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Abstract
Background  Paclitaxel is commonly used as a second-line therapy for advanced gastric cancer (AGC). The decision 
to proceed with second-line chemotherapy and select an appropriate regimen is critical for vulnerable patients with 
AGC progressing after first-line chemotherapy. However, no predictive biomarkers exist to identify patients with AGC 
who would benefit from paclitaxel-based chemotherapy.

Methods  This study included 288 patients with AGC receiving second-line paclitaxel-based chemotherapy between 
2017 and 2022 as part of the K-MASTER project, a nationwide government-funded precision medicine initiative. 
The data included clinical (age [young-onset vs. others], sex, histology [intestinal vs. diffuse type], prior trastuzumab 
use, duration of first-line chemotherapy), and genomic factors (pathogenic or likely pathogenic variants). Data were 
randomly divided into training and validation sets (0.8:0.2). Four machine learning (ML) methods, namely random 
forest (RF), logistic regression (LR), artificial neural network (ANN), and ANN with genetic embedding (ANN with GE), 
were used to develop the prediction model and validated in the validation sets.

Results  The median patient age was 64 years (range 25–91), and 65.6% of those were male. A total of 288 patients 
were divided into the training (n = 230) and validation (n = 58) sets. No significant differences existed in baseline 
characteristics between the training and validation sets. In the training set, the areas under the ROC curves (AUROC) 
for predicting better progression-free survival (PFS) with paclitaxel-based chemotherapy were 0.499, 0.679, 0.618, 
and 0.732 in the RF, LR, ANN, and ANN with GE models, respectively. The ANN with the GE model that achieved the 
highest AUROC recorded accuracy, sensitivity, specificity, and F1-score performance of 0.458, 0.912, 0.724, and 0.579, 
respectively. In the validation set, the ANN with GE model predicted that paclitaxel-sensitive patients had significantly 
longer PFS (median PFS 7.59 vs. 2.07 months, P = 0.020) and overall survival (OS) (median OS 14.70 vs. 7.50 months, 
P = 0.008). The LR model predicted that paclitaxel-sensitive patients showed a trend for longer PFS (median PFS 6.48 
vs. 2.33 months, P = 0.078) and OS (median OS 12.20 vs. 8.61 months, P = 0.099).
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Background
Over the past decades, fluoropyrimidines (5-fluoro-
uracil, capecitabine, and S-1), platinum (cisplatin and 
oxaliplatin), taxanes (docetaxel and paclitaxel), and irino-
tecan have demonstrated survival benefits for the treat-
ment of patients with unresectable or metastatic gastric 
cancer. Fluoropyrimidine- or platinum-based regimens 
are widely accepted first-line therapies for patients with 
advanced gastric cancer (AGC) [1]. Since the REGARD 
and RAINBOW studies [2, 3], a combination of ramuci-
rumab, a monoclonal antibody targeting vascular endo-
thelial growth factor receptor-2, and paclitaxel has been 
widely used, and irinotecan has been recommended as 
a second- or later-line treatment [4, 5]. Recently, novel 
treatment strategies, including immune checkpoint 
inhibitors and new targeted inhibitors, have improved 
the survival of patients with AGC [6–10].

The proportion of patients receiving second- or later-
line treatment, along with response and survival rates, 
have progressively decreased than those observed in 
first-line treatment [1]. Certain patients may experience 
clinical deterioration with rapid progression, resulting in 
missed opportunities for further treatment. Patient fra-
gility, stemming from prior chemotherapy exposure and 
various disease characteristics, could contribute to this 
phenomenon. Several factors, such as poor performance 
status or cumulative toxicity due to the first-line chemo-
therapy, extent of disease, and history of agents used as 
the first-line therapy, could influence whether a patient 
benefits from further treatment [11–14]. Issues have 
been continuously raised to identify patients who are 
more likely to benefit from second- or later-line therapy, 
especially vulnerable patients with AGC.

Through recent next-generation sequencing (NGS), 
molecular classification of heterogeneous AGC has 
become more important and its prognostic significance 
with chemotherapy efficacy is well known [15]. Specifi-
cally, taxanes are considered to exhibit anti-cancer effects 
through aberrant stabilization of microtubules, causing 
defects in chromosome segregation, mitotic arrest and 
activation of the spindle assembly checkpoint, where pro-
longed activation results in cell death. There were previ-
ous studies suggesting that altered expression of genes 
involved in the spindle assembly checkpoint may affect 
cellular sensitivitiy to paclitaxel [16–18]. However, there 
are still no definite predictive biomarkers for each pallia-
tive chemotherapy in AGC.

Machine learning (ML), a form of artificial intelligence 
(AI), is widely used and has great potential in precision 

oncology. Random forest (RF) utilizes multiple decision 
trees trained on random subsets of data to collectively 
make predictions for classification or regression tasks. 
Each tree independently learns the optimal feature splits, 
and the final prediction is determined by aggregating 
the outputs from these trees. Logistic regression (LR) 
is a statistical method used for binary classification that 
estimates the probability of a binary outcome. It models 
the relationship between one or more independent vari-
ables and a dependent variable using a logistic function, 
transforming the inputs into probabilities between zero 
and one. An artificial neural network (ANN) is a compu-
tational model consisting of interconnected nodes, called 
neurons, organized in layers to process information. 
Through training, ANNs adjust the connections between 
neurons to learn patterns and make predictions based on 
the data. Earlier studies have attempted to predict over-
all survival (OS) and disease-free survival in patients with 
gastric cancer and the benefits of adjuvant chemother-
apy using ML-based methods [18, 19]. Recently, various 
methods for generating continuously distributed repre-
sentations of words, for example, Word2Vec [20], have 
been introduced for joint use with ANN-based machine 
learning techniques. Similar attempts to represent 
genetic mutations or protein sequences in a continuous 
vector space have been made in the biomedical domain 
[21, 22], showing remarkable improvements in the ability 
to capture the characteristics of proteins or relationships 
between mutations.

This study aimed to develop a prediction model to 
identify patients with AGC who would benefit from 
paclitaxel-based chemotherapy after failure of fluoropy-
rimidine and platinum-based chemotherapy.

Materials and methods
Patients and K-MASTER datasets
Patients eligible for the study were 20 years of age or 
older, diagnosed with metastatic or recurrent stom-
ach adenocarcinoma through histological or cytological 
methods, following the unsuccessful treatment with first-
line fluoropyrimidine- and platinum-based chemother-
apy. These individuals participated in the second-line, 
paclitaxel-based chemotherapy as part of the K-MASTER 
project from 2017 to 2022 (Fig. 1) [23]. The K-MASTER 
initiative, a comprehensive precision medicine trial 
across 51 Korean institutions, focused on identifying 
treatable mutations through Next-Generation Sequenc-
ing (NGS) in 10,000 Korean patients with advanced solid 
tumors, and led to the strategic enrollment of patients in 

Conclusions  These ML models, integrated with clinical and genomic factors, offer the possibility to help identify 
patients with AGC who may benefit from paclitaxel chemotherapy.
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clinical trials tailored to their genetic profiles [23]. Addi-
tionally, the K-MASTER involved a nationwide effort 
to map out genomic profiles and systematically gather 
data on common clinical attributes across various solid 
tumors [23].

Clinical and genetic features
Clinical data included age, sex, tumor histology (intes-
tinal vs. diffuse), prior trastuzumab use, and duration 
of first-line chemotherapy. The clinical utility of NGS 
in the K-MASTER project was previously reported 
[23–25]. The dataset included molecular changes, such 
as single nucleotide variants, insertions, deletions, copy 
number variations, and structural variants, all of which 
have the potential to influence clinical decision-making 

(Additional file 1). These genetic alterations were clas-
sified within databases as either “likely-pathogenic” or 
“pathogenic” according to COSMIC and ClinVar, and as 
“likely-oncogenic” or “oncogenic” according to OncoKB 
databases.

Preprocess data
Participants in this study were divided into two groups 
based on their response to second-line paclitaxel-based 
chemotherapy: those who experienced progression-free 
survival (PFS) of more than six months were considered 
paclitaxel-sensitive, while individuals with a PFS of less 
than three months were deemed paclitaxel-resistant. Fol-
lowing this classification, the cohort was then randomly 
split into training and validation datasets in an 80:20 

Fig. 1  Patient flow diagram
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ratio, utilizing the ‘StratifiedShuffleSplit’ function from 
the scikit-learn library to maintain an equal distribution 
of outcomes across both datasets (Fig. 1).

Clinical and genetic information was subsequently con-
verted into binary form to facilitate analysis, resulting in 
distinct sets of binary clinical and genetic features. For 
genetic embeddings, each patient’s genetic variants were 
first assigned to a vector space, creating vector represen-
tations for individual variants. These vectors were aggre-
gated to form a comprehensive genetic feature for each 
patient. These vector representations were initially set at 
random values and tuned throughout the training phase.

Development and validation of ML models in training and 
validation sets
Four ML models – Random Forest (RF), Logistic Regres-
sion (LR), Artificial Neural Network (ANN), and ANN 
incorporating genetic embedding (ANN with GE) – were 
employed on the training sets and then tested on the 
validation sets. Patient data was synthesized by combin-
ing clinical binary features and genetic information into 
comprehensive feature vectors. For the LR, RF, and stan-
dard ANN models, genetic information was represented 
through binary genetic features. Conversely, the ANN 
with GE model utilized vectors of embedded genetic fea-
tures. These comprehensive patient feature vectors were 
then used to train each respective model (Fig.  2). The 
genetic embedding dimension was set at 20, and both 
ANN configurations included a single hidden layer with 
20 nodes. The effectiveness of the models, particularly 
in predicting patient outcomes following second-line 
paclitaxel-based chemotherapy, was measured by the 
area under the Receiver Operating Characteristics (ROC) 

curve (AUROC), focusing on the progression-free sur-
vival (PFS) duration.

Model development and training processes were 
executed using Python version 3.9.12. The LR, RF, and 
standard ANN models used tools from the scikit-learn 
package version 1.1.1, specifically ‘LogisticRegression’, 
‘RandomForestClassifier,’ and ‘MLPClassifier’, respec-
tively. The ANN with GE model was developed using 
functionalities from the PyTorch package, version 1.13.0.

Statistical analysis
All statistical analyses, along with the development of 
prediction models, were conducted using Python (ver-
sion 3.9.12) with the scikit-learn (version 1.1.1) and life-
lines (version 0.27.7) packages. PFS was measured from 
the start of second-line paclitaxel-based chemotherapy 
until the occurrence of progression or death from any 
cause. OS was also calculated from the commencement 
of the same chemotherapy until death due to any cause. 
Survival rates were determined using the Kaplan-Meier 
method, and differences between survival curves were 
assessed with the log-rank test. Statistical significance 
was established at a P-value of less than 0.05, using a two-
sided test.

Results
Patient characteristics
A total of 288 patients with AGC were treated with sec-
ond-line paclitaxel-based chemotherapy between 2017 
and 2022 (Fig.  1). The median age was 63 years (range 
25–91), and 65.6% of patients were male. First-line che-
motherapy included fluoropyrimidine- and platinum-
based regimes, with trastuzumab use observed in 16.7% 
of the patients. Second-line chemotherapy comprised 

Fig. 2  Structures of random forest, logistic regression, artificial neural network, and artificial neural network with genetic embedding
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paclitaxel + ramucirumab administration to 237 patients 
(82.3%), while the other patients were treated with pacli-
taxel alone or paclitaxel + others in clinical trials. The 
patients were divided into training (n = 230) and valida-
tion sets (n = 58). There were no significant differences in 
baseline characteristics between the training and valida-
tion sets (Table  1). All pathogenic variants observed in 
all patients were used as genetic features, comprising 73 
SNVs and 29 CNVs for 87 genes.

At a median follow-up duration of 19.07 months (95% 
confidence interval [CI], 15.947–22.193), median PFS 
and OS were 2.70 months (95% CI, 2.364–3.036) and 
13.28 months (95% CI, 10.271–16.289), respectively. 
Comparisons between the training and validation sets 
revealed no notable differences in PFS and OS following 
second-line paclitaxel-based chemotherapy. Specifically, 
the median PFS was 2.53 months in the training set ver-
sus 2.79 months in the validation set (P = 0.911), and the 
median OS was 13.61 months in the training set versus 
10.45 months in the validation set (P = 0.280).

Development of four ML-based prediction models
The baseline characteristics of the paclitaxel-sensitive 
(n = 93) and paclitaxel-resistant (n = 137) patients in the 
training set showed no substantial variations (Table  2). 
The only exception was the length of prior first-line che-
motherapy. Specifically, patients with paclitaxel-sensitive 
advanced gastric cancer (AGC) experienced a signifi-
cantly longer duration of initial chemotherapy compared 
to those who were paclitaxel-resistant (47.3% versus 
31.4%, P = 0.034).

The AUROC scores for predicting paclitaxel-sensitive 
patients varied across different models: 0.499 (95% CI 
0.378–0.626) for the RF, 0.679 (95% CI 0.562–0.798) for 
the LR, 0.597 (95% CI 0.475–0.722) for the ANN, and 
0.732 (95% CI 0.610–0.842) for the ANN with E mod-
els (Fig.  3). The sensitivity, specificity, accuracy, and F1 
scores for these models are detailed in Table  3. Among 
these, the ANN with GE model demonstrated the high-
est effectiveness with an AUROC of 0.732, whereas the 
RF model was the least effective, recording an AUROC 
of 0.499.

Validation of four ML-based prediction models
In the validation sets, the RF model was unable to 
effectively predict a longer PFS for paclitaxel-sensitive 
patients compared to paclitaxel-resistant ones, with 
median PFS figures of 1.51 vs. 2.79 months, respec-
tively (P = 0.075) (Fig. 4a). Conversely, the LR model sug-
gested a trend towards longer PFS for paclitaxel-sensitive 
patients (median PFS 6.48 vs. 2.33 months, P = 0.078) 
(Fig. 4b), while the ANN model indicated a non-signifi-
cant numerical advantage in PFS for paclitaxel-sensitive 
patients over paclitaxel-resistant patients (median PFS 

Table 1  Baseline characteristics
Training set 
(N = 230, %)

Validation 
set (N = 58, 
%)

P

Age (y)
Median, years (range) 64 (25–91) 62 (28–89) 0.154
< 40 years, n (%) 8 (3.5) 5 (8.6) 0.153
≥ 70 years, n (%) 74 (32.2) 14 (24.1)
Sex 0.209
  Male 155 (67.4) 34 (58.6)
  Female 75 (32.6) 24 (41.4)
Histology 0.146
  Intestinal type 143 (62.1) 42 (72.4)
  Diffuse type* 87 (37.8) 16 (27.6)
Clinical settings 0.835
  Initially metastatic disease 154 (67.0) 38 (65.6)
  Recurrent disease 76 (33.0) 20 (34.5)
Prior gastrectomy 120 (52.2) 26 (44.8) 0.353
Prior trastuzumab use 40 (17.4) 8 (13.8) 0.511
Duration of prior 1st -line fluoro-
pyrimidine plus platinum– based 
chemotherapy

0.508

  < 3 months 57 (24.8) 16 (27.6)
  ≥ 6 months 87 (37.8) 19 (32.7)
* Mixed type was categorized into diffuse type: training set (n = 13) and 
validation set (n = 1).

Table 2  Baseline characteristics between paclitaxel-sensitive 
and–resistant patients in the training set

Paclitaxel-
sensitive 
(N = 93, %)

Paclitaxel-
resistant 
(N = 137, %)

P

Age (y)
Median, years (range) 64 (37–87) 64 (25–91) 0.910
< 40 years, n (%) 3 (3.2) 5 (3.6) 0.833

≥ 70 years, n (%) 28 (30.1) 46 (33.6)

Sex 0.116
Male 57 (61.3) 98 (71.5)
Female 36 (28.5) 39 (28.5)
Histology 0.072
Intestinal type 51 (54.8) 92 (67.2)
Diffuse type 42 (45.2) 45 (32.8)
Clinical settings 0.132
Initially metastatic disease 57 (61.3) 97 (70.8)
Recurrent disease 36 (38.7) 40 (29.2)
Prior gastrectomy 56 (60.2) 64 (46.7) 0.059
Prior trastuzumab use 20 (21.5) 20 (14.6) 0.215
Duration of prior 1st -line 
fluoropyrimidine plus platinum– 
based chemotherapy

0.034

< 3 months 17 (18.3) 40 (29.2)
≥ 6 months 44 (47.3) 43 (31.4)
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6.38 vs. 2.33 months, P = 0.719) (Fig. 4c). The ANN with 
GE model was the only one to significantly predict longer 
PFS for paclitaxel-sensitive patients (median PFS 7.59 vs. 
2.07 months, P = 0.020) (Fig. 4d).

Regarding OS, no significant differences were noted 
between paclitaxel-sensitive and paclitaxel-resistant 
patients in both the RF and ANN models (Fig. 4e and g). 
The LR model, however, showed a trend towards longer 
OS for paclitaxel-sensitive patients (median OS 12.20 vs. 
8.61 months, P = 0.099) (Fig.  4f ). Consistently, the ANN 
with GE model predicted a significant extension in OS 

for paclitaxel-sensitive patients compared to their resis-
tant counterparts (median OS 14.70 vs. 7.50 months, 
P = 0.008) (Fig. 4h).

Discussion
This study showed that integrated clinical and genomic 
models could predict which patients with AGC are more 
likely to benefit from second-line paclitaxel-based che-
motherapy. Among the four ML-based models, the best 
model was the ANN with GE model, which significantly 
predicted paclitaxel-sensitive or paclitaxel-resistant 
patients with AGC. Our ANN with the GE model aggre-
gated the embedded genetic variants with clinical fea-
tures, followed by a feed-forward neural network. The 
main strength of this study was that the results arose 
from a prospectively collected database of the K-MAS-
TER project, a nationwide program that has maintained 
high-quality genomic profiling, and the relatively large 
size of comprehensive datasets, including both clinical 
and NGS data [23].

Clinical decisions to proceed with further treatment 
and to choose the optimal chemotherapy regimen are 

Table 3  Performance metrics of machine learning models to 
predict the progression-free survival of second-line paclitaxel in 
patients with advanced gastric cancer
Models AUROC Sensitivity Specificity Accuracy F1 score
RF 0.499 0.517 0.417 0.588 0.417
LR 0.679 0.638 0.375 0.823 0.461
ANN 0.618 0.500 0.706 0.621 0.522
ANN with 
GE

0.732 0.458 0.912 0.724 0.579

RF, random forest; LR, logistic regression; ANN, artificial neural network; ANN 
with GE, artificial neural network with genetic embedding

Fig. 3  Receiver operating characteristic curves for progression-free survival
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always challenging. Most patients with AGC become 
more fragile, especially after the failure of first-line che-
motherapy. Additionally, chemotherapy occasionally 
worsens the clinical condition owing to toxicity without 
providing benefits. Clinical deterioration with ineffec-
tive chemotherapy may lead to a loss of chance for sub-
sequent treatment. Currently, there are no predictive 
models or systems capable of determining the potential 
benefits of palliative chemotherapy for patients with can-
cer or identifying the most effective chemotherapy regi-
mens. In the era of AI, ML-based models can be used as 
clinical decision-support systems [26]. Owing to tech-
nological advances in genomic profiling, NGS testing is 
a routine workup in oncology, and the incorporation of 
complicated NGS results into clinical decisions is impor-
tant for individualized therapy. In addition to genomic 
data, numerous clinical factors must be considered when 
making clinical decisions. It can easily organize and inter-
pret data from clinical practice. Thus, our ML models can 
serve as important backbones for future clinical decision 
support systems.

It is interesting to note that recently, using ML meth-
ods, the first and largest performed study identified a 
gene signature predictive of paclitaxel benefit in GC from 
the phase 3 SAMIT trial evaluating adjuvant chemother-
apy [18]. A custom-designed NanoString panel, including 
genes involved in chromosomal stability or immunogenic 
cell death, was used, and an ML model identified a gene 
signature for predicting paclitaxel benefit [18]. Similarly, 
our study predicted the benefits of paclitaxel in patients 
with AGC using ML methods. However, an impor-
tant point of consideration is that our study focused on 

palliative settings, which use paclitaxel as standard che-
motherapy, and more caution is warranted to balance 
the benefits and toxicity in vulnerable patients. Our ML 
models integrated clinical factors and genomic data, 
where NGS tests can be routinely performed rather than 
gene signature analyses in real-world practice.

Previously, prognostic factor analysis using pooled data 
from two pivotal phase 3 trials evaluating second-line 
ramucirumab alone or ramucirumab + paclitaxel chemo-
therapy found 12 independent factors for poor survival, 
including several clinical and laboratory findings [27]. 
Another retrospective study similarly reported the prog-
nostic significance of clinicolaboratory factors associ-
ated with second-line chemotherapy efficacy [12]. Good 
performance status and a long duration of prior first-
line chemotherapy are commonly associated with better 
survival. However, genomic data reflecting the under-
lying tumor biology were not analyzed in either study. 
Although our study did not evaluate laboratory findings, 
genomic alterations were comprehensively and in-depth 
considered when developing the prediction models. 
Future research is required to expand and update our 
models based on various factors, including laboratory 
findings.

This study had few limitations. First, as a retrospec-
tively designed study using an already established data-
set, additional factors could not be analyzed. Second, 
there may be selection bias between the training and 
validation sets, despite being randomly assigned and hav-
ing no statistically significant differences between them. 
Third, although internal validation was performed, as 
the small size of the validation set may not guarantee the 

Fig. 4  Kaplan–Meier curves of progression-free survival and overall survival in validation sets according to machine-learning methods
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generalizability of models, our ML models must be vali-
dated using an external independent dataset. Fourth, a 
prospective clinical trial is required to confirm the clini-
cal utility of these prediction models. Finally, ML mod-
els should be incorporated into real-world practices and 
advanced independently if true AI-based models are 
used.

Conclusions
Our ML models integrated clinical and genomic factors 
and identified patients with AGC with a greater likeli-
hood of benefit from second-line paclitaxel chemo-
therapy. This study provides the foundation for future 
advanced prediction ML models.
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