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Abstract 

Purpose  To investigate the role of prognostic genes related to cisplatin resistance in ovarian cancer during disease 
progression.

Method  The gene expression profile of the NCI-60 cell line was acquired through comprehensive analysis of the GEO 
database accession GSE116439. We performed a thorough analysis of gene expression differences in samples 
from seven individuals exposed to cisplatin concentrations of 0 nM compared to seven samples exposed to 15000 nM 
over a 24-h period. Key genes were initially identified through LASSO regression, followed by their enrichment 
through differential gene function analysis (GO) and pathway enrichment analysis (KEGG). Subsequently, a prognos-
tic risk model was established for these key genes. The prognostic model’s performance was assessed through K-M 
survival curves and ROC curves. To examine the variance in immune cell infiltration between the high and low-risk 
groups, CIBERSORTx analysis was employed. Finally, validation of prognostic gene expression in cisplatin-resistant 
ovarian cancer was carried out using clinical samples, employing RT-qPCR and Western Blot techniques.

Results  A total of 132 differential genes were found between cisplatin resistance and control group, and 8 key 
prognostic genes were selected by analysis, namely VPS13B, PLGRKT, CDKAL1, TBC1D22A, TAP1, PPP3CA, CUX1 
and PPP1R15A. The efficacy of the risk assessment model derived from prognostic biomarkers, as indicated by favora-
ble performance on both Kaplan–Meier survival curves and ROC curves. Significant variations in the abundance 
of Macrophages M1, T cells CD4 memory resting, T cells follicular helper, and T cells gamma delta were observed 
between the high and low-risk groups. To further validate our findings, RT-qPCR and Western Blot analyses were 
employed, confirming differential expression of the identified eight key genes between the two groups.

Conclusion  VPS13B, TBC1D22A, PPP3CA, CUX1 and PPP1R15A were identified as poor prognostic genes of cisplatin 
resistance in ovarian cancer, while PLGRKT, CDKAL1 and TAP1 were identified as good prognostic genes. This offers 
a novel perspective for future advancements in ovarian cancer treatment, suggesting potential avenues for the devel-
opment of new therapeutic targets.
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Background
Ovarian cancer (OC) is a highly lethal malignancy in 
women and continues to pose a significant global pub-
lic health challenge. According to epidemiological data 
spanning from 1990 to 2019, the worldwide incidence 
of OC was approximately 294.42 × 103 cases, with an 
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associated mortality of about 198.41 × 103 cases. Nota-
bly, China accounted for around 45.48 × 103 incident 
cases and approximately 29.09 × 103 deaths due to this 
disease during the same period. In the year of analy-
sis (2019), there was an alarming rise in both standard-
ized death rate (2.88 per 100,000) and crude death rate 
(4.17 per 100,000) attributed to ovarian cancer [1, 2]. The 
elevated mortality rate of ovarian cancer is linked to its 
subtle and atypical early symptoms, including abdominal 
bloating, pelvic pain, early satiety, and changes in bowel 
function. These manifestations often lead to diagnostic 
challenges and confusion with other medical conditions 
[3, 4]. Moreover, the early stages of the disease are char-
acterized by a dearth of efficacious diagnostic methods. 
Furthermore, as the cancer progresses, malignant cells 
disseminate via hematogenous and lymphatic routes 
to various sites within the abdominal cavity including 
but not limited to the liver, lungs, brain. Consequently, 
delayed diagnosis significantly compromises progno-
sis for OC treatment [4]. Currently, the management of 
OC primarily relies on surgical resection and adjuvant 
chemotherapy. Surgical resection aims to maximize 
tumor tissue removal, however, due to the invasive nature 
of abdominal and pelvic cavity operations, it poses chal-
lenges in terms of difficulty, slow postoperative recovery, 
and potential complications [5, 6]. Despite the sensitivity 
of OC to chemotherapy, the majority of patients experi-
ence relapse and rapid mortality. The resistance to chem-
otherapy and the challenges in disease management with 
current therapeutic approaches contribute to this phe-
nomenon [4, 7].

OC is categorized into three primary types: epithe-
lial, germ cell, and interstitial tumors. Within the epi-
thelial type, there are five subtypes, namely low-grade 
serous cancer, high-grade serous cancer, endometrioid 
cancer, clear cell cancer, and mucinous cancer. Nota-
bly, high-grade serous ovarian cancer stands out as the 
most aggressive and deadliest subtype [4, 8]. If ovarian 
cancer is treated and diagnosed early, the 5-year sur-
vival rate ranges from 80 to 90 percent when it remains 
localized within the ovaries; however, this rate drops to 
less than 30 percent when there is infiltration of adja-
cent pelvic structures or distant organ metastasis [4, 9]. 
Cisplatin exerts a significant impact on the initial treat-
ment of ovarian cancer by inducing cross-linking and 
RNA destruction, effectively eradicating proliferating 
cancer cells. Failure to promptly repair damaged DNA 
triggers the DNA damage response, leading to apoptosis 
activation [10]. However, the majority of patients even-
tually develop resistance to cisplatin following repeated 
exposure, thereby resulting in tumor recurrence. The 
acquisition of cisplatin resistance is an intricate pro-
cess, involving multiple mechanisms[11]. Ziliang Wang 

and colleagues have shown a noteworthy increase in the 
expression of fibrillin-1 in ovarian cancer tissues. This 
upregulation subsequently triggers the downstream path-
way through vascular endothelial growth factor receptor 
2. Ultimately, this leads to altered gene expression related 
to angiogenesis and glycolysis mediated by transcrip-
tion factor 2, thereby promoting cisplatin resistance [12]. 
Sipei Nie et al. reported an upregulation of ALKBH5 in 
cisplatin-resistant ovarian epithelial carcinoma, where it 
forms a loop with HOXA10 to facilitate the development 
of cisplatin resistance in cancer cells [13]. Chemotherapy 
resistance constitutes the primary cause of treatment 
failure in ovarian cancer, necessitating urgent investiga-
tion into the underlying mechanisms and identification 
of novel therapeutic targets.

This study involved a thorough analysis of biological 
information to identify 132 genes linked to the onset of 
cisplatin resistance in OC. Subsequently, LASSO regres-
sion analysis identified 8 key genes. To validate their 
expression, clinical samples were collected and analyzed 
using RT-qPCR and Western Blot techniques. VPS13B, 
TBC1D22A, PPP3CA, CUX1 and PPP1R15A were iden-
tified as poor prognostic genes for cisplatin resistance in 
ovarian cancer, while PLGRKT, CDKAL1 and TAP1 were 
identified as good prognostic genes. These associated 
prognostic signature genes can potentially facilitate early 
detection and improved treatment of ovarian cancer, pro-
viding novel insights into the clinical diagnosis and man-
agement of this disease.

Materials and methods
Data download
The GSE116439 dataset, obtained through the R pack-
age GEOquery from the GEO database, encompasses a 
gene expression profile derived from the NCI-60 cell line 
exposed to cisplatin, an anticancer drug. We screened 
14 samples from GSE116439 for subsequent analysis, 
comprising of 7 control samples treated with 0  nM cis-
platin for a duration of 24 h and 7 experimental samples 
treated with a concentration of 15000  nM cisplatin for 
the same time period. The GSE116439 dataset is based on 
the GPL571 [HG-U133A_2] Affymetrix Human Genome 
U133A 2.0 Array platform, and the probe annotation of 
the dataset is conducted using the chip GPL platform file.

We retrieved the gene expression profile data and sur-
vival data of ovarian cancer patients from the TCGA 
database for subsequent bioinformatics analysis. Addi-
tionally, we obtained the maf file for mutation analysis 
and excluded samples with missing survival data in ovar-
ian cancer, resulting in a final dataset comprising 373 
tumor tissue samples, no normal tissue samples were 
available.
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Cisplatin drug‑related differentially expressed genes
To discern alterations in gene expression subsequent to 
cisplatin exposure, we conducted a differential analysis 
using the limma packages, aiming to identify differen-
tially expressed genes (DEGs) between the control and 
experimental groups. The criteria for selecting DEGs 
for further exploration were set at |logFC|> 1 and a 
P-value < 0.05. Genes meeting the criteria of logFC > 1 
and P-value < 0.05 were categorized as up-regulated, 
while genes contrary to the criteria were classified as 
down-regulated. The outcomes of the differential analysis 
were visually presented through a volcano plot generated 
with the R package ggplot2, a heatmap created using the 
R package pheatmap, and a box plot constructed with the 
R package ggpubr.

Differential gene function and pathway enrichment 
analysis
GO analysis is a widely employed approach for con-
ducting comprehensive functional enrichment studies, 
encompassing biological processes (BP), molecular func-
tions (MF), and cellular components (CC). KEGG stands 
as a widely employed repository for the comprehensive 
storage of genomic data, biological pathways, disease 
information, and pharmaceutical compounds. GO and 
KEGG enrichment analyses on DEGs associated with cis-
platin were carried out using the R-package clusterPro-
filer. The selection criteria included a P-value < 0.05 and a 
false discovery rate (FDR or q value) < 0.05.

GSEA enrichment and GSVA analysis
GSEA evaluates the distribution trend of genes in a pre-
defined gene set within a phenotypically ranked gene 
list to assess their contribution to the phenotype. In this 
study, differentially expressed genes were divided into 
high and low phenotype relevance groups. The cluster-
Profiler package enriched all DEGs in these two groups. 
GSVA, a non-parametric unsupervised algorithm, was 
then applied using the R language GSVA (version 1.42.0) 
package. This transformed gene expression data from 
a matrix with a single gene as a feature to a matrix with 
a specific gene set as a feature. Each gene set under-
went rank statistics, akin to the K-S test, resulting in an 
Enrichment Score (ES) matrix. This facilitated GSVA 
enrichment score determination for each sample and 
subsequent statistical analysis.

Construct prognosis model based on TCGA data
We identified 132 genes with differential expression 
between the control and experimental groups, consid-
ered potential candidates. To assess their prognostic sig-
nificance in OC, tumor samples were randomly split into 

a 3:2 ratio, with three as the training set and two as the 
validation set. Univariate Cox regression analysis was 
applied to the training set to identify genes significantly 
associated with survival (P value < 0.05). A prognostic 
model was constructed using Least Absolute Shrinkage 
and Selection Operator (LASSO) regression, incorporat-
ing only genes with non-zero regression coefficients. The 
Risk Score model yielded the risk score for each tumor 
sample, calculated as follows: Coef (genei) represents 
LASSO regression coefficient, expression (genei) denotes 
the gene’s expression value, and n is the number of genes 
in the model.

Evaluation of prognostic models
The R-package survminer’s surv_cutpoint function was 
utilized to determine the optimal cutoff value for dis-
tinguishing high and low-risk groups in the training set. 
Following this, Kaplan–Meier survival curve analysis and 
time-dependent ROC analysis were performed to evalu-
ate the predictive accuracy of the model.

Build a forecast nomogram
A nomogram, based on multiple regression analysis, 
utilizes a specific scale to assign scores, representing 
various variables within the multiple regression model. 
Ultimately, a total score is computed to predict the prob-
ability of event occurrence. We integrated the clinical 
features of ovarian cancer samples to identify the clini-
cal characteristics significantly associated with survival. 
Following the Cox regression analysis results, we con-
structed a nomogram using the R package "rms."

Immunoinfiltration analysis
We utilized the CIBERSORTx online tools (https://​ciber​
sortx.​stanf​ord.​edu/) to evaluate immune cell infiltration 
in TCGA—OV data, obtaining abundance values for 22 
distinct subtypes of immune cells. We utilized bar charts 
to visually represent the proportions of anticipated cells, 
employed Pearson correlation heat maps to illustrate the 
interrelationships among immune cells, and employed 
box plots to examine disparities in immune cell popula-
tions between high and low risk cohorts.

Drug sensitivity prediction
Using the Cancer Genome Project (CGP) database, Ridge 
regression was applied to estimate the half-maximum 
inhibitory concentration (IC50) for each patient, and the 
prediction accuracy was evaluated through tenfold cross-
validation. Significance in drug sensitivity differences 

riskScore =

n

i

Coef genei ∗ Expression genei

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/


Page 4 of 17Liu et al. BMC Cancer          (2024) 24:508 

between high and low-risk groups was determined by 
comparing P values, where P < 0.001 was considered sta-
tistically significant.

Mutation analysis
Tumor mutation burden (TMB) quantifies the number of 
somatic nonsynonymous mutations in a specific genomic 
region. It typically represents the cumulative count of 
coding errors, base substitutions, and gene insertion or 
deletion errors detected per million bases. We employed 
Maftools (version 2.10.0), an R package specifically 
designed for TMB analysis. This allowed us to quantify 
somatic non-synonymous point mutations in each sam-
ple and assess the mutation frequency of genes in both 
high-risk and low-risk groups. Furthermore, we visually 
depicted these findings using an oncoplot waterfall plot.

Chromosome localization analysis of prognostic genes
We will prepare the chromosome localization data, load 
the RCircos package in the R language environment, and 
import the data. Subsequently, we will utilize the func-
tions within the RCircos package to generate a circular 
chromosome map and incorporate chromosomal loca-
tion markers. The objective of interpreting the results of 
chromosome localization analysis is to discuss the distri-
bution pattern of prognostic genes on chromosomes and 
explore the biological significance of these genes.

ceRNA network analysis
The interacting microRNAs associated with genes sig-
nificantly linked to prognosis were queried in the miRDB 
database (http://​www.​mirdb.​org/), utilizing a Target 
Score > 88 as a filter. Subsequently, a query was per-
formed in the starBase database to identify interactions 
of miRNAs (http://​starb​ase.​sysu.​edu.​cn/​index.​php). 
The intersection of these two database queries identi-
fied gene-miRNA interactions that were strongly associ-
ated with prognostic outcomes. The starBase database 
was queried to identify lncRNAs that interact with the 
aforementioned miRNAs, using a filtering condition of 
clipExpNum > 10. Finally, the ceRNA network diagram 
was constructed using Cytoscape based on the aforemen-
tioned query results.

Quantitative real‑time PCR
RNA extraction from tissues was performed using Trizol 
reagent, reverse transcribed into cDNA utilizing Swe-
Script One-Step RT-PCR Kit, and subsequently amplified 
with appropriate primers (refer to Table S1) for validation 
of prognostic gene expression in the cisplatin-resistant 
group of ovarian cancer.

Western Blot
Tissues were lysed with RIPA lysis buffer, and protein 
concentration was determined using the BCA pro-
tein assay kit. The protein was then separated on an 
SDS-PAGE gel and transferred to a PVDF membrane. 
Subsequently, the expression of the target protein was 
detected using the FUSION FX5 imaging system (Bio-
Rad, Hercules, CA, USA) following continuous incuba-
tion with primary and secondary antibodies. The primary 
antibodies targeting the following proteins were used 
VPS13B (Abcam, ab139814, 1:1000), PLGRKT (Abcam, 
ab169531, 1:1000), CDKAL1 (Abcam, ab237525, 1:1000), 
TBC1D22A (Abcam, ab234723, 1:1000), TAP1 (Abcam, 
ab314745, 1:1000), PPP3CA (Abcam, ab265130, 1:1000), 
CUX1 (Abclonal, A2213, 1:1000), and PPP1R15A 
(Abclonal, A16260, 1:1000). The secondary antibody used 
was β-actin (Abclonal, AC026, 1:10,000).

Statistical analysis
Data processing and analysis in this study used R soft-
ware (Version 4.1.2), presenting continuous variables as 
mean ± standard deviation. The Wilcoxon rank sum test 
(Mann–Whitney U test) compared two groups, while the 
Kruskal–Wallis test assessed three or more groups. Chi-
square tests or Fisher exact tests determined statistical 
significance for comparing and analyzing two sets of cat-
egorical variables. Unless specified otherwise, Spearman 
correlation analysis calculated correlation coefficients 
between different molecules, with a significance thresh-
old at P < 0.05.

Results
Analysis of cisplatin drug‑related gene differences
The differential gene expression analysis was conducted 
between the cell samples treated with cisplatin at a con-
centration of 15000 nM and those untreated for 24 h. A 
total of 132 genes exhibiting significant differences in 
expression were identified (Table S2), including 35 up-
regulated genes and 97 down-regulated genes. Differen-
tial gene expression analysis results are illustrated in the 
volcano plot (Fig. 1A). The expression distribution of 132 
significantly differentially expressed genes in experimen-
tal and control samples is shown in heat maps (Fig. 1B). 
Additionally, a boxplot was created to visualize expres-
sion differences between the experimental and control 
groups for 20 significant variant genes (Fig. 1C).

GO and KEGG analysis of cisplatin drug‑related DEGs
We performed GO and KEGG (Tables S3 and S4) enrich-
ment analysis on a set of 132 DEGs associated with 
cisplatin resistance, followed by the generation of a his-
togram (Fig. 2A), bubble plot (Fig. 2B), circular diagram 

http://www.mirdb.org/
http://starbase.sysu.edu.cn/index.php
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(Fig.  2C), and chord diagram (Fig.  2D). The primary 
enrichment pathway of differentially expressed genes 
associated with cisplatin resistance is GO:0062197, 
which participates in cellular response to chemical stim-
uli. Additionally, the following gene ontology terms were 
identified: GO:0006469 (negative regulation of protein 

kinase activity), GO:0034599 (cellular response to oxi-
dative stress), GO:0005547 (phosphatidylinositol-3,4,5-
triphosphate binding), GO:0005001 (transmembrane 
receptor protein tyrosine phosphatase activity), and 
GO:0019198 (transmembrane receptor protein phos-
phatase activity). Furthermore, hsa05169 is linked to 

Fig. 1  Differential expression analysis of cisplatin drug-related genes. A Volcano plot of the DEGs. B Heat map depicting the distribution of DEGs. C 
Box plots displaying the expression distribution of the top 10 up-regulated and down-regulated genes in the experimental and control groups
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Epstein-Barr virus infection, hsa05210 is associated with 
colorectal cancer, and hsa04110 is involved in cell cycle 
regulation.

GSEA and GSVA enrichment analysis
Through GSEA, we obtained insights into the BP, CE, and 
MF associated with cisplatin resistance-related genes. 

Fig. 2  GO and KEGG analysis of DEGs between the experimental and control groups treated with cisplatin. A-D The histogram, bubble map, 
circle graph, and string diagram depict the outcomes of GO and KEGG enrichment analysis for DEGs. The histogram depicts enriched pathways, 
with increasing redness indicating higher up-regulated gene enrichment. The bubble diagram uses green for biological process pathways, yellow 
for KEGG pathways, and purple for molecular functional pathways, with bubble size representing the number of differentially expressed genes. In 
the outer scatter plot, red dots signify upregulation, blue dots indicate downregulation, while the inner circle bar chart illustrates the significance 
of enrichment results. Lastly, the chord diagram’s left semicircle denotes genes, and the right semicircle denotes enriched pathways
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These genes were found to be significantly enriched in 
key pathways such as Nod Like Receptor Signaling Path-
way, Graft Versus Host Disease, Cytosolic Dna Sensing 
Pathway, Adherens Junction, Long Term Potentiation, 

And Regulation of Actin Cytoskeleton (Fig. 3A, Table S5). 
The distribution information of the enrichment fraction 
of cisplatin resistance-related genes obtained through 
GSVA analysis in each sample was visualized using heat 

Fig. 3  GSEA and GSVA enrichment analysis of cisplatin resistance related genes. A Pathway analysis using GSEA revealed significant enrichment 
of cisplatin resistance-related genes. B The distribution heat map of the significantly enriched pathways in each sample was analyzed using GSVA
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maps. In comparison to the control group, the experi-
mental group exhibited an irregular distribution pattern 
for the enrichment fraction of cisplatin resistance-related 
genes (Fig. 3B).

A prognostic model of cisplatin resistance related genes 
was constructed based on TCGA data
In order to assess the prognostic correlation between 
genes associated with cisplatin resistance and ovarian 
cancer patients, we utilized TCGA-OV sequencing data 
and survival information to conduct a survival analy-
sis of tumor samples for cisplatin resistance-related 

genes. We identified a total of 9 genes with significant 
prognostic value (P < 0.05). (Table S6). The LASSO-Cox 
regression algorithm was employed to establish the 
prognostic model (Fig.  4A, B), resulting in the identi-
fication of a risk model comprising eight genes (Table 
S7). Diseased samples were categorized into low and 
high-risk groups based on the median value of the risk 
score. The distribution of risk scores and survival sta-
tus for both the training set (Table S8) and validation 
set (Table S9), along with an expression heat map illus-
trating the expression patterns of these eight genes, is 
shown in Fig. 4C-H.

Fig. 4  Prognosis model of cisplatin resistance related genes was constructed based on TCGA data. A The coefficient curve of LASSO regression 
analysis demonstrates the significant changes in lambda values for 9 genes associated with prognosis. B Ten-fold cross-validation plot. C The 
risk curve in the training dataset. D The risk curve in the test dataset. E. Scatter plot depicting survival state in the training dataset. F Scatter plot 
illustrating survival state in the test dataset. G Expression heat map displaying prognostic gene patterns in the training set. H Heat map showcasing 
prognostic gene expression patterns in the test set
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Survival analysis
Survival analysis indicated significant differences in over-
all survival (OS) between the training group (Fig.  5A) 
and the validation group (Fig. 5B) within both high and 
low-risk groups (P < 0.05). The risk scores derived from 
the prognostic model showed an area under the curve 
(AUC) greater than 0.6 for 1-year, 3-year, and 5-year time 
points, suggesting a certain level of prognostic value for 
the model (Fig. 5C, D).

Prognostic analysis based on clinical features
Through univariate Cox regression analysis, we observed 
significant associations between survival and both risk 
scores and age (Fig.  6A). Moreover, multivariate Cox 
regression analysis identified age and risk scores as inde-
pendent predictors of overall survival (OS) (Fig.  6B). 
Leveraging these factors, we constructed nomograms 
to evaluate the prognostic power of our model and gen-
erated a graphical representation (Fig.  6C), enabling 

quantification of individual’s survival probabilities at 1, 2, 
and 3 years. The calibration curve demonstrated excellent 
concordance between predicted OS and actual observa-
tions across all time points (Fig. 6D).

Immunoinfiltration analysis
We quantified immune cell abundance in OC samples, 
obtaining values for 22 different types of immune cells. 
The correlation between various immune cell types in 
ovarian cancer samples was visually analyzed through a 
bubble heat map (Fig. 7A). This analysis helped us under-
stand the level of correlation between different cell types 
and comprehend the characteristics of immune infiltra-
tion in ovarian cancer samples. For instance, the correla-
tion between T cells CD8 and T cells regulatory Tregs, 
as well as T cells CD4 memory activated, is notably 
higher. There is low relevance observed between T cells 
CD8 and T cells CD4 memory resting. A scatter plot was 
employed to visually analyze the correlation between the 

Fig.5  Survival analysis of ovarian cancer training set and test set. A, B The K-M survival analysis was conducted in both the training set (A) 
and validation set (B) to assess the high-low risk group. C, D ROC curves for risk scores were calculated from the training set (C) and test set (D) at 1-, 
3-, and 5-year intervals



Page 10 of 17Liu et al. BMC Cancer          (2024) 24:508 

prognostic gene and cell type, revealing a positive associ-
ation between TAP1 gene expression and invasion degree 
of Macrophages M1 cell type (Fig.  7B). Furthermore, a 
boxplot was utilized to compare immune cell abundance 
in the high-risk and low-risk groups, demonstrating sig-
nificant differences in Macrophages M1 cells, CD4 Mem-
ory Resting cells, T cells Follicular helper and T cells 
gamma delta (Fig. 7C).

Drug sensitivity, tumor mutation analysis and prognostic 
gene chromosomal localization analysis
Drug sensitivity analysis revealed prominent differ-
ences in the sensitivity of Cisplatin (Fig. 8A), Docetaxel 
(Fig. 8B), and Paclitaxel (Fig. 8C) between the high-risk 
and low-risk groups. We identified mutant genes in all 
TCGA-OV samples, with missense mutations being the 
predominant type of mutation observed (Fig.  8 D-G). 

Furthermore, we conducted chromosomal localization 
analysis to determine the coordinates of prognostic 
genes on chromosomes (Fig. 8H).

ceRNA network analysis
There are 8 genes associated with prognosis, namely 
VPS13B, PLGRKT, CDKAL1, TBC1D22A, TAP1, 
PPP3CA, CUX1 and PPP1R15A. All of these genes are 
mRNA. A total of 31 microRNAs targeting VPS13B, 
PPP3CA, CUX1 and PLGRKT genes were screened 
(Tables S10 S11, S12, 13). Then, we predicted the Long 
non-coding RNA (lncRNA) targeted by these 31 micro-
RNA, and a total of 34 lncRNA were identified (Table 
S14). To visualize the network relationship between 
prognostic genes, microRNA, and lncRNA, we con-
structed a ceRNA network diagram (Fig. 9, Table S15).

Fig. 6  Prognosis analysis based on clinical features. A Unifactor COX regression forest map of clinical features. B Multivariate COX regression forest 
map incorporating clinical features. C Nomogram illustrating the clinical features. D Calibration curve for validation
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Validation of expression of prognostic related genes 
in ovarian cancer tissues
The expressions of VPS13B, PLGRKT, CDKAL1, 
TBC1D22A, TAP1, PPP3CA, CUX1 and PPP1R15A 

in ovarian tissues of patients with OC and cisplatin-
resistant OC were detected by QRT-PCR and West-
ern Blot. The expression levels of VPS13B, TBC1D22A, 
PPP3CA, CUX1, and PPP1R15A genes were found to 

Fig. 7  Analysis of immune infiltration in ovarian cancer samples. A Differences in the abundance of immune cells between two groups in ovarian 
cancer samples. B Correlation between TAP1 expression and the abundance of Macrophages M1 cells. C Association of immune cell infiltration 
with two groups
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be up-regulated in ovarian tissue of cisplatin-resistant 
ovarian cancer patients compared to those with ovar-
ian cancer. Conversely, the expression levels of PLGRKT, 
CDKAL1, and TAP1 genes were down-regulated in these 

patients’ ovarian tissue (Fig.  10 A-I). These findings are 
consistent with the results obtained from bioinformatics 
analysis.

Fig. 8  Drug sensitivity, TMB and Chromosome localization analysis of prognostic genes. A-C Differences in drug sensitivity between high 
and low-risk groups are observed. Boxplots demonstrate significant variations in drug sensitivity for Cisplatin (A), Docetaxel (B), and Paclitaxel 
(C) between the high and low-risk groups. D Mutation waterfall map illustrating differentially mutated genes in the high-risk group. E Mutation 
waterfall map displaying differentially mutated genes in the low-risk group. F Mutation waterfall map depicting differentially mutated 
genes in both high and low-risk groups. G Overview of genetic mutations found in ovarian cancer samples. H Chromosomal mapping 
of prognostic-related genes
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Discussions
In recent years, there has been gradual advancement 
in the treatment of ovarian cancer, with surgery com-
bined with chemotherapy emerging as the established 
standard approach. Early-stage patients can undergo 
comprehensive surgical intervention, while advanced-
stage patients may benefit from tumor cell reduction 
procedures [10]. However, due to the predominance 
of advanced stage diagnoses for ovarian cancer cases, 
most patients require chemotherapy as an essential 
component of their treatment plan. Platinum-based 
combination chemotherapy stands as the primary ther-
apeutic option for advanced ovarian cancer [10, 14]. 
However, the majority of patients undergoing chemo-
therapy eventually develop drug resistance, resulting in 

tumor recurrence and metastasis [14]. Approximately 
20% of ovarian cancer patients exhibit inherent resist-
ance to standard first-line platinum drug combination 
therapy, while platinum-resistant relapse cases account 
for approximately 25% of all relapse cases observed 
in clinical practice. Moreover, the prognosis for these 
cases is exceedingly poor [15], highlighting an urgent 
need for novel intervention targets.

The development of cisplatin resistance in OC 
chemotherapy encompasses a plethora of molecular 
alterations, including modifications in drug metabo-
lism, mutations affecting drug targets, perturbations 
in DNA synthesis and repair mechanisms, initiation 
of cancer stem cell formation, immunosuppressive 
effects, deactivation of apoptotic genes, and activation 

Fig. 9  ceRNA network relationships among prognostic-related genes, microRNA, and lncRNA. The color green indicates the prognostic phase 
for genes, while orange represents microRNA and blue represents lncRNA

(See figure on next page.)
Fig. 10  The expression of prognostic genes in ovarian and cisplatin-resistant ovarian cancers was assessed using QRT-PCR and Western blot 
analysis. A The expression of VPS13B was upregulated in the cisplatin-resistant group. B Increased expression of TBC1D22A was observed 
in the cisplatin-resistant group. C Enhanced expression of PPP3CA was detected in the cisplatin-resistant group. D CUX1 expression exhibited 
an increase in the cisplatin-resistant group. E Decreased expression of PPP1R15A was found in the cisplatin-resistant group. F The expression 
of PLGRKT was ownregulated in the cisplatin-resistant group. G CDKAL1 expression showed a decrease in the cisplatin-resistant group. H TAP1 
expression demonstrated a reduction in the cisplatin-resistant group. I Western blot analysis revealed altered protein levels of VPS13B, PLGRKT, 
CDKAL1, TBC1D22A, TAP1, PPP3CA, CUX1 and PPP1R15A proteins between ovarian tissues and cisplatin-resistant tissues
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Fig. 10  (See legend on previous page.)
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of anti-apoptotic genes [14]. Based on multiple datasets 
obtained from GEO and TCGA databases, this study 
identified 132 differentially expressed genes related to 
cisplatin treatment in ovarian cancer cells, with 35 up-
regulated and 97 down-regulated genes. The correla-
tion analysis with cisplatin resistance genes identified 
eight hub genes, namely VPS13B, PLGRKT, CDKAL1, 
TBC1D22A, TAP1, PPP3CA, CUX1 and PPP1R15A.

Vacuolar Protein Sorting 13 Homolog B (VPS13B) 
is implicated in intracellular transport and subcellular 
localization, and mutations in this gene result in func-
tional aberrations of the VPS13B protein, potentially 
impacting the normal functioning of diverse cell types 
and tissues [15]. In a study by Reika Iwakawa et al., fre-
quent mutations and expression of genes were observed 
in small cell lung cancer including VPS13B [16]. In 
investigations concerning primary invasive breast can-
cer, aberrant methylation and transcription patterns 
of VPS13B have been implicated in the promotion of 
tumor suppressor gene inactivation or oncogene acti-
vation [17]. The PLGRKT receptor exhibits a distinc-
tive structure and its proteolytic activity plays a crucial 
role in various physiological and pathological processes, 
encompassing inflammation, tumorigenesis, metasta-
sis, fibrinolysis, cytokine induction, and activity release 
[18]. Plasminogen primarily regulates the inflammatory 
response by facilitating the recruitment, migration, and 
aggregation of plasminogen-dependent monocytes and 
macrophages [19]. In recent years, numerous studies 
have also demonstrated the pivotal role of plasminogen 
receptors in the regulation of tumor microenvironment. 
Lindsey A. Miles et al., for the first time, investigated the 
expression of PLGRKT in human breast cancer, wherein 
invasive ductal carcinoma exhibited the highest expres-
sion level. The phenomenon leads to degradation of fibrin 
and extracellular matrix, thereby promoting tumor pro-
gression [20]. CDKAL1 acts as a tRNA-modified meth-
ylthiotransferase, facilitating the production of cytokines 
that are characteristic of cancer stem cells. Huang et al. 
have demonstrated the essential role of CDKAL1 in 
maintaining stem cell-like cytokine profiles across vari-
ous common cancers such as rhabdomyosarcoma, mela-
noma, liver cancer, stomach cancer and glioma [21, 22]. 
Moreover, they observed a correlation between elevated 
expression levels of CDKAL1 and unfavorable prognosis. 
TBC1D22A is a protein localized in the Golgi apparatus 
that plays a crucial role in preserving the integrity of the 
Golgi membrane and has been implicated in the patho-
genesis of liver cancer, epilepsy and other diseases [23]. 
Transporter associated with antigen processing 1 (TAP1) 
is a crucial molecule responsible for the processing and 
presentation of tumor-associated antigens. Aberrant 
expression of TAP1 has been observed in various tumor 

types and is known to impact multidrug resistance in 
human cancer cell lines during chemotherapy [24, 25]. 
Qianxia Tan et  al. discovered that high levels of TAP1 
expression serve as an independent prognostic indica-
tor for ovarian cancer patients, correlating with favora-
ble outcomes [24, 26]. The alpha isozyme of protein 
phosphatase 3, catalytic subunit (PPP3CA) represents as 
a calmodulin-regulated serine-threonine phosphatase. 
Variants in PPP3CA have been implicated in the devel-
opment of early-onset, refractory epilepsy [23, 25, 27]. 
Aberrant expression of PPP3CA has also been observed 
in advanced multiple myeloma (MM), suggesting a 
potential association between elevated levels of PPP3CA 
and MM pathogenesis [28]. Furthermore, within an 
immune and iron-death-related risk score model for 
ovarian cancer patients developed by Chunyan Wei et al., 
PPP3CA has been identified as a prognostic factor aiding 
in predicting patient response to immunotherapy [29]. 
These findings align with our study results, emphasizing 
the significance of PPP3CA as a pivotal prognostic factor 
in ovarian cancer. CUX1 (CUT-like homeobox 1) is iden-
tified as a haploid tumor suppressor associated with both 
tumor inhibition and progression. [30]. Studies have con-
firmed that the circRNA derived from Cux1, encoding 
protein P113, drives neuroblastoma (NB) progression by 
facilitating the trans-activation of ZRF1/BRD4. It exhib-
its high expression in NB cells and promotes their pro-
liferation, invasion, and metastasis [31]. Investigations on 
pancreatic neurosecretory tumors (pan-NET) have dem-
onstrated that CUX1 serves as a prognostic marker post 
PanNET surgery and facilitates in  vitro tumor progres-
sion through enhanced proliferation and angiogenesis 
[32].

Functional analysis using GO and KEGG indicated 
that these differentially expressed genes are primar-
ily involved in the negative regulation of protein kinase 
activity, oxidative stress response, chemical cell response. 
Additionally, they are associated with Epstein-Barr virus 
infection, colorectal cancer, and cell cycle. Meanwhile, 
GSEA enrichment analysis revealed significant associa-
tions of these differential genes with long-term potentia-
tion, regulation of actin cytoskeleton, graft-versus-host 
disease, and cellular DNA sensing pathways.

Furthermore, employing the LASSO-cox regression 
algorithm, we constructed a risk model comprising 
8 differential genes. Survival analysis results demon-
strated that the high-risk group exhibited a significantly 
lower survival rate compared to the low-risk group 
(P < 0.05). Analysis of clinical characteristics identified 
age and risk score as independent prognostic factors for 
predicting survival. Further investigation into immune 
cell abundance disparities between high-risk and low-
risk groups was conducted through immunoinfiltration 
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analysis. In the results from these two groups, significant 
differences were observed in the levels of macrophages, 
specifically M1, T cells CD4 memory resting, T cells fol-
licular helper, and T cells gamma delta. The expression 
of TAP1 positively correlates with Macrophages M1 cell 
type. The findings reveal that in the group exhibiting 
heightened expression of CA125, a serum tumor marker 
associated with various cancers including ovarian, 
endometrial, and bladder cancers, there were elevated 
levels of M2 macrophage marker, CD163, as well as the 
regulatory T-cell (Treg) marker, FOXP3, compared to 
the group with lower CA125 expression. This indicates 
that individuals with increased CA125 expression in 
bladder cancer tend to possess a tumor microenviron-
ment characterized by immunosuppression [33]. Our 
results are congruent with this observation, indicating 
variances in the immune milieu between high-risk and 
low-risk patients with cancer. Risk prediction models 
accurately forecast survival outcomes in patients with 
cisplatin-resistant OC. Through biological informa-
tion screening, RT-qPCR and WB verification, it was 
found that VPS13B, TBC1D22A, PPP3CA, CUX1 and 
PPP1R15A were highly expressed in cisplatin-resistant 
tissues of ovarian cancer, while PLGRKT, CDKAL1 and 
TAP1 were low expressed. The conclusion is consist-
ent with the previous conclusions and enriches their 
research [23, 29].

In this study, we conducted the first screening of dif-
ferential genes between OC cells and cisplatin-resistant 
OC cells. However, there are certain limitations in our 
study. Firstly, the dataset included only 14 patients, which 
may not provide sufficient evidence to accurately assess 
the predictive accuracy of the prognostic model. Addi-
tionally, our study relies on previous research data; thus, 
further experimental validation is necessary to clarify the 
pathogenesis of these genes in the disease and improve 
their predictive power for clinical applications.

Conclusion
Through bioinformatics analysis of EMS expression 
profile data, we identified 132 DEGs and 8 prognostic 
genes. Subsequently, by conducting ceRNA network 
analysis, VPS13B, TBC1D22A, PPP3CA, CUX1, and 
PPP1R15A were identified as poor prognostic genes 
associated with cisplatin resistance in OC. Conversely, 
PLGRKT, CDKAL1, and TAP1 were found to be good 
prognostic genes. These findings hold significant 
implications for the development of novel molecu-
lar therapeutic targets and provide a solid theoretical 
foundation for further investigation into their underly-
ing molecular mechanisms.
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