regions rich in tumor cells as hybridi-
zation regions. We counted 200 tumor cells in each 
specimen and assessed genetic features based on spe-
cific signal patterns. We identified gene rearrangements 
based on signal separation, where one fused yellow signal 
and two separated red and green signals were observed 
in > 10% of cells for the MYC gene, > 10% of cells for the 
BCL2 gene, and > 10% of cells for the BCL6 gene. We 
identified gene amplifications in the presence of more 
than three yellow signals (or adjacent red and green sig-
nals) in the same nucleus. Two yellow signals (or adjacent 
red and green signals) in the same nucleus characterized 
normal MYC, BCL2, and BCL6 genes.

Follow‑up
Patients were followed up via phone calls or the Hospital 
Information System. We excluded patients for whom we 
lacked survival outcome information. The last follow-up 

date was 1 January 2022. We defined OS as the time from 
DLBCL diagnosis to death or the last follow-up, which-
ever came first. Progression-free survival (PFS) was the 
time from DLBCL diagnosis to the first disease progres-
sion, death, or last follow-up, whichever came first.

Modelling
Modelling process
Figure 1 shows the modelling process.

Feature selection
We evaluated the significance of variables using the ran-
dom survival forest (RSF) R package(website:https://​cran.​
rproj​ect.​org/​web/​packa​ges/​rando​mFore​stSRC/​index.​html) 
[27]. Two methods were used to determine the contribu-
tions of variables to a stochastic survival model: the vari-
able importance (VIMP) [28] method and the minimum 
depth method.

Data set segmentation
We used 90% of the data for model training and 10% for 
model testing. We split the data used for training into 
two sets according to a ratio of 9:1(test data, training 
data, and verification data in the proportion of positive 
and negative samples) (Fig. 2).

Fig. 1  The modelling process of McPM. EIS, extranodal involvement sites; LDH, lactate dehydrogenase; AMC, absolute monocyte count; PLT, 
platelet count; Bi-LSTM, bidirectional long-short term memory; MLP, multi-layer perceptron; MSELoss, mean squared error loss; OS, overall survival; 
PFS, progression free survival

https://cran.rproject.org/web/packages/randomForestSRC/index.html
https://cran.rproject.org/web/packages/randomForestSRC/index.html
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Training
We generated a survival prediction model (“molecular-
contained prognostic model”, McPM) based on entity 
embedding, encoded and decoded layers, bidirectional 
long-short term memory (Bi-LSTM), and logistic hazard 
techniques [29]. We classified variables into categori-
cal, binary, and numerical categories and used them as 
model inputs. The encoded data were produced using 
the encoded layer. Future and past information was dis-
covered and retained by the Bi-LSTM, and the final sur-
vival predictions were then generated using the logistic 
hazard model. The logistic hazard model is a discrete-
time method and requires discretization of event times 
for data that are originally continuous. The model’s loss 
function consists of an encoder loss component (mean 
squared error loss, MSELoss) and a survival prediction 
loss component (negative logarithmic likelihood logis-
tic regression loss, NLLLogistiHazardLoss), where the 
encoder loss was calculated on the basis of differences 
between the model’s output and input features.

Model evaluation
We used the concordance index (C-index) and Brier 
score (BS) as evaluation indexes of the survival predic-
tions. The C-index, a commonly used indicator of sur-
vival predictions, is applied to evaluate the predictions 
made by an algorithm. The BS [30, 31] is used to evalu-
ate the accuracy of a predicted survival function at a 
given time (t). It represents the average squared distance 
between the actual survival status and the predicted 
survival probability, and its value is always a num-
ber between 0 and 1, where 0 is the best possible value. 
Given a dataset of N samples, ∀i ∈ [1, N], (

−→
xi , δi, Ti) is the 

format of a datapoint, and the predicted survival function 
is Ŝ

(
t,
−→
xi
)
, ∀t ∈ R

+ . In the absence of right censoring, the 
BS can be calculated as:

However, if the dataset contains right-censored sam-
ples, the score needs to be adjusted by weighting the 
squared distances using the inverse probability of censor-
ing weights method. Let G(t) = P[C > t] be the estima-
tor of the conditional survival function of the censoring 
times calculated using the Kaplan-Meier method, where 
C is the censoring time.

In terms of benchmarks, a useful model will 
have a BS below 0.25. Indeed, it is easy to see that 
if ∀i ∈ [1, N], Ŝ

(
t,
−→
xi
)
= 0.5 then BS(t) = 0.25.

We performed other statistical analyses using Graph-
Pad 9.0 software. We considered P values < 0.05 statisti-
cally significant.

Results
Clinical and molecular characteristics of patients 
with DLBCL
Table 1 lists the clinical and molecular characteristics of 
the 401 patients in this study. The median age of onset 
was 58 years and the proportion of male participants 
was slightly higher than that of female participants. 
Nearly half of patients (49.6%) had an Ann Arbor stage 
of III–IV. One fifth of patients were accompanied with 
B symptoms. Most patients were non-germinal center B 
cell (Non-GCB) subtypes according to the cell of origin 
of lymphoma. We determined the expression of MYC, 
BCL2, and BCL6 genes using FISH tests in all patients, 
and we found that 296 patients (73.8%) had at least one 
genetic abnormality. We identified 16 cases of double-hit 
lymphoma /triple-hit lymphoma (DHL/THL), including 
1 case of THL, 10 of MYC and BCL6 DHL, and 5 of MYC 
and BCL2 DHL. In total, 381 patients received RCHOP-
like regimens and only 20 (5.0%) received CHOP-like 
regimens. Additionally, we have also performed univari-
ate and multivariate analyses using Log rank and COX 
(see Table S1 and Table S2).

Importance of variables
We used the RSF method to assess the importance of 22 
clinical and pathological variables, as shown in Fig.  3. 
We found that the prediction error rate decreased sig-
nificantly with an increase in the number of survival trees 

BS(t) =
1

N

N∑

i=1

(1Ti>t − Ŝ
(
t,
−→
xi
)
)
2

BS(t) =
1

N

N∑
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(0− Ŝ
(
t,
−→
xi
)
)
2
· 1Ti>t,δi=1

Ĝ
(
T−
i

) +
(1− Ŝ

(
t,
−→
xi
)
)
2
· 1Ti>t

Ĝ(t)

Fig. 2  Data set segmentation. The complete data set is divided 
into training and test data sets in a ratio of 9:1, where the training 
data is further divided into training and validation data in a ratio of 9:1



Page 5 of 14Peng et al. BMC Cancer          (2024) 24:621 	

(Fig. 3a). When survival trees increase to a certain num-
ber, the error rate curve flattens out. We found that the 
error rate was lowest near 300 trees (within a range of 
0–500 trees).

Figure  3b lists the weights of the different variables. 
The top five variables ranked by weight were extranodal 
involvement sites, lactate dehydrogenase (LDH), MYC 
gene status, absolute monocyte count (AMC), and plate-
let count (PLT).

Both the VIMP and minimum depth methods are com-
monly used for variable screening when employing the 
RSF model. VIMP represents the difference between 
the original and the new error rate. A VIMP value < 0 
indicates that the variable reduces the prediction accu-
racy, while a VIMP value > 0 indicates that the variable 
improves the prediction accuracy. The minimum depth 
method assesses the importance of each variable by cal-
culating the minimum depth at which it appears in the 
decision tree when the tree reaches its final node.

Table  2 lists the VIMP values and depth of different 
variables. Figure 4 shows a scatter plot comparing the two 
methods. In the plot, blue points represent VIMP val-
ues > 0, and red points represent VIMP values < 0. Points 
on the red diagonal dotted line indicate that the same two 
methods rank a given variable similarly. Points above the 
diagonal dotted line indicate a higher VIMP ranking, and 
points below the diagonal dotted line indicate a higher 
minimum depth ranking. We obtained similar results 
with both variable selection methods; extranodal involve-
ment sites, LDH, MYC gene status, AMC, and PLT seem 
to be important variables for prognosis.

Comparison of the new McPM and the IPI for OS prediction
We assessed the goodness of fit of the two models using 
the C-index. A higher C-index value indicates a better 
model fit. The Brier score, defined as the mean square of 
the difference between the predicted and actual values, 
allowed us to calculate the integrated Brier score (IBS), 
an overall measure of model prediction performance. The 
lower the IBS, the higher the prediction accuracy of the 
model. Compared with the IPI, the McPM had a supe-
rior OS prediction accuracy due to its higher C-index 
(McPM, 0.8672 vs. IPI, 0.8025; Table  3) and lower IBS 
(McPM, 0.1296 vs. IPI, 0.2159; Table 3).

The receiver operating characteristic (ROC) curve 
and area under curve (AUC) are important for evaluat-
ing prognostic model discrimination. Figure  5 shows 
the change in AUC values for OS or PFS predictions as 
survival time increases. For OS prediction (Fig.  5a), the 
new score outperformed the IPI model over a continuous 
80-month period, maintaining stable AUC values rang-
ing from 0.8 to 0.9. In contrast, the AUC values of the 
IPI were less stable, with predicted AUC values ranging 
from 0.4 to 0.8. The predicted AUC values within 1 year 
ranged from 0.4 to 0.7 with large fluctuations, while the 
predicted AUC values after 1 year ranged from 0.7 to 0.8 
with small fluctuations. The gap between the two models 
became wide over time. Figure 6 shows the ROC curves 
of the new score and the IPI models for OS predictions. 
Compared with the 1-, 3-, and 5-year survival AUCs of 
the IPI, the values of the new model increased by approx-
imately 6%, 4%, and 15%, respectively. Overall, the new 

Table 1  Clinical and molecular characteristics of the 401 patients

Abbreviations: ECOG Eastern Cooperative Oncology Group, ALC absolute 
lymphocyte count, AMC absolute monocyte count, LDH lactate dehydrogenase, 
IPI International Prognostic Index, COO cell of origin, GCB germinal-center 
B-cell, RCHOP rituximab plus cyclophosphamide, doxorubicin, vincristine, and 
prednisone

Characteristics All patients (N= 401)

Median age (range) 58(15–84)

Aged >60 years 170/401 (42.4%)

Male 201/401 (52.3%)

Ann Arbor III–IV 199/401 (49.6%)

ECOG ≥ 2 60/401 (14.9%)

B symptoms 85/401 (21.1%)

Extranodal sites ≥ 2 93/401 (23.2%)

ALC ≤ 1.0 × 10^9/L 114/401 (28.4%)

AMC ≥ 0.6 × 10^9/L 136/401 (33.9%)

ALC/AMC< 3: 1 197/401 (49.1%)

Albumin < 35 g/L 41/401 (10.2%)

β2 microglobulin > 3.0 mg/L 97/401 (24.2%)

LDH >240 U/L 194/401 (48.4%)

IPI

  0–2 276/401 (68.8%)

  3–5 125/401 (31.2%)

  Ki-67 > 70% 238/401 (59.4%)

COO

  Non-GCB 274/401 (68.3%)

  GCB 127/401 (31.7%)

MYC gene

  Rearrangement 40/401 (10.0%)

  Amplification 75/401 (18.7%)

  Normal 286/401 (71.3%)

BCL2 gene

  Rearrangement 21/401 (5.2%)

  Amplification 137/401 (34.2%)

  Normal 243/401 (60.6%)

BCL6 gene

  Rearrangement 145/401 (36.2%)

  Amplification 104/401 (25.9%)

  Normal 152/401 (37.9%)

  Double-/triple-hit 16/401 (3.9%)

  RCHOP-like regimen 381/401 (95.0%)

  CHOP-like regimen 20/401 (5.0%)
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model showed a superior OS predictive performance 
than the IPI.

Comparison of the new McPM and the IPI for PFS 
prediction
We further explored the predictive performance of the 
two scoring systems for PFS. Compared with IPI, The 
McPM provided better PFS discrimination than the 
IPI, as indicated by its higher C-index value (0.8394 
vs. 0.7308; Table  4) and lower IBS (0.1619 vs. 0.1712; 
Table 4).

The AUC curve values for PFS (Fig. 5b) also differed sig-
nificantly between the two models. During the continu-
ous 80-month period, the AUC values of the new model 
remained stable between 0.75 and 0.9, and they began to 
decrease gradually after 60 months. By contrast, the pre-
dicted IPI AUC values ranged from 0.7 to 0.8 and showed 
an overall decreasing trend with time. Figure 7 shows the 
1-, 3‐, and 5‐year ROC curves for PFS predictions, for both 
the McPM and the IPI. While the 1-year AUC value for the 
McPM was slightly lower than that of the IPI (0.80 vs. 0.82), 
the new model had better AUC values for 3- and 5-year 
survival, by approximately 12% in both cases. Overall, 
despite a slightly lower 1-year AUC, the new model dem-
onstrated better PFS predictive performance than the IPI.

Comparison of two models with actual outcomes
To better evaluate the performance differences between 
the two prediction models and real-world outcomes, 

Fig. 3  Error rate curve and feature weights. a Plot of error rate according to the number of survival trees; (b) Comparison of the importance of all 22 
factors. The error rate of the model stabilizes at around 0.31. Based on the feature weights, the top five most important indicators can be identified 
as extranodal involvement sites, LDH, MYC gene status, AMC, and PLT. LDH, lactate dehydrogenase; ALC, absolute lymphocyte count; AMC, absolute 
monocyte count; ECOG, Eastern Cooperative Oncology Group score; β2M, β2 microglobulin; PLT, platelet count; ANC, absolute neutrophil count; 
CRP, C-reactive protein; WBC, white blood cells; Hb, haemoglobin; COO, cell of origin

Table 2  Importance of variables according to the minimum 
depth and VIMP methods

Abbreviations: LDH lactate dehydrogenase, AMC, absolute monocyte count, 
PLT platelet count, ALC absolute lymphocyte count, WBC white blood cells, 
Hb haemoglobin, ANC absolute neutrophil count, ECOG Eastern Cooperative 
Oncology Group, β2M β2 microglobulin, CRP c-reactive protein, COO cell of 
origin

Factors Depth VIMP

Extranodal involvement sites 3.788 0.11695186

LDH 4.036 0.06482836

MYC gene status 4.232 0.06325718

AMC 5.07 0.04809921

PLT 5.564 0.04207818

Age 5.65 0.03592581

ALC/AMC 4.972 0.03355172

WBC 6.06 0.0332111

Hb 6.106 0.03296761

ANC 5.578 0.03135262

ECOG 6.636 0.02613268

β2M 5.054 0.02512321

Ann Arbor 5.668 0.02117884

ALC 5.752 0.0186599

BCL2 gene status 6.674 0.01002272

Albumin 6.038 0.00930746

CRP 5.982 0.00880714

Ki-67 7.126 0.00684168

B Symptoms 7.902 -0.0002797

BCL6 gene status 7.916 -0.0006722

COO 8.244 -0.0007618

Gender 8.006 -0.0007761
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we conducted comparisons (Fig. 8). In terms of OS, the 
alignment of the IPI with the actual probability (global 
true) was slightly stronger than that of the new model 
within the first 40 months. However, the difference 
between the IPI and the global true became significantly 
larger thereafter than that of the new model, with the dis-
parity gradually increasing over time. In general, the new 
model exhibited better alignment with the actual out-
comes than the IPI (Fig. 8a).

In terms of PFS, both the new model and the IPI 
aligned well with the actual probability within the first 
12 months (Fig. 8b). We found slight deviation between 
the new model’s predictions and the actual PFS between 
12 and 30 months, and the new model’s predictions 
largely aligned with the global true after 30 months. By 

contrast, the deviation between the IPI and the actual 
PFS increased gradually over time. Overall, the predictive 
advantage of the new model for PFS was significant.

Clinical application of the new sMcPM
The calculations required to operate the McPM are too 
complex to be widely applicable in clinical practice. 
Therefore, we designed a simplified version, the sMcPM. 
According to the weights of the variables in Table 2, we 
selected the top five contributors to patient survival 
(extranodal involvement sites, LDH, MYC gene status, 
AMC, and PLT). We integrated the five variables con-
sidering their relative weights; Table 5 shows the scoring 
criteria. Our sMcPM classified patients into three risk 
subgroups: a score of 0–2 indicates a low risk of poor 
outcomes, a score of 3–4 indicates intermediate risk, and 
a score of 5–7 indicates high risk.

 We further compared the OS and PFS of the differ-
ent risk groups according to the two models (Fig.  9) to 
visualize the stratification by prognosis. The stratifica-
tion performance of OS based on the IPI and sMcPM was 
similar and significant in both cases (both P < 0.0001). 
However, stratification by IPI of the PFS was inferior to 
that of the sMcPM, and the former could not distinguish 

Fig. 4  Scatter plot of the VIMP and minimum depth method. Blue points represent VIMP values > 0, and red points represent VIMP values < 0. Points 
on the red diagonal dotted line indicate that the same two methods rank a given variable similarly. Points above the diagonal dotted line indicate 
a higher VIMP ranking, and points below the diagonal dotted line indicate a higher minimum depth ranking (e.g. AMC and PLT are above the red 
diagonal dashed line, indicating that these two variables have a higher VIMP ranking.)LDH, lactate dehydrogenase; ALC, absolute lymphocyte count; 
AMC, absolute monocyte count; ECOG, Eastern Cooperative Oncology Group; β2M, β2 microglobulin; PLT, platelet count; ANC, absolute neutrophil 
count; CRP, c-reactive protein; WBC, white blood cells; Hb, haemoglobin; COO, cell of origin

Table 3  Comparison of OS between the IPI and McPM

Abbreviations: IPI International Prognostic Index, McPM molecular-contained 
prognostic model, C-index concordance index

McPM IPI

C-index 0.8672 0.8025

Integrated Brier Score 0.1296 0.2159
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intermediate- from high-risk patients (P = 0.44 vs. 
P < 0.0001). The 1-year PFS rates of the four IPI groups 
were 91.10%, 71.20%, 73.30%, and 63.00% (Table 5). The 
1‐year PFS rates of the three sMcPM groups (low-, inter-
mediate-, and high-risk groups) were 82.70%, 73.90%, 
and 58.8%. Thus, sMcPM was superior at identifying 
high-risk patients, stratifying patients, and predicting 
their prognoses. More detailly, the COX for OS and PFS 
for IPI, sMcPM, and both variables together is included 
in Table S3. In conclusion, the new simplified model fully 
considers the important influence of molecular factors, 
transforms numerical variables into binary variables and 
constitutes a more stable, reliable, and applicable stratifi-
cation tool for patients with DLBCL. These results sug-
gest that our sMcPM could serve as a reliable prognostic 
tool.

Discussion
DLBCL is the most common subtype of NHL, account-
ing for approximately 30–40% of all cases [32]. More 
than 50% of patients are cured with the first-line 
RCHOP regimen, but a small proportion still have a 
poor prognosis [33, 34]; identifying these high-risk 
patients is important. IPI, R-IPI [35], and NCCN-IPI 

[36] are widely used indexes for prognostic assessment, 
but none of them can clearly identify individuals with 
a long-term survival < 50% during rituximab treatment 
[16, 37]. In 2016, given the prognostic importance of 
MYC, BCL2, and BCL6 rearrangements in patients with 
lymphoma [34, 38–40], the World Health Organization 
(WHO) defined a new entity with an aggressive clini-
cal course and poor clinical outcome, high-grade B-cell 
lymphomas with MYC and BCL2 and/or BCL6 rear-
rangements (HGBL-R), which was previously known 
as DHL/THL [41–44]. In other words, molecular 

Fig. 5  Comparison of the AUC values at various time 
points of the two models (McPM and IPI). a The relationship 
between survival time and the AUC value in OS prediction; (b) 
The relationship between survival time and the AUC value in PFS 
prediction. AUC stands for area under the curve, which is a metric 
used to evaluate the performance of a binary classification model. 
A higher AUC value suggests better discriminatory power. AUC, 
area under the curve; McPM, molecular-contained prognostic 
model; IPI, International Prognostic Index; OS, overall survival; PFS, 
progression-free survival

Fig. 6  Comparison of the 1- (a), 3- (b), and 5-year (c) ROC 
curves of different models (McPM and IPI for OS prediction). It 
is a graphical plot that illustrates the diagnostic ability of a binary 
classifier system as its discrimination threshold is varied. The larger 
the area under the curve, the better the classification performance 
of the model. ROC, Receiver operating characteristic; OS, Overall 
survival; McPM, Molecular- contained prognostic model; IPI, 
International Prognostic Index

Table 4  Comparison of progression-free survival values between 
the IPI and the McPM

Abbreviations: IPI International Prognostic Index, McPM molecular-contained 
prognostic model, C-index  concordance index

McPM IPI

C-index 0.8394 0.7308

Integrated Brier Score 0.1619 0.1712
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heterogeneity is an important factor in the prognosis 
of patients with DLBCL, but existing scoring systems 
do not meet the demands of the molecular era. There 
are two main limitations of the IPI model. First, it only 
includes clinical indicators and ignores the important 
impact of molecular genetic heterogeneity on prognosis. 
Second, the use of Cox survival analysis alone to screen 
for independent prognostic factors is relatively outdated 
and cannot account for the non-linear associations 
between complex and diverse variables [45, 46]. Rel-
evant studies showed that even with the same IPI score, 
the prognoses of patients with DLBCL may differ signif-
icantly [5, 17]. Thus, we created the McPM for patients 
with DLBCL to integrate the complex prognostic factors 
in the molecular era.

The incorporation of prognostic indicators linked to 
molecular genetics is one of the two main strengths of 
our McPM. Domestic and international studies have con-
firmed the prognostic significance of MYC, BCL2, and 
BCL6 gene abnormalities in patients with DLBCL [17, 
19, 45]. Tzankov et  al. analysed 432 patients and found 

that those with MYC gene rearrangements had a worse 
prognosis than those without (median OS rate, 42% vs. 
86%, P = 0.038; median PFS, 42 vs. 75 months, P = 0.049) 
[47]. A similar study reported that patients with MYC 
amplification also had poorer OS than those with nor-
mal MYC gene status, as did those with rearrangements 
(both P < 0.01) [48]. Obermann et  al. performed FISH 
testing of BCL2 gene status in 224 patients with newly 
diagnosed DLBCL. In patients with the non-GCB sub-
type, the presence of any BCL2 gene abnormality cor-
related with a shorter median OS (12 vs. 109 months, 
P = 0.003) [49]. Similarly, Huang et  al. showed that the 
prognosis of patients with BCL2 gene rearrangement or 
amplification was significantly worse than that of patients 
with normal gene status [50]. Akyurek et  al. analysed 
the gene rearrangement status of 239 DLBCL cases and 
found that patients with BCL6 rearrangements, par-
ticularly those with the non-GCB subtype, had a worse 
prognosis, suggesting that BCL6 rearrangement may be 
a biomarker of an aggressive disease course in non-GCB 
subgroups [17]. In another study, a trend toward inferior 
OS was observed in patients with BCL6 rearrangements 
who received immunochemotherapy (P = 0.08) [51]. It 
is worth noting that we previously found that patients 
with MYC and BCL2 and/or BCL6 gene rearrangements 

Fig. 7  Comparison of the 1- (a), 3- (b), and 5-year (c) ROC curves 
of different models (McPM and IPI) of PFS. It is a graphical plot 
that illustrates the diagnostic ability of a binary classifier system as its 
discrimination threshold is varied. The larger the area under the curve, 
the better the classification performance of the model. ROC, receiver 
operating characteristic; PFS, progression-free survival; McPM, 
molecular-contained prognostic model; IPI, International Prognostic 
Index

Fig. 8  Model fit for OS (a) and PFS (b). The closer the fitted curve 
is to the true curve, the higher the degree of fit of the model. OS, 
overall survival; PFS, progression-free survival; IPI, International 
Prognostic Index
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exhibited an aggressive clinical course and a poor 
response to a first-line RCHOP regimen, with 5-year OS 
and PFS rates of 27% and 18%, respectively [52]. In con-
clusion, MYC, BCL2, and BCL6 are associated with poor 
prognosis, and their inclusion in our scoring system facil-
itates stratification.

The screening method for prognostic indicators is 
another advantage of our McPM. We used artificial 
intelligence (AI) to create a new prognostic model with 
potential to aid accurate diagnosis, treatment, and prog-
nostic assessment of tumours [53]. After collecting 22 
variables, including clinical and pathological features 
and laboratory and molecular genetic test results, from 
401 patients with DLBCL in our center, we used the RSF 
method to demonstrate the importance of each variable. 
We obtained identical results using the VIMP and mini-
mum depth methods in terms of the variables selected. 
A large VIMP means that a variable has a large impact 
on model accuracy and is therefore important. By con-
trast, the minimum depth method assigns smaller values 
to more important variables. The selection of the same 
variables by the two methods confirmed the prognostic 
value thereof. We constructed the McPM based on Bi-
LSTM and logistic hazard techniques. Similar models 
used for other cancers, including lung cancer [54] and 
nasopharyngeal cancer [55], achieved early successes. We 
believe that our AI-based approach can deal with com-
plex non-linear associations between variables and has 
unique advantages over traditional Cox regression analy-
ses when dealing with survival data [27].

We compared the OS and PFS predictions between 
the IPI and McPM in several respects. Compared with 
the IPI, the McPM had a higher C-index and a lower 
BS for OS and PFS. According to the 1-, 3-, and 5-year 
ROC curve analyses for OS, the area under the curve of 
the McPM was larger than that of the IPI. Notably, our 
results supported an association between survival time 
and the AUC value. With longer survival times, the gap 
between the McPM and IPI results gradually widened; 
the AUC value of the new model was consistently high, 
while that of the IPI decreased gradually. This implies 
that the McPM has a clear advantage for predicting long-
term survival. The McPM can identify a high-risk sub-
group of patients with long-term survival < 50%, which 
many other models have failed to achieve [16]. In the 
comparison of the ROC curves for PFS, the area under 
the curve of the McPM was similar to or larger than 
that of the IPI, which suggests that the McPM is helpful 
to identify patients with poor treatment responses and 
predict disease progression, which are important factors 
for appropriate, individualized treatment. According to 
the AUC values (Fig. 5b) for PFS, the two models in this 
study differed within and after 1 year of diagnosis, which 
may further reflect the heterogeneity of DLBCL. Future 
clinical assessment could be improved by combining the 
two scoring systems. By comparing the predictions and 
actual outcomes, we found that the results of the McPM 
were more accurate than those of the IPI. In conclusion, 
the McPM had better prediction accuracy and stability, 
achieved by the integration of comprehensive prognostic 

Table 5  Comparison of sMcPM and IPI for stratifying patients into risk groups according to survival outcomes

Abbreviations: IPI International Prognostic Index, sMcPM simplified McPM, OS overall survival, PFS progression-free survival, LDH lactate dehydrogenase, AMC absolute 
monocyte count, PLT platelet count, ECOG Eastern Cooperative Oncology Group

Model Point allocation for 
prognostic factors

n (%) OS PFS

1-year OS 3-year OS 5-year OS 1-year PFS 3-year PFS 5-year PFS

New score (sMcPM)
  Low risk (0-2) Extranodal sites: 0 or 1=0 125 (31.2%) 91.70% 84.00% 82.70% 82.70% 74.70% 73.80%

  Intermediate risk (3-4) Extranodal sites: 2 or 3=1 239 (59.6%) 86.90% 67.60% 65.60% 73.90% 56.80% 52.50%

  High risk (5-7) Extranodal sites: > 3=2 37 (9.2%) 63.30% 46.20% 46.20% 58.80% 30.80% 30.80%

LDH: > 240 (U/L)=1

AMC: > 0.6* (10^9/L)=1

PLT: < 100* (10^9/L)=1

MYC gene status: positive=2

IPI
  Low risk (0-1) Extranodal sites: > 1=1 190 (47.4%) 96.30% 88.90% 86.80% 91.10% 83.70% 80.30%

  Low‐intermediate risk (2) LDH: > ULN=1

Age: > 60=1 86 (21.4%) 88.40% 79.10% 79.10% 71.20% 61.60% 61.60%

  Intermediate‐high risk (3) ECOG: > 1=1

Stage: III or IV=1 75 (18.7%) 84.50% 68.70% 68.00% 73.30% 54.70% 54.70%

  High risk (4-5) 50 (12.5%) 72.70% 58.00% 55.40% 63.00% 50.00% 50.00%
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indicators. The McPM could predict individual events, 
and we believe it is a suitable stratification tool for the 
molecular era.

The McPM calculation process is too complicated to be 
used directly in the clinical practice. Therefore, we estab-
lished a simplified model, the sMcPM, by selecting 5 from 
among the 22 variables according to their weights (extran-
odal involvement sites, LDH, MYC gene status, AMC, 
and PLT). The number of extranodal involvement sites 
was the most important factor in our study. Moreover, 
we explored the impact of different numbers of extran-
odal sites on patient survival. Patients with more sites of 
extranodal involvement seemed to have a worse progno-
sis, similar to the findings of El-Galaly et al. [56]. LDH, a 
meaningful tumour biomarker, is often negatively corre-
lated with prognosis [57]. A relevant study suggested that 
LDH may reflect the severity of disease [58]. MYC gene 
status is the only molecular genetic factor included in our 

scoring system. Studies have shown that MYC mutations 
are often associated with a poor prognosis [48, 52, 59]. 
Monocyte counts are also associated with the survival and 
prognosis of patients with lymphoma [60, 61]. Platelets 
play an important role in tumour immunity and angiogen-
esis; both factors are closely related to prognosis [62–64]. 
Our new model comprises these five indicators and is easy 
to use for clinicians. The sMcPM performs similarly to 
the IPI in terms of predicting OS, but it has a significant 
advantage in PFS prognostic stratification. Studies have 
shown that neither the IPI nor the R-IPI can define a high-
risk group with a 3-year PFS < 50% [56], while the sMcPM 
can identify a group of patients with a 3-year PFS of 30.8%. 
This suggests that the indicators included in our new 
model have an important impact on disease progression, 
and our model may help guide subsequent clinical treat-
ment with new drugs. We believe the sMcPM may become 
a widely used stratification tool in the molecular age.

Fig. 9  Performance of the IPI (a) and the new score (sMcPM) (b) in terms of stratifying patients according to OS and PFS [(c) and (d), respectively]. 
IPI and new score are similar in prognostic stratification of OS, but new score has an advantage in PFS. OS, overall survival; PFS, progression-free 
survival; IPI, International Prognostic Index
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FISH is not a routine test in clinical practice due to its 
high costs [34]. Therefore, few studies with large samples 
have been able to show complete gene rearrangements 
in patients with DLBCL, which limits the assessment of 
their prognostic impact. In response to this situation, 
we incorporated 22 variables from 401 patients, includ-
ing both clinical and molecular factors, to construct a 
prognostic scoring system considering molecular hetero-
geneity. While the establishment of the McPM is a step 
forward, there are some limitations. The McPM includes 
too many factors, which makes it difficult to calculate and 
is therefore not suitable for being used in clinical prac-
tice. Important information is retained in the simplified 
sMcPM. However, the new score did not outperform the 
IPI in terms of OS prediction. In addition, as this is a ret-
rospective study, validation in a large cohort is needed.

Conclusions
We established a new prognostic model that is superior to 
the IPI in terms of prognostic prediction accuracy and sta-
bility. Moreover, the sMcPM can better meet the demand 
for prognostic stratification in the molecular era, and we 
expect it will become a widely used stratification tool with 
the ability to guide personalized clinical treatments.
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