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Abstract
Background  To develop a deep learning(DL) model utilizing ultrasound images, and evaluate its efficacy in 
distinguishing between benign and malignant parotid tumors (PTs), as well as its practicality in assisting clinicians 
with accurate diagnosis.

Methods  A total of 2211 ultrasound images of 980 pathologically confirmed PTs (Training set: n = 721; Validation 
set: n = 82; Internal-test set: n = 89; External-test set: n = 88) from 907 patients were retrospectively included in this 
study. The optimal model was selected and the diagnostic performance evaluation is conducted by utilizing the area 
under curve (AUC) of the receiver-operating characteristic(ROC) based on five different DL networks constructed at 
varying depths. Furthermore, a comparison of different seniority radiologists was made in the presence of the optimal 
auxiliary diagnosis model. Additionally, the diagnostic confusion matrix of the optimal model was calculated, and an 
analysis and summary of misjudged cases’ characteristics were conducted.

Results  The Resnet18 demonstrated superior diagnostic performance, with an AUC value of 0.947, accuracy of 
88.5%, sensitivity of 78.2%, and specificity of 92.7% in internal-test set, and with an AUC value of 0.925, accuracy of 
89.8%, sensitivity of 83.3%, and specificity of 90.6% in external-test set. The PTs were subjectively assessed twice by six 
radiologists, both with and without the assisted of the model. With the assisted of the model, both junior and senior 
radiologists demonstrated enhanced diagnostic performance. In the internal-test set, there was an increase in AUC 
values by 0.062 and 0.082 for junior radiologists respectively, while senior radiologists experienced an improvement of 
0.066 and 0.106 in their respective AUC values.

Conclusions  The DL model based on ultrasound images demonstrates exceptional capability in distinguishing 
between benign and malignant PTs, thereby assisting radiologists of varying expertise levels to achieve heightened 
diagnostic performance, and serve as a noninvasive imaging adjunct diagnostic method for clinical purposes.
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Background
Parotid tumors (PTs) are the most prevalent neoplasms 
of the salivary glands, with a malignancy rate of 20% [1, 
2]. Currently, surgical resection remains the primary 
treatment modality for PTs; However, different histologi-
cal subtypes necessitate distinct surgical approaches and 
prognostic evaluations. Malignant parotid tumors (MPT) 
require more aggressive surgical techniques such as total 
parotidectomy [3, 4]. The fine needle aspiration cytology 
(FNAC) is the most commonly used qualitative method 
for preoperative diagnosis of PTs [5]. However, due to the 
extensive cellular heterogeneity and overlapping charac-
teristics among various subgroups, it poses challenges 
in accurately diagnosing PTs [6]. Meanwhile, FNAC car-
ries the risk of inducing inflammations and causing local 
tumor spread [7, 8]. Therefore, it is crucial to develop 
noninvasive and accurate methods for evaluating benign 
parotid tumors(BPT) and MPT prior to surgery in order 
to guide treatment decisions.

Ultrasound (US), computed tomography (CT), and 
magnetic resonance imaging (MRI) are commonly uti-
lized for the assessment of parotid gland lesions, includ-
ing positioning, diagnosis, and treatment evaluation. 
The clinical utility of MRI and CT in the assessment of 
patients is constrained by their high cost or potential for 
radiation exposure. In contrast, US has become the pre-
ferred imaging modality for parotid masses due to its 
simplicity, cost-effectiveness, and lack of radiation [9]. 
Nevertheless, the accuracy of these conventional imaging 
methods in the diagnosis of PTs is limited [10], and the 
actual prediction remains unsatisfactory. A meta-analysis 
of 38 studies involving 2753 patients with PTs demon-
strated that the sensitivity of US, CT, and MRI in distin-
guishing between benign and malignant salivary gland 
tumors was found to be 66%, 70%, and 80% respectively 
[11]. Hence, there is a need to develop more effective 
imaging evaluation methods for histological classification 
of PTs.

The field of medical image analysis has witnessed a 
surge in attention towards deep learning(DL) in recent 
years. As a subset of machine learning, DL models 
employ multilayer neural networks for automatic feature 
extraction. By exploring high-dimensional data abstrac-
tion, these models effectively reduce the need for engi-
neering-based characteristics [12–14]. DL-based models 
excel at extracting features from images that are imper-
ceptible to the naked eye of radiologists, thereby greatly 
assisting in disease diagnosis. Convolutional neural net-
works (CNNs), as a prevalent DL method, show signifi-
cant potential in the realm of medical images, especially 
based on US image [15–17]. At present, the DL model 

based on CT [18, 19] and MRI [20, 21] have been devel-
oped for the differential diagnosis of PTs. A recent study 
[22] utilized a 3D DenseNet-121 to construct a binary 
classifier capable of distinguishing PTs on arterial-phase 
enhanced CT images, however, the final model exhibited 
a specificity rate of only 66.7%. In another study [20], a 
DL model was constructed for distinguished MPT and 
BPT based on multi-parametric MRI images, however, 
the accuracy of the final model was low. To the best of 
our knowledge, the majority of previous studies have pri-
marily relied on CT or MRI images for the identification 
of BPT and MPT. Nevertheless, due to inherent limita-
tions associated with CT and MRI imaging modalities, 
the models derived from these investigations exhibited 
limited applicability. Simultaneously, only a few stud-
ies [23, 24] have explored DL techniques based on US 
images for distinguishing between BPT and MPT.

Therefore, the purpose of this study was to formulate 
a DL model based on US images, to verify its efficacy in 
discriminating BPT and MPT, and to compare the diag-
nostic performance of different radiologists with and 
without the assistance of the model. Additionally, an 
analysis of misclassified images by the DL model will 
be conducted to provide better guidance for clinical 
practice.

Materials and methods
Patients
The retrospective study was approved by the Ethics 
Committee of our Hospital and another Hospital, and 
informed consent was waived (IRB-2020-314). Retro-
spective collection of clinical and US imaging data was 
conducted on 1050 patients who underwent parotid 
gland surgery in two hospitals from February 2017 to 
May 2023.

Inclusion criteria were as follows: (1) prior to the 
operation, all patients underwent US examination. (2) 
the histological type was confirmed through pathol-
ogy, and complete clinical information was obtained. (3) 
no invasive procedures such as FNAC were performed 
before the US examination. Exclusion criteria were as 
follows: (1) poor image quality (motion artifacts or PTs 
not be fully visible due to attenuation/ mandible occlu-
sion or PTs are much too large to be fully displayed); (2) 
inflammations lesions; (3) patients < 18 years old. Base-
line clinical characteristics were extracted from the elec-
tronic health record, while histopathological data were 
retrieved from the Pathology Information Management 
System. A total of 980 PTs from 907 patients (Table S1 
presents the distribution of histological diagnoses for all 
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PTs) were included in the final cohort. Figure 1 illustrates 
the overall design flow diagram.

US image acquisition
The patient was in the supine position, and the parotid 
mass underwent scanning using a conventional US scan-
ner in both sagittal and transverse planes to obtain the 
complete image of lesions and their corresponding adja-
cent normal tissues. The Philips iU22 (ROYAL Philips; 
Amsterdam, the Netherlands), Esaote Mylab90 (Esaote 
S.P.A; Genoa, Provincia Di Genova, Italy), and Logic E9 
(General Electric Company, Fairfield, Connecticut, USA) 
systems were utilized for ultrasonography assessment 
(Table S2 presents the distribution of different ultrasound 
devices in BPT and MPT). All scans were conducted with 
a linear array transducer operating at a broadband fre-
quency range of 5–12 MHz. The entire set of images was 
considered, resulting in a final selection of 616 images 
and 260 patients for the MPT, as well as 1595 images and 
647 patients for the BPT.

The following characteristics of the lesions were docu-
mented: Max-diameter, location (deep /superficial/both), 
Cystic areas (absent /present), composition (homoge-
neous /heterogeneous), margin (clear/unclear), shape 

(regular/irregular), posterior acoustic enhancement 
(absent /present), and calcification (absent /present). 
The US characteristics were qualitatively analyzed by 
two radiologists (radiologist A and B, with over 10 years 
of experience) who were blinded to the final histopatho-
logical findings. If there is a discrepancy, the US images 
will be reviewed by both radiologists until a consensus is 
reached. Interclass correlation coefficient (ICC) was used 
to assess inter-observer agreement in reading US fea-
tures. ICC > 0.80 was considered excellent.

Data pre-processing and segmentation
In this study, we utilized the OpenCV library in Python 
to convert the acquired US images from DICOM for-
mat to JPG format. and we manually removed any noise 
information present around the original image, such as 
patient’s name, the hospital name, the time of the exami-
nation, US equipment name, the body mark, equip-
ment parameters, image numbers. Two radiologists (A 
and B) utilized Labelme software to manually delineate 
the tumor US images one by one and obtain rectan-
gular regions of interest (ROI). To enable the model to 
capture more internal information and essential fea-
tures within the images, we subsequently enlarged the 

Fig. 1  The overall pipeline of this study. (a) Flowchart of patient recruitment, the cohort of patients in our hospital was randomly divided into training 
set, validation set, and internal-test set, 88 patients from another hospital were assigned to a separate external-test set; (b) construction of five different 
DL models for identifying BPT and MPT based on US images; (c) comparison of diagnostic performance among different models using the AUC to select 
the best model in internal- and external- test set; (d) evaluation of whether radiologists with varying levels of experience show improved diagnostic 
performance with the assistance of the model
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delineated ROIs by 1.3 times before cropping the origi-
nal images. The US images of PTs in our hospital were 
randomly divided into training, validation, and internal-
test sets at an 8:1:1 ratio, and performed five-fold cross-
validation on this dataset. Given the limited number of 
parotid datasets and the sparsity of features in medical 
data, the existing images underwent enhancements such 
as rotation (the maximum rotation angle is set to 15), 
flip (horizontal flip), scaling (maximum scale is set to 1), 
translation (maximum panning distance of -20 pixels to 
+ 20 pixels), and mixed transformations to improve the 
generalization performance of the DL model. Addition-
ally, to address variations in data resulting from different 
scanners, we applied histogram equalization to the exist-
ing images. The image length and width were adjusted 
from 1596 × 819 pixels to 224 × 224 pixels in accordance 
with the required input size of the model, followed by 
image normalization operation. We augment MPT image 
data and expand it until it matches BPT image data, 
which will be utilized for DL model training.

Model establishment and validation
The study employed five distinct convolutional neu-
ral network models (Resnet18, Resnet50, Vgg11, Vgg16, 
Mobilenetv2) to extract features from BPT and MPT 
images and construct classification models. The model 
parameters were iteratively updated using the back-
propagation method of the neural network to achieve 
the classification of BPT and MPT, and the best model 
was selected after comparing the AUC values. The final 
prediction for each nodule in the test cohort was calcu-
lated based on the aggregated results of all US images 
it contained. The soft voting method was employed to 
determine the average probability of malignancy for the 
nodule and generate the final prediction. Furthermore, 
we employed five-fold cross-validation to determine the 
final classification performance of the model by comput-
ing the average of the evaluation results from five runs. 
The diagnostic confusion matrix of the best model was 
obtained by comparing these predictions with histopath-
ological results. Detailed training strategies can be found 
in the supplementary material.

Subjective evaluation
We conducted two subjective evaluations to assess the 
auxiliary efficacy of the best DL model. Six radiologists, 
including two senior doctors (radiologists C and D with 
22 and 18 years of experience respectively), two interme-
diate doctors (radiologists E and F with 11 and 10 years 
of experience respectively), as well as two junior doctors 
(radiologists G and H with 5 and 4 years of experience 
respectively), independently reviewed the internal-test 
set comprising US images, documenting their compre-
hensive interpretations of PTs (benign or malignant). 

While reviewing the US images, each radiologist was 
blinded to the final histopathological findings. Follow-
ing a four-week buffer period, a different random order 
was adopted for DL readout of the model results (includ-
ing classification outcomes and malignant probabilities) 
and reevaluation of the US images by radiologists. The 
diagnostic results of the radiologists were re-recorded 
to assess whether the diagnostic performance of the 
radiologists was enhanced when utilizing the DL model 
(Fig. 1.d).

Statistical analysis
The baseline data of patients were subjected to statistical 
analysis using SPSS software (version 25.0, IBM). Python 
(version 3.8.15) was employed for model development 
and calculation of indicators in this study. Statistical sig-
nificance was considered when P < 0.05. Further details 
regarding the statistical analysis can be found in the Sup-
plementary Material.

Results
Baseline characteristics
Included in this study, 907 patients (male 542, female 
365) of 980 cases of PTs, of which 260 patients were 
diagnosed with MPT, 647 patients were diagnosed with 
BPT, training cohort includes 1638 images from 721 PTs 
(MPT and BPT were 215, 506, respectively). The valida-
tion cohort included 194 images from 82 PTs (MPT, BPT 
were 25, 57, respectively), and the internal-test cohort 
included 192 images from 89 PTs (MPT, BPT were 25, 
64, respectively), the external-test cohort included 187 
images from 88 PTs (MPT, BPT were 9, 79, respec-
tively). Mucoepidermoid carcinoma was the most preva-
lent pathological type in MPT (34.2%) and pleomorphic 
adenomas (PAs) in BPT (30.9%), followed by Warthin 
tumors (WTs) (26.5%). A detailed summary of radio-
graphic characteristics among PTs groups is presented 
in Table 1. In the training cohort, significant differences 
were observed between BPT and MPT regarding age, 
shape, margin, posterior echogenicity, and calcification 
(P < 0.05). Maximum tumor diameter, composition, cystic 
areas did not show statistical significance (P > 0.05). Mul-
tivariate regression analysis revealed that irregular shape, 
unclear margins, and lack of posterior acoustic enhance-
ment were associated with MPT (Supplementary Table 
3). The Cohen Kappa test values for both radiologists A 
and B in the acquisition of US features were greater than 
0.800(P < 0.001) (Supplementary Table 4).

Performance of DL models
The results presented in Fig. 2 demonstrate the excellent 
performance of the DL model on the internal-test and 
external- set, as evidenced by the five types of DL ROC 
and their corresponding AUC values (Supplementary 
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Fig.  1 show the loss versus epoch during CNN model 
training and validation). Specifically, Resnet18, Resnet50, 
Vgg11, Vgg16, and Mobilenetv2 achieved AUC values of 
0.947[95% CI: 0.915,0.979], 0.908[95% CI: 0.867,0.979], 
0.902[95% CI: 0.860,0.944], 0.896[95% CI: 0.866,0.948], 
0.878[95% CI: 0.832,0.925] in the internal-test set, and 
0.925[95% CI: 0.857,0.992], 0.896[95% CI: 0.818,0.974], 
0.887[95% CI: 0.806,0.968], 0.887[95% CI: 0.806,0.968], 
0.858[95% CI: 0.770,0.947] in the external-test set. 
Resnet18 demonstrated the highest diagnostic perfor-
mance, achieving an accuracy of 88.5%, a sensitivity of 

78.2%, and a specificity of 92.7% in the internal-test set. 
The model’s performance evaluation index in internal- 
and external-test set is presented in Table 2, with Delong 
analysis revealing statistically significant differences 
between Resnet18’s AUC value and those of other models 
(Supplementary Table 5).

Diagnostic performance of the Radiologist and deep 
learning model-assisted diagnosis
We analyzed radiologists’ composite interpretations of 
PTs in the first round (Table  3) in the internal-test set 

Table 2  The performance comparison of different models in internal- and external- test set
Model AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV F1 Kappa
Resnet 18 Internal-test 0.947(0.915,0.979) 0.885(0.840, 0.930) 0.782(0.673, 

0.891)
0.927(0.883, 
0.971)

0.811(0.706, 
0.917)

0.914(0.867, 
0.960)

0.796 0.717

External-test 0.925(0.857, 
0.992)

0.898(0.821, 0.975) 0.833(0.535, 
1.132)

0.906(0.827, 
0.984)

0.500(0.190, 
0.810)

0.980(0.940, 
1.019)

0.625 0.570

Resnet 50 Internal-test 0.908(0.867,0.979) 0.797(0.740, 0.854) 0.491(0.359, 
0.623)

0.920(0.874, 
0.965)

0.711(0.566, 
0.855)

0.818(0.757, 
0.879)

0.581 0.452

External-test 0.896(0.818, 
0.974)

0.864(0.777, 0.952) 0.833(0.535, 
1.132)

0.868(0.777, 
0.959)

0.417(0.138, 
0.696)

0.979(0.937, 
1.020)

0.556 0.486

Vgg 11 Internal-test 0.902(0.860,0.944) 0.839(0.786, 0.891) 0.691(0.569, 
0.813)

0.898(0.847, 
0.949)

0.731(0.610, 
0.851)

0.879(0.824, 
0.933)

0.710 0.598

External-test 0.887(0.806, 
0.968)

0.847(0.756, 0.939) 0.833(0.535, 
1.132)

0.849(0.753, 
0.945)

0.385(0.120, 
0.649)

0.978(0.936, 
1.020)

0.526 0.450

Vgg 16 Internal-test 0.907(0.866,0.948) 0.839(0.786, 0.891) 0.764(0.651, 
0.876)

0.869(0.812, 
0.925)

0.700(0.584, 
0.816)

0.902(0.851, 
0.952)

0.730 0.616

External-test 0.887(0.806, 
0.968)

0.814(0.714, 0.913) 0.833(0.535, 
1.132)

0.811(0.706, 
0.917)

0.333(0.095, 
0.572)

0.977(0.933, 
1.021)

0.476 0.387

Mobilenetv2 Internal-test 0.878(0.832,0.925) 0.839(0.786, 0.891) 0.709(0.589, 
0.829)

0.891(0.838, 
0.943)

0.722(0.603, 
0.842)

0.884(0.831, 
0.937)

0.716 0.603

External-test 0.858(0.770, 
0.947)

0.797(0.694, 0.899) 0.667(0.289, 
1.044)

0.811(0.706, 
0.917)

0.286(0.049, 
0.522)

0.956(0.895, 
1.016)

0.400 0.300

AUC area under the curve, PPV positive prediction value, NPV negative prediction value

Fig. 2  The receiver operating curves of various DL models in the internal- and external-test set. (a) internal-test set. (b) external-test set
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and compared them with the metrics of the DL model. 
The results demonstrate that the DL model diagnosis effi-
ciency surpassed that of six radiologists, with a Resnet18 
AUC of 0.947 (95% CI = 0.915–0.979). The AUC for senior 
doctors was 0.776 and 0.772, while it was 0.734 and 0.745 
for intermediate doctors, and finally, it was found to be 
0.591 and 0.616 for junior doctors.

The subjective evaluation results of each radiologist in 
the second round were compared with those of the first 
round simultaneously. With the assistance of the model, 
most radiologists demonstrated improved diagnostic effi-
cacy, resulting in an increased AUC value for radiologist 

D to 0.852. The AUC values for radiologist E and F also 
increased to 0.800 and 0.851 respectively, while radi-
ologist G and H achieved increases to 0.653 and 0.698 
respectively; however, there was a decrease in the AUC 
value for radiologist C to 0.758. Figure  3 illustrates the 
changes observed in each index evaluated subjectively by 
every radiologist during both rounds.

Visual interpretation of the DL model
The heat maps corresponding to the US images of BPT 
and MPT are given in Fig.  4. The different color distri-
butions reflect the model’s focus on the most predictive 

Table 3  Performance comparison between Resnet18 and radiologists without model assistance in the internal-test
AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV F1 Kappa

Senior
Radiologist C 0.776(0.717,0.835) 0.797 0.727 0.825 0.625 0.883 0.672 0.526
Radiologist D 0.772(0.713,0.832) 0.760 0.800 0.745 0.557 0.903 0.657 0.482
Intermediate
Radiologist E 0.734(0.672,0.797) 0.745 0.709 0.759 0.542 0.867 0.614 0.429
Radiologist F 0.745(0.683,0.807) 0.760 0.709 0.781 0.565 0.870 0.629 0.455
Junior
Radiologist G 0.591(0.521,0.660) 0.734 0.255 0.927 0.583 0.756 0.354 0.218
Radiologist H 0.616(0.547,0.685) 0.693 0.436 0.796 0.462 0.779 0.449 0.236
Resnet 18 0.947(0.915,0.979) 0.885 0.782 0.927 0.811 0.914 0.796 0.717
AUC area under the curve, PPV positive prediction value, NPV negative prediction value

Fig. 3  The radar chart illustrates the variations in each evaluation index during model-assisted diagnosis conducted by individual radiologists in the 
internal-test. AUC, area under the receiver operating characteristic curve, ACC, Accuracy. SE, Sensitivity. SP, Specificity. PPV, positive predictive value. NPV, 
negative predictive value
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regions of the US images. The red portion of the image 
provides crucial information for accurately determining 
the highlighted areas within the image model, thus aid-
ing in prediction processes. The findings indicate that 
for accurately predicted parotid nodules, the red region 
depicted in the heat map is predominantly localized 
within the nodule itself; thus, enhancing the interpret-
ability of the model through utilization of the heat maps.

Analysis of misjudged pictures
For each image in the internal-test set, the Resnet18 
will integrate all the information in the ROI and finally 
obtain a probability, which is the probability that the 
nodule is considered as an MPT by the model. For mul-
tiple US images of the same nodule, we used a soft voting 
method to obtain the final prediction result for multiple 
US images of the same nodule. The threshold was set 
at 0.5, and the model classified the output as malignant 
when the probability exceeded 0.5, and as benign when 
the probability was less than or equal to 0.5. The final 
histopathology was compared with the model output, 
resulting in the selection of a total of 22 images. (Fig. 5 
illustrates the diagnostic confusion matrix generated by 
the DL model). Table  4 displays the ultrasonographic 
characteristics of the nodules depicted in all 22 images.

Discussion
The present study involved the development and evalua-
tion of five DL models for the noninvasive discrimination 
between MPT and BPT. The proposed DL model exhib-
ited excellent diagnostic performance in distinguishing 

BPT from MPT, with the resnet18 achieving an impres-
sive AUC of 0.947 in the internal-test set and 0.925 in the 
external-test set. The resnet18 has achieved a high AUC 
in assisting both senior and junior doctors, indicating its 
potential to enhance diagnostic performance for radiolo-
gists. Importantly, this study represents the first attempt 
at utilizing DL models for image analysis misjudgment.

In this study, we conducted a re-analysis of the model 
misjudgments in order to enhance their professional 
interpretation. Among the tumors that were incorrectly 
classified as MPT, it was observed that 80% were identi-
fied as PA (8/10), all exhibiting imaging characteristics 
consistent with malignant tumors such as heterogeneous 
composition and irregular lobulation. Conversely, tumors 
misclassified as BPT predominantly displayed regu-
lar shape without any cystic area or posterior acoustic 
enhancement. Consequently, it is imperative to exercise 
greater caution when interpreting discrimination results 
provided by the model in cases where similar US features 
are present in PTs.

The clinical information and US images in patients 
with differential diagnosis value remain a subject of 
controversy. In the training set, the multivariate logis-
tic regression analysis revealed that age is not an inde-
pendent predictor for distinguishing between BPT and 
MPT, which contradicts previous studies [24, 25]. At the 
same time, there was no significant difference in MPT 
and BPT incidence between men and women, indicat-
ing that gender cannot be used to assess the risk param-
eters of MPT. This conclusion aligns with the findings 
of Comoglu et al [26]. Our study also suggests that BPT 

Fig. 4  Visualization and interpretation of DL models in internal-test set. US images corresponding to BPT and MPT and their heat maps
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typically exhibits a regular shape, well-defined edges, and 
enhanced posterior echo, which aligns with the findings 
of certain previous studies [10, 27–29]. However, owing 
to tissue heterogeneity, low-grade malignant tumors may 
also manifest benign tumor characteristics such as dis-
tinct boundaries [30], resulting in significant overlap in 
ultrasound features between BPT and MPT [31]. The use 

of other US techniques, such as acoustic elasticity imag-
ing, has been reported for the differentiation of parotid 
benign and malignant diseases [32]. However, the util-
ity of elasticity imaging in identifying MPT and BPT is 
limited. Currently, there is no consensus on PT imaging 
characteristics, thus necessitating the development of a 
more effective approach to assist in the identification of 
BPT and MPT.

The distinction between BPT and MPT has been previ-
ously established through the utilization of advanced CT, 
MRI-based radiomics, or DL methodologies [19, 20, 33–
35]. Zheng et al. [18] extracted radiomics features from 
plain scan, arterial phase, and venous phase CT images 
of 388 patients. These features were combined with 
clinical characteristics to construct a joint model that 
achieved an AUC of 0.904 in the training set and 0.854 
in the test set. The radiomics model developed by He et 
al [33] was based on morphological MRI images of 298 
patients and aimed to differentiate MPT, PAs, WTs, and 
other benign tumors. However, its performance still sur-
passes that of radiologists (0.708 vs. 0.492). The Inception 
ResNetV2 model was established by Gunduz et al [20] in 
their study, utilizing multi-parametric MRI images, and 
the PTs were classified using the majority voting method, 
resulting in a final accuracy of 0.921. However, there is a 

Table 4  US characterization of PTs with model misjudgment
Variable BPT(n = 10) MPT(n = 12)
Location Superficial 9 (90.0%) 8 (66.7%)

Deep 1 (10.0%) 4 (33.3%)
Both 0 (0.0%) 0 (0.0%)

Shape Regular 2 (20.0%) 7 (58.33%)
Irregular 8 (80.0%) 5 (41.67%)

Margin Clear 10 (100.0%) 5 (41.67%)
Unclear 0 (0.0%) 7 (58.33%)

Composition Homogeneous 2 (20.0%) 2 (16.7%)
Heterogeneous 8 (80.0%) 10 (83.3%)

Cystic areas Absent 0 (0.0%) 4 (33.3%)
Present 10 (100.0%) 8 (66.7%)

Posterior acoustic 
enhancement

Absent 7 (70.0%) 4 (33.3%)
Present 3 (30.0%) 8 (66.7%)

Calcification Absent 10 (100.0%) 10 (83.3%)
Present 0 (0.0%) 2 (16.7%)

Fig. 5  Diagnostic confusion matrix analysis was performed on the DL model; rows represent true labels and columns represent predicted labels. 10 of 
the BPT images were determined to have a malignant probability exceeding 0.5, while 12 of the MPT images had a malignant probability below or equal 
to 0.5
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limited adoption of DL models based on US images for 
distinguishing between these two tumors among schol-
ars. Wang et al. [36] developed the EfficientNetB3 model 
using 251 PTs’ US images to preoperatively identify 
benign and malignant parotid gland lesions; however, the 
resulting AUC value was only 0.82, possibly due to the 
small sample size, indicating suboptimal performance of 
the trained model. The DL model was trained by Tu [24] 
using 638 US images, achieving a test set sensitivity of 
100%. However, in this study, the training set for BPT and 
MPT images was manually selected to achieve a balanced 
ratio of 1:1, indicating evident selection bias (Supple-
mentary Table 6). Our study included the largest sample 
size to date and employed five transfer learning models 
to accurately differentiate between BPT and MPT. The 
top-performing model achieved an AUC value of 0.947 
in internal-test set and 0.925 in external-test set, indicat-
ing its potential as a clinically reliable imaging diagnostic 
tool.

In addition, the model’s classification results and 
malignant probability were presented to radiologists for 
diagnostic assistance. We conducted an analysis of radi-
ologists’ reading results for the first time and discovered 
that the performance of radiologists with varying levels of 
experience was unsatisfactory. The mean AUC for senior, 
intermediate, and junior radiologists were only 0.774, 
0.740, and 0.604 respectively, which may be attributed to 
the overlapping imaging features of PTs that cause con-
fusion during visual assessment by radiologists and also 
due to the fact that we provided only static US images 
during evaluation. However, it is crucial to acknowledge 
that actual US examinations are dynamic processes and 
limited sections can lead radiologists to erroneous judg-
ments. After the implementation of the diagnostic model, 
radiologists with varying levels of experience showed dif-
ferent degrees of improvement in their AUC. This dem-
onstrates the extent to which the model we developed 
can assist radiologists of varying experience in identi-
fying MPTs and BPTs. However, it is worth noting that 
one senior radiologist (radiologist C) did not observe 
improvements across all evaluation indices after utiliz-
ing the auxiliary diagnostic model. It is worth noting that 
despite Resnet18 achieving an AUC value of 0.947, no 
radiologist in the model has surpassed its performance 
by attaining higher AUC. May be due to excessive phy-
sician subjectivity or algorithmic aversion [37]. Previous 
studies [38] have compared the performance of multiple 
human experts assisted by artificial intelligence and con-
cluded that highly skilled human experts are more prone 
to algorithm aversion, meaning they are less likely to 
accept suggestions from artificial intelligence.

The present study has several limitations: Firstly, it is a 
retrospective study conducted at two centers, which may 
introduce potential selection bias. Secondly, the number 

of misjudgment cases included in this study was limited, 
and therefore the results obtained from the analysis may 
not be entirely conclusive. Lastly, given its retrospective 
nature, further prospective studies are required to vali-
date this system before its implementation in actual clini-
cal practice. Addressing this issue will be a crucial focus 
for our future research.

Conclusion
In conclusion, the research and development involved 
testing a DL auxiliary diagnostic model based on US 
images for the identification of BPT and MPT. The model 
exhibited excellent diagnostic performance, thereby 
enhancing the radiologist’s ability to provide accurate 
diagnoses. Additionally, we conducted an analysis of 
misclassification cases in DL models and summarize the 
distinguishing features of misclassified images, aiming to 
enhance clinical guidance and offer a potential approach 
for optimizing clinical treatment strategies.
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