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Abstract 

Background  To predict pathological complete response (pCR) in patients receiving neoadjuvant immunochemo-
therapy (nICT) for esophageal squamous cell carcinoma (ESCC), we explored the factors that influence pCR after nICT 
and established a combined nomogram model.

Methods  We retrospectively included 164 ESCC patients treated with nICT. The radiomics signature and hematology 
model were constructed utilizing least absolute shrinkage and selection operator (LASSO) regression, and the radi-
omics score (radScore) and hematology score (hemScore) were determined for each patient. Using the radScore, 
hemScore, and independent influencing factors obtained through univariate and multivariate analyses, a combined 
nomogram was established. The consistency and prediction ability of the nomogram were assessed utilizing calibra-
tion curve and the area under the receiver operating factor curve (AUC), and the clinical benefits were assessed utiliz-
ing decision curve analysis (DCA).

Results  We constructed three predictive models.The AUC values of the radiomics signature and hematology 
model reached 0.874 (95% CI: 0.819–0.928) and 0.772 (95% CI: 0.699–0.845), respectively. Tumor length, cN stage, 
the radScore, and the hemScore were found to be independent factors influencing pCR according to univariate 
and multivariate analyses (P < 0.05). A combined nomogram was constructed from these factors, and AUC reached 
0.934 (95% CI: 0.896–0.972). DCA demonstrated that the clinical benefits brought by the nomogram for patients 
across an extensive range were greater than those of other individual models.
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Background
The incidence rate of esophageal cancer is the seventh-
highest worldwide among all cancers, and esophageal 
squamous cell carcinoma (ESCC) was the diagnosis made 
in more than 90% of cases in China [1, 2]. The primary 
therapeutic method for locally advanced ESCC is surgery, 
but it has not yet achieved satisfactory outcomes. To 
increase patient survival rates, neoadjuvant treatments 
such as targeted therapy, chemotherapy, radiotherapy, 
and immunotherapy were introduced. Several clinical 
studies on neoadjuvant immunochemotherapy (nICT) 
for locally advanced ESCC are ongoing. Preliminary 
findings indicated that esophagectomy for esophageal 
cancer after nICT showed favorable efficacy and safety, 
and patients who received nICT exhibited satisfactory 
pathological complete response (pCR) and R0 resection 
rates [3–6]. The prognostic survival for patients with pCR 
is much better than that of non-pCR and may be able 
to delay or avoid surgery, thus demonstrating the great 
promising nICT is as a neoadjuvant treatment for ESCC 
[7–9].

Only 20%-40% of ESCC patients achieve a pCR after 
nICT because of tumor heterogeneity [6, 10, 11]. In con-
trast, many patients not only end up without obvious 
treatment reactions and cannot achieve practical benefits 
but will also experience the costly and dangerous side 
effects of medications. Therefore, the prediction of treat-
ment response significantly affects the implementation of 
nICT. Relevant research reports show that tumor muta-
tional burden, the ratio of monocytes to lymphocytes, 
PD-1/PD-L1 expression, high microsatellite instabil-
ity, and other biomarkers are associated with immuno-
therapy effectiveness [12–14]. There are also reports that 
inflammatory markers, circulating lymphocyte subtypes, 
and numbers of blood cells are strongly linked to patient 
survival and therapeutic response [15]. Unfortunately, 
there are no reliable biomarkers to forecast how ESCC 
patients would respond to therapy following nICT.

Radiomics is a high-throughput method for obtaining 
a great deal of data from images. Through deeper min-
ing of massive data, radiomics can provide a series of 
valuable auxiliary treatment methods for the diagnosis 
of disease [16], the evaluation of therapeutic response 
[17], and the prediction of lymph node metastasis [18]. 
Previous studies have reported that radiomics is an 

efficient way for predicting the therapeutic response of 
ESCC after neoadjuvant chemoradiotherapy (nCRT) 
[19] and can aid in making clinical treatment decisions. 
Biomarkers obtained from biopsy require invasive 
examination and a series of time-consuming and com-
plex laboratory procedures. However, it is more valu-
able to explore noninvasive biomarkers for predicting 
the therapeutic response of ESCC patients after nICT.

A nomogram is a numerical estimation model that 
includes many complex factors that can clearly and 
intuitively predict the probability of event occurrence. 
Numerous nomogram models for prediction have been 
constructed and are frequently utilized in cancer pre-
diction modeling [20, 21]. To predict the pCR of ESCC 
patients after nICT, we explored the factors that influ-
ence pCR after nICT and established a combined nom-
ogram model.

Methods
Study design
Fig. 1 shows the research procedure, which is compre-
hensively described by the following methods.

Patients
This study retrospectively collected 285 patients who 
received nICT along with esophagectomy at our hos-
pital from September 2020 to April 2023. The institu-
tional review board (IRB) of Shandong Cancer Hospital 
and Institute authorized our study (approval number: 
SDTHEC2023001010), and the IRB exempted informed 
consent. The inclusion criteria for patients were as fol-
lows: (a) verified by histopathology as ESCC; (b) stand-
ard non-contrast chest CT scan before treatment; and 
(c) received nICT and underwent esophagectomy. 
The exclusion criteria for patients were as follows: (a) 
treated with chemotherapy, radiotherapy, or other anti-
cancer therapies prior to the baseline CT scans; (b) had 
other concurrent tumors; (c) had incomplete clinical 
features or records; and (d) had poor-quality CT images 
or primary tumors that were too small to be identified. 
There were 164 patients included after applying the 
inclusion and exclusion criteria (Fig. 2).

Conclusions  By combining CT radiomics, hematological factors, and clinicopathological characteristics before treat-
ment, we developed a nomogram model that effectively predicted whether ESCC patients would achieve pCR 
after nICT, thus identifying patients who are sensitive to nICT and assisting in clinical treatment decision-making.

Keywords  Pathological complete response, Neoadjuvant immunochemotherapy, Nomogram, Radiomics, 
Hematology, Esophageal squamous cell carcinoma
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Treatment protocol
Every patient received 2–4 cycles of immunochemother-
apy and underwent open or laparoscopic thoracoscopic 
McKeown surgery at 4–6  weeks after treatment. The 
chemotherapy regimens used were fluorouracil (5-FU, 
teysuno, or capecitabine) or paclitaxel (albumin-binding 
paclitaxel or docetaxel) combined with platinum (cis-
platin, nedaplatin, or oxaliplatin). A PD-1 inhibitor was 
chosen for the immunotherapy regimen (camrelizumab, 
tislelizumab, pembrolizumab, toripalimab, or sintilimab). 
The combination regimen and dosage depended on the 
patient’s actual situation and preferences.

Data collection
Before patients received nICT, 40 potential influencing 
factors were retrospectively collected from electronic 

medical records. These indicators were divided into clin-
icopathological factors (n = 11) and hematological factors 
(n = 29). The clinicopathological factors included sex, age, 
smoking history, drinking history, tumor length, tumor 
location, tumor differentiation, cT stage, cN stage, cTNM 
stage (AJCC 8th edition), and Karnofsky performance 
status (KPS) score. The hematological factors are dis-
played in Table S1. The outcome was whether the patient 
achieved pCR. Based on the AJCC (8th edition) tumor 
regression grade (TRG), pCR was defined as follows: (1) 
original tumor without viable tumor cells (TRG 0); and 
(2) no positive lymph nodes in the surgical specimens.

CT image acquisition and ROI segmentation
In our study, due to the well-differentiated tumor bor-
ders, non-contrast CT images before nICT were utilized 

Fig. 1  The research workflow. After the patient was enrolled, radiomics and hematology analyses were conducted separately, using LASSO 
regression to reduce the dimensionality of features. Then, radScore and hemScore were calculated, and they were combined with independent 
factors influencing pCR to develop a nomogram. Evaluated the predictive ability of three models, including ROC curve, calibration curve, DCA, etc.
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for tumor segmentation and feature extraction. Each 
patient received a standard Philips CT scanner chest scan 
(Brilliance iCT 128). The following scanning protocol 
was used: 5-mm-thick slice reconstructions, helical scan-
ning mode, 120 kV tube voltage, and 300–500 mA tube 
current.

With the patient information hidden, 2 radiologists 
with over 5  years of expertise performed the original 
tumor segmentation. Because human observations are 
susceptible to differences from person to person, a sin-
gle radiologist segmented 100 randomly selected ESCC 
patients one month later to assess and confirm the 
repeatability of radiomics features. 2 radiologists reached 
a consensus on the differences in regions of interest 
(ROIs) through negotiation, and patients in which the 
radiologists were unable to reach an agreement on were 
excluded. All ROIs were segmented utilizing a 3D slicer 
(version 5.2.1).

Significantly, the clinical stage (cT stage, cN stage, and 
cTNM stage) of patients was determined separately by 
oncologists based on their gastroscopy and contrast CT, 
while non-contrast CT was used only for radiomics fea-
ture extraction.

Radiomics feature extraction and selection
We first performed preprocessing by resampling all ROIs 
to 1 × 1 × 1 mm3 and areas with HU < 0 were excluded. 
Radiomics features were subsequently extracted  from 
the preprocessed ROIs utilizing PyRadiomics (version 
3.6.2). The radiomics features we extracted included the 
following categories: first-order features, shape features, 
second or higher-order texture features, and the features 
were based on the original image obtained through the 
Laplace transform and wavelet transform.

Feature selection consisted of two steps: first, after pre-
processing all the radiomics feature values via Z score 
normalization, the repeatability of radiomics features 
was assessed through intraclass correlation coefficient 
(ICC) analysis. Only the features with a P-value < 0.05 
and an ICC ≥ 0.9 were screened for the next step of the 
analysis. Then, R software (version 4.0.6) was used to 
perform least absolute shrinkage and selection operator 
(LASSO) regression to identify features related to pCR, 
and the optimal parameter (λ) was chosen by five-fold 
cross-validation. In the process of selecting features, 
LASSO regression incorporates L1 regularization, which 
utilizes gradient optimization to fine-tune parameter 

Fig. 2  Flowchart of patient enrollment
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coefficients, thereby balancing their relative weights and 
mitigating the issues of overfitting and collinearity. Due 
to the imbalance of our dataset, we also utilized the syn-
thetic minority oversampling technique (SMOTE) in our 
analysis to balance the number of patients with non-pCR 
against pCR [22].

Construction and evaluation of the radiomics signature, 
hematology model, and combined nomogram
First, a radiomics signature and a hematology model 
were developed using the LASSO method. Calculated 
the radiomics score (radScore) and hematology score 
(hemScore) for each patient by linearly combining the 
coefficient weighting of the selected features. Second, 
the univariate and multivariate analyses were utilized to 
screen out prognostic variables with P values < 0.05 for 
clinicopathological factors. Finally, by merging the rad-
Score, hemScore, and clinicopathological independent 
factors, a combined nomogram model was constructed. 
The receiver operating characteristic (ROC) curve was 
utilized to estimate the precision of the combined nomo-
gram, and the consistency of the combined nomogram 
was verified using a calibration curve. Decision curve 
analysis (DCA) was utilized to fully estimate and distin-
guish the clinical net benefit rates of the three models.

Statistical analysis
To assess the differences in clinical characteristics among 
non-pCR and pCR patients, continuous variables were 
examined utilizing the Student’s t-test, while categorical 
variables were examined utilizing the chi-square test or 
Fisher’s exact test. The model’s ability for predicting was 
estimated utilizing the area under the ROC curve (AUC) 
and DeLong test. The calibration curve was utilized to 
fully estimate the consistency of the model, and DCA was 
utilized to compare and estimate the clinical net benefit 
rates of the three models. Whether the predicted results 
of the combined nomogram fit the actual situation was 
determined using the Hosmer–Lemeshow test. All the 
statistical analyses and graphical plots were generated 
utilizing R software (version 4.0.6). A P-value < 0.05 is 
defined as having statistical differences.

Results
Patient characteristics
The baseline clinicopathological characteristics of the 
164 eligible ESCC patients were displayed in Table 1. The 
results revealed significant differences among non-pCR 
patients and pCR patients in tumor length (P = 0.025), cN 
stage(P = 0.040), and age (P = 0.041).

Construction and validation of radiomics signature
From every ROI, we extracted 1046 radiomics features. 
8 optimal radiomics features (Table  2) related to pCR 
were identified through LASSO regression, and a radi-
omics signature was constructed to predict whether 
patients would achieve pCR after treatment. LASSO 
dimensionality reduction and the corresponding 
cross-validation procedures in radiomics are shown in 

Table 1  Clinicopathological characteristics of the patients

Note. pCR pathological complete response, cT clinical T category, cN clinical 
N category, cTNM clinical TNM category, KPS Karnofsky performance status, 
* represented statistical significance

Characteristic pCR non-pCR p-value
(n = 50) (n = 114)

Sex, n. (%) 0.151

  Female 10 (20.0) 13 (11.4)

  Male 40 (80.0) 101 (88.6)

Age, n. (%) 0.041*

   ≤ 60 15 (30.0) 54 (47.4)

   > 60 35 (70.0) 60 (52.6)

cT stage, n. (%) 0.691

  2 5 (10.0) 7 (6.1)

  3 41 (82.0) 97 (85.1)

  4 4 (8.0) 10 (8.8)

cN stage, n. (%) 0.040*

  0 4 (8.0) 28 (24.6)

  1 33 (66.0) 60 (52.6)

  2 13 (26.0) 26 (22.8)

cTNM stage, n. (%) 0.224

  II 8 (16.0) 32 (28.1)

  III 38 (76.0) 72 (63.2)

  IV 4 (8.0) 10 (8.8)

KPS score, n. (%) 0.463

  80 33 (66.0) 82 (71.9)

  90 17 (34.0) 32 (28.1)

Smoking history, n. (%) 1.000

  No 23 (46.0) 51 (44.7)

  Yes 27 (54.0) 63 (55.3)

Drinking history, n. (%) 0.614

  No 21 (42.0) 53 (46.5)

  Yes 29 (58.0) 61 (53.5)

Tumor location, n. (%) 0.852

  Lower 31 (62.0) 70 (61.4)

  Middle 17 (34.0) 36 (31.6)

  Upper 2 (4.0) 8 (7.0)

Tumor differentiation, n. (%) 0.576

  High 6 (12.0) 8 (7.0)

  Low 18 (36.0) 42 (36.8)

  Middle 26 (52.0) 64 (56.1)

Tumor length, mean (SD) 4.5 (1.3) 5.1 (1.4) 0.025*
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Fig. S1. The radScore was calculated with the following 
formula:

Xi1 is the radiomics feature determined through 
LASSO regression, βi1 is the regression coefficient of Xi1 , 
and Z1 is a constant term.

A threshold of -0.151 was determined by the Youden 
index to differentiate among cohorts with non-pCR 
versus PCR (Fig.  3A). In terms of the actual classifica-
tion, there was a difference in statistics in the radScore 
among cohorts with non-pCR versus pCR (P < 0.001) 

radScore =

n

i=1

Xi1βi1 + Z1

Table 2  LASSO regression selected radiomics feature linked to 
pCR

Radiomics features Coefcients

log.sigma.4.0.mm.3D_firstorder_Median 0.002644

log.sigma.4.0.mm.3D_glrlm_LowGrayLevelRunEmphasis 1.064868

log.sigma.4.0.mm.3D_glszm_GrayLevelVariance -0.00517

wavelet.LHH_firstorder_Skewness -0.42175

wavelet.LHH_glcm_Imc2 -15.2844

wavelet.HLL_glcm_InverseVariance 3.030031

wavelet.HLH_glrlm_RunVariance 1.097568

wavelet.LLL_glcm_ClusterShade -0.00371

Fig. 3  Radiomics signature and hematology model predictive performance. A: Radiomics signature value bar plot for every ESCC patient. 
The optimal threshold value for distinguishing among cohorts with non-pCR versus pCR is -0.151. B: Comparison of radScore among non-pCR 
versus pCR cohorts (P < 0.001). C: Hematology model value bar plot for every ESCC patient. The optimal threshold value for distinguishing 
among cohorts with non-pCR versus pCR is -0.933. D: Comparison of hemScore among non-pCR versus pCR cohorts (P < 0.001). The green color 
in the figure represents non-pCR patients, while the blue color represents pCR patients
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(Fig.  3B). The pCR of patients can be reliably predicted 
by the radiomics signature, and the AUC reached 0.884 
(95% CI: 0.841–0.927) for balanced data with SMOTE 
and 0.874 (95% CI: 0.819–0.928) for actual data (Fig. S2). 
The P value of the DeLong test between the two cohorts 
was 0.772, indicating no significant difference. Then, we 
used actual data to calculate the radScore and included it 
in subsequent analyses.

Construction and validation of hematology model
We identified 29 hematology indicators as potential influ-
encing factors for predicting the acquisition of a pCR 
after nICT. LASSO regression revealed that lymphocyte 
count (LYM), high-density lipoprotein (HDL), albumin 
(ALB), and neutrophil-to-lymphocyte ratio (NLR) had 
a bearing on pCR, and a hematology model was con-
structed (Fig. S3, Table S2). The hemScore was calculated 
with the following formula:

Xi2 is the hematology factor identified by LASSO 
regression, βi2 is the regression coefficient of Xi2 , and Z2 
is a constant term.

The hematology model’s AUC could reach 0.772 (95% 
CI: 0.699–0.845) Fig.  3 (Fig.  4A), which showed that 
hematological factors could effectively predict whether 
ESCC patients can achieve pCR after receiving nICT. 
The Youden index determined that -0.933 was the opti-
mal threshold in the hematology model for differentiat-
ing among cohorts with non-pCR versus pCR (Fig. 3C). 
According to the actual classification, hemScores were 
significantly different among cohorts with non-pCR ver-
sus pCR (P < 0.001) (Fig. 3D).

Construction and validation of the combined nomogram
We used univariate and multivariate analyses to analyze 
all clinicopathological factors to identify variables that 
were independently related to pCR (Table  3). Age, cN 
stage, tumor length, radScore, and hemScore were inde-
pendent factors of pCR according to univariate analy-
sis (P < 0.05); cN stage (cN0 was the reference quantity; 
cN1: P = 0.030; cN2: P = 0.012), radScore (P < 0.001), 
hemScore (P < 0.001), and tumor length (P = 0.028) had 
independent influences on pCR according to multivari-
ate analysis. Therefore, we combined the above factors 
to construct a combined nomogram to predict whether 
ESCC patients could achieve pCR after nICT (Fig.  4B), 
which was also a demonstration of the results of multi-
variate analysis. Compared with those of the hematology 
model (AUC = 0.772, 95% CI: 0.699–0.845) and radiom-
ics signature (AUC = 0.874, 95% CI: 0.819–0.928), the 

hemScore =

n∑

i=1

Xi2βi2 + Z2

combined nomogram’s AUC reached 0.934 (95% CI: 
0.896–0.972), indicating a better ability for prediction 
(Fig. 4A). The DeLong test results demonstrated a differ-
ence in statistics in the diagnostic efficacy between the 
nomogram and the hematology model (P < 0.001) and 
the radiomics signature (P = 0.006), while there was also 
a statistical difference between radiomics and hematol-
ogy models in diagnostic efficacy (P = 0.025). We evalu-
ated the consistency of the combined nomogram model 
through a calibration curve (Fig.  4C) and the results of 
the Hosmer–Lemeshow test indicated a high degree of 
fit between the nomogram’s actual and predicted date 
(P > 0.05). We also evaluated the clinical net benefit rates 
of the three models through DCA (Fig. 4D). The results 
showed that both the single and combined nomogram 
models could provide clinical benefits for patients within 
a certain risk threshold. In addition, when the combined 
nomogram model is used to guide clinical practice, it 
provides a greater clinical advantage to ESCC patients 
than the other models over a wide range of risks.

Discussion
For locally advanced ESCC patients, when nCRT is com-
bined with esophagectomy as the standard therapy, it is 
difficult to achieve a precise range during the treatment 
process, which inevitably causes radiation toxicity to sur-
rounding tissues and organs, as well as an increased risk 
of complications such as esophageal fistula or death dur-
ing the perioperative period. In this situation, nICT pro-
vides a novel possibility for the therapy of ESCC patients. 
According to the meta-analysis by Wang et  al. [23], the 
security and effectiveness of nICT in treating esophageal 
cancer after surgery demonstrated that nICT in ESCC 
patients is safe and effective. The efficacy of nICT and 
nCRT can be maintained at the same level, while the 
safety of nICT is better than that of nCRT. The results of 
this research indicate that for ESCC patients, nICT may 
be the best choice for the current type of neoadjuvant 
therapy. In addition, a recent study showed that add-
ing radiotherapy to immunochemotherapy can increase 
the incidence of grade 3–4 adverse effects compared to 
nICT (46.7% vs. 32.8%, P = 0.04), and the rate of pCR has 
not significantly improved, indicating that adding radio-
therapy to nICT can significantly increase the risk of seri-
ous adverse events [24]. Therefore, nICT is still the most 
widely used treatment in clinical trials. However, there 
are significant differences in whether different patients 
can achieve pCR after nICT, thus making accurate strati-
fication essential for the choice of therapy. In our study, 
we constructed a combined nomogram model that 
includes the radScore obtained from CT-based radiomics 
features, the hemScore from baseline hematological fac-
tors, and relevant clinicopathological factors. This model 
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potentially identifies patients who will benefit from nICT 
and provides guidance or reference for individualized 
treatment.

In our study, the majority of patients used camreli-
zumab and sintilimab as immunotherapy drugs (97%). 
Although they are still in clinical trials for nICT in ESCC, 
they have been approved in China as immunotherapy 
drugs for advanced or metastatic ESCC. The chemother-
apy combined with sintilimab or camrelizumab for ESCC 
has been approved as the therapeutic schedule of first-
line, another thing to watch out for is that camrelizumab 

monotherapy has been approved as the therapeutic 
option for second-line [25–27]. According to current 
clinical trial results, camrelizumab and sintilimab as 
PD-1 inhibitors for nICT can achieve a pCR of 30%-50%, 
which is similar in efficacy to the PD-1 inhibitors recom-
mended in the NCCN guidelines, indicating that the use 
of camrelizumab and sintilimab as PD-1 inhibitors for 
nICT, is supported by clinical trial evidence [10, 28, 29].

Radiomics  as a hot technology has been shown to 
have satisfactory results in predicting patient treat-
ment responses through numerous studies. Yang et  al. 

Fig. 4  Comparison of predictive performance of the combined nomogram, radiomics signature, and hematology model. A: Receiver operating 
characteristic curves of the combined nomogram, radiomics signature, and hematology model. B: Nomogram based on independent 
predictors (radScore, hemScore, cN stage, and tumor length). C: Calibration curves of the combined nomogram to estimate the consistency 
among the estimated pCR probability by the combined nomogram and the authentic pCR. The ideal situation is shown by the black dashed 
line, which acts as the reference line and shows when the predicted and actual values coincide; the actual situation of the nomogram is shown 
by the solid blue line, referred to as the apparent line; the bias-corrected line is shown by the solid green line, which shows the corrected 
nomogram’s actual situation. D: The models’ clinical benefits were assessed using decision curve analysis. The black horizontal line indicates 
that when all patients do not receive treatment, regardless of the probability threshold, there is no clinical net benefit. The gray diagonal represents 
the change in clinical net benefit as the probability threshold changes when all patients receive treatment
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[30] found that the AUC for predicting esophageal can-
cer pCR after nCRT based on CT radiomic signatures 
reached 0.79 (95% CI: 0.48–1.00) in the validation group. 
This indicates that radiomics provides more compre-
hensive information on intratumoral heterogeneity, can 
forecast the prognosis and effectiveness of patients and 
is expected to accurately guide the treatment of various 

solid cancers [31]. Liu et al. [32] utilized CT images for 
constructing and verifying a clinical-radiomics model 
for predicting a major pathologic response after nICT 
in non-small cell lung cancer (AUC = 0.81, 95% CI: 
0.63–0.98). And beyond that, Liang et al. [33] generated 
an individual radiomics nomogram that included clin-
icopathological independent variables and radiomics 

Table 3  Univariate and multivariate analyses of variables linked to pCR with ESCC patients

Note. cT clinical T category, cN clinical N category, cTNM clinical TNM category, KPS Karnofsky performance status, * represented statistical significance

Univariate analysis Multivariate analysis

Variable P-value OR (95%CI) P-value OR (95%CI)

Sex - -

  Female ref ref

  Male 0.149 0.515(0.209,1.269)

Age

   ≤ 60 ref ref ref ref

   > 60 0.040* 2.100(1.035,4.262) 0.395 1.602(0.544,4.886)

cT stage - -

  2 ref ref

  3 0.393 0.592(0.177,1.973)

  4 0.486 0.560(0.105,2.986)

cN stage

  0 ref ref ref ref

  1 0.019* 3.850(1.243,11.924) 0.030* 6.014(1.319,34.673)

  2 0.048* 3.500(0.036,341.623) 0.012* 9.857(1.810,67.312)

cTNM stage - -

  II ref ref

  III 0.092 2.111(0.886,5.033)

  IV 0.509 1.600(0.059,43.564)

KPS score - -

  80 ref ref

  90 0.446 1.320(0.647,2.695)

Tumor differentiation - -

  High ref ref

  Low 0.358 0.571(0.173,1.886)

  Middle 0.297 0.542(0.089,3.279)

Tumor location - -

  Lower ref ref

  Middle 0.800 1.097(0.535,2.247)

  Upper 0.485 0.565(0.118–2.712)

Smoking history - -

  No ref ref

  Yes 0.881 0.950(0.487,1.853)

Drinking history - -

  No ref ref

  Yes 0.595 1.200(0.613,2.348)

Tumor length 0.032* 0.757(0.587,0.976) 0.028* 0.619(0.395,0.935)

radScore  < 0.001* 17.674(6.678,46.779)  < 0.001* 23.555(7.983,92.744)

hemScore  < 0.001* 5.709(2.853,11.426)  < 0.001* 7.406(3.090,21.206)
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features for predicting the response after PD-1 therapy 
in gastric cancer patients. The nomogram’s AUC reached 
0.778 (95% CI: 0.732–0.776), which was superior to that 
of the radiomics-only. Their findings demonstrate the 
value of radiomics for making treatment-related deci-
sions for patients, especially with a more satisfactory 
predictive performance after incorporating the patient’s 
clinicopathologic factors. Although radiomics is widely 
used in various medical fields, it is still in a state of con-
tinuous exploration. Due to the limited scope of segmen-
tation, it cannot reflect the systemic states of patients. 
Therefore, our study included hematological factors, 
which are traditional and easily accessible, to more com-
prehensively reflect the actual condition of patients and 
to improve the predictability of patients who are sensitive 
to nICT. According to these results, the combined nom-
ogram model with the inclusion of the hemScore had 
superior performance for predicting (AUC = 0.934, 95% 
CI: 0.896–0.972) in contrast with the radiomics signa-
ture, which proves that it is highly important to include 
hematology factors and that it provides plentiful patient 
information compared to primary clinicopathological 
factors.

In this study, we included 29 hematological factors and 
ultimately identified four factors to establish a hemato-
logical model, namely, LYM, ALB, HDL, and NLR, which 
have been reported in previous tumor immunotherapy 
studies. Research by Valero et  al. [34] reported that the 
NLR with a high level is related to a reduced chance of 
immunotherapy response and a worse prognosis, sug-
gesting a prognostic and predictive value of the NLR in 
immune checkpoint inhibitor (ICI) therapy. This may 
be due to the association of neutrophils with the tumor 
microenvironment. Some studies have reported that neu-
trophils are related to tumorigenesis, progression, and 
early dissemination [35, 36]. In contrast, lymphocytes, 
especially CD8 + T cells, play a vital function in antitu-
mor response by causing the death of cytotoxic cells and 
preventing the migration and development of tumor cells 
[37, 38]. A decrease in the LYM may lead to inactivation 
of the tumor immune response, causing tumor progres-
sion and ultimately resulting in a poor prognosis [39]. A 
typical biomarker used to assess patients’ nutritional sta-
tus is the serum ALB level [40], which can indicate the 
inflammatory and immune conditions of patients. The 
results of Wu et al. [41] reported that patients with high 
serum ALB concentrations before immunotherapy had 
better survival. Perrone et al. [42] investigated the prog-
nostic effects of factors linked to cholesterol on cancer 
patients, and their analysis showed that cholesterol pas-
sive diffusion (PD) levels were the only significant pro-
tective parameter for OS and PFS (P < 0.001, HR: 0.81). 
According to the authors, more mature HDL particles 

may be responsible for creating an inflammatory immu-
nological environment that supports a better response 
to ICIs, which may explain the favorable correlations of 
cholesterol PD with OS and PFS. These studies show that 
the characteristics included in our hematology model 
are associated with the advancement and occurrence of 
cancers, as well as the response and prognosis of patients 
to treatment. Therefore, our hematology model based 
on these factors could be an accurate and a trustworthy 
reflection of the systemic condition of the patient. We 
also calculated the hemScore of the model and integrated 
it with the radScore, which reflects the patient’s primary 
tumor status, to plot the combined nomogram associated 
with the patient’s pCR, thus achieving a more accurate 
prediction of patient treatment response and provid-
ing trustworthy reference and guidance for individual-
ized treatment of patients. Our study considered the 
clinical practicality evaluation of the model and plotted 
a DCA. The findings indicated that the combined nomo-
gram model could provide potential clinical benefits for 
patients compared to any single model.

Several limitations of our study still exist. First, we did 
not explore the mechanism of pCR differences in ESCC 
patients after nICT. Second, because this study was ret-
rospective, it is difficult to ensure the stability and con-
sistency of the CT scanning parameters and image 
quality. Therefore, this study collected information only 
from non-contrast CT images to avoid differences in the 
development time and dose of contrast agents. Third, 
more than 30% of patients lacked some important tumor 
markers for ESCC, such as CA-199 and SCC. Therefore, 
these factors were not considered hematological factors. 
Finally, due to our small sample size, we did not further 
validate the model. In the future, our findings require 
independent verification with a larger number of samples 
to validate the applicability of the model as an effective 
auxiliary treatment decision-making tool.

Conclusions
A combined nomogram model based on CT, hematologi-
cal factors, and clinicopathological characteristics before 
treatment can effectively predict whether ESCC patients 
will achieve pCR after nICT, thus identifying patients 
who are sensitive to nICT and providing assistance for 
deciding on clinical therapy.
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