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Abstract
Background Gastric cancer (GC) lacks serum biomarkers with clinical diagnostic value. Multi-omics analysis is an 
important approach to discovering cancer biomarkers. This study aimed to identify and validate serum biomarkers for 
GC diagnosis by cross-analysis of proteomics and transcriptomics datasets.

Methods A cross-omics analysis was performed to identify overlapping differentially expressed genes (DEGs) 
between our previous aptamer-based GC serum proteomics dataset and the GC tissue RNA-Seq dataset in The Cancer 
Genome Atlas (TCGA) database, followed by lasso regression and random forest analysis to select key overlapping 
DEGs as candidate biomarkers for GC. The mRNA levels and diagnostic performance of these candidate biomarkers 
were analyzed in the original and independent GC datasets to select valuable candidate biomarkers. The valuable 
candidate biomarkers were subjected to bioinformatics analysis to select those closely associated with the biological 
behaviors of GC as potential biomarkers. The clinical diagnostic value of the potential biomarkers was validated using 
serum samples, and their expression levels and functions in GC cells were validated using in vitro cell experiments.

Results Four candidate biomarkers (ILF2, PGM2L1, CHD7, and JCHAIN) were selected. Their mRNA levels differed 
significantly between tumor and normal tissues and showed different diagnostic performances for GC, with areas 
under the receiver operating characteristic curve (AUROCs) of 0.629–0.950 in the TCGA dataset and 0.736–0.840 in 
the Gene Expression Omnibus (GEO) dataset. In the bioinformatics analysis, only ILF2 (interleukin enhancer-binding 
factor 2) gene levels were associated with immune cell infiltration, some checkpoint gene expression, chemotherapy 
sensitivity, and immunotherapy response. Serum levels of ILF2 were higher in GC patients than in controls, with an 
AUROC of 0.944 for the diagnosis of GC, and it was also detected in the supernatants of GC cells. Knockdown of ILF2 
by siRNA significantly reduced the proliferation and colony formation of GC cells. Overexpression of ILF2 significantly 
promotes the proliferation and colony formation of gastric cancer cells.
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Introduction
Gastric cancer (GC) is the fifth most common cancer and 
the fourth leading cause of cancer-related deaths glob-
ally, posing a major threat to public health [1].. Many GC 
patients present with nonspecific symptoms, resulting 
in diagnosis at an advanced stage and, consequently, an 
unfavorable prognosis.

GC lacks useful serum biomarkers for clinical diag-
nosis. Traditional serum biomarkers, such as carcino-
embryonic antigen (CEA), carbohydrate antigen 19 − 9 
(CA19-9), carbohydrate antigen 72 − 4 (CA72-4), and 
carbohydrate antigen 125 (CA125), provide minimal 
diagnostic value for GC [2, 3]. Over the past few decades, 
several circulating biomarkers that indicate the pres-
ence of GC have been documented, including gastrin-17 
(G-17), pepsinogens (PGs), anti-Helicobacter pylori IgG 
antibodies [4], trefoil factor 3 (TFF3) [5], and metabolic 
markers such as 3-hydroxypropionic acid [6]. In recent 
years, this category has been expanded to include cir-
culating tumor cells (CTCs) [7], circulating tumor DNA 
(ctDNA) [8], and non-coding RNAs (miRNA, lncRNA, 
and circRNA) [9, 10]. However, the utilization of these 
biomarkers in clinical settings has been hindered by 
inadequate diagnostic efficacy and technical complexity. 
Therefore, it is crucial to discover new serum biomarkers 
for GC diagnosis.

The combined analysis of proteomics and transcrip-
tomics, a multi-omics approach, holds significant poten-
tial in discovering cancer biomarkers [11, 12]. Proteins, 
as the primary executors of cellular functions, directly 
reflect changes in cellular states and biological pro-
cesses, while gene transcription levels offer insights into 
the potential regulatory mechanisms underlying pro-
tein expression. By integrating data from these two lay-
ers, researchers can more precisely identify differentially 
expressed proteins and genes associated with tumori-
genesis. This approach facilitates the discovery of novel 
cancer biomarkers, providing a more solid foundation for 
early diagnosis, prognostic assessment, and treatment 
selection [13, 14].

In recent years, cancer immunotherapy has emerged 
as an innovative and promising approach to cancer treat-
ment and has made remarkable advancements [15]. The 
integration of bioinformatics analysis with publicly avail-
able databases has been particularly effective in identi-
fying potential targets for immunotherapy [16, 17]. The 
application of multi-omics methods, which combine 
data from various biological levels, has facilitated the 

discovery of novel targets that can significantly improve 
the survival rates of GC patients. The exploration of 
immunotherapy targets through bioinformatics and 
multi-omics approaches holds great promise for improv-
ing outcomes in GC and other cancers.

In our previous aptamer-based proteomics study on 
GC serum, we identified 236 proteins that were differen-
tially expressed in GC serum compared to healthy con-
trols. In the current study, we aimed to further refine this 
set of proteins and identify those with diagnostic poten-
tial for GC. We selected the differentially expressed GC 
serum proteins that were differentially expressed at the 
transcriptional level in The Cancer Genome Atlas-Stom-
ach Adenocarcinoma (TCGA-STAD) dataset, followed 
by lasso regression and random forest analysis to identify 
key biomarkers. The key biomarkers were independently 
evaluated for their diagnostic value in GC and bioinfor-
matically analyzed for their associations with various 
biological behaviors of GC to identify potential serum 
biomarkers, and the latter were finally validated for their 
clinical diagnostic value in serum samples and their bio-
logical functions in vitro cellular experiments.

Methods
Data collection and processing
The differentially expressed serum proteins in our previ-
ous aptamer-based GC serum proteomics dataset were 
identified and their corresponding genes were searched 
in the UniProt database (https://www.uniprot.org/). In 
the TCGA online database (https://portal.gdc.cancer.
gov/), mRNA expression data (in transcripts per million) 
and clinical information were extracted from the STAD 
dataset (375 tumor tissue samples and 32 normal gastric 
tissue samples). Differentially expressed genes (DEGs) 
were identified using the filter criteria of fold change > 1.3 
and false discovery rate < 0.05. A cross-analysis between 
the DEGs in the TCGA-STAD dataset and the genes cor-
responding to the differentially expressed serum proteins 
in the GC proteomics dataset was performed to deter-
mine overlapping DEGs.

Trans-omics analysis to identify candidate biomarkers of 
gastric cancer
Least absolute shrinkage and selection operator (LASSO) 
regression and random forest (RF) algorithms were used 
to identify key genes from the overlapping DEGs, and the 
key genes that overlapped in the results of the two algo-
rithms were designated as candidate biomarkers of GC. 

Conclusions Trans-omics analysis of proteomics and transcriptomics is an efficient approach for discovering serum 
biomarkers, and ILF2 is a potential diagnostic biomarker and therapeutic target of gastric cancer.
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The optimal α (λ) value (a parameter that controls feature 
selection) for LASSO regression was selected by 10-fold 
cross-validation [18]. For random forest, the decision tree 
with the lowest out-of-bag (OOB) error rate was selected 
to evaluate feature importance using the mean decrease 
gini parameter, and features with the parameter > 2 were 
selected as key genes [19].

Internal and external validation
The candidate biomarkers were validated internally using 
the TCGA-STAD dataset and externally using the Gene 
Expression Omnibus (GEO) datasets at the mRNA level. 
Three GEO Series (GSE) datasets were downloaded for 
external validation: GSE27342 (normal samples: 80; 
tumor samples: 80), GSE54129 (normal samples: 21; 
tumor samples: 111), and GSE66229 (normal samples: 
100; tumor samples: 300). Batch correction was per-
formed on the three datasets using the “affy” package in 
the R software. Following dimension reduction through 
principal component analysis (PCA), a merged GSE data-
set containing 201 normal samples and 491 tumor sam-
ples was created for external validation.

Evaluation of the diagnostic value of candidate biomarkers 
for GC
The diagnostic performance of the mRNA levels of the 
potential biomarkers for GC was assessed in both the 
TCGA-STAD dataset and the merged GSE dataset using 
the area under the receiver operating characteristic curve 
(AUROC) as a metric.

Potential biomarkers expression and tumor immune 
infiltration
To examine the differences in immune cell infiltration 
between the high and low mRNA levels of the potential 
biomarkers in GC tissues, we employed Cell-type Iden-
tification by Estimating Relative Subsets of RNA Tran-
scripts (CIBERSORT) [20]. This tool analyzes immune 
cell infiltration by assessing gene expression data [21]. 
We compared the transcriptional levels of genes associ-
ated with immune checkpoints between the high and 
low mRNA level groups of these potential biomark-
ers [22, 23], including TIGIT (T-cell immunoglobu-
lin and ITIM domain), SIGLEC15 (Sialic acid-binding 
immunoglobulin-like lectin 15), HAVCR2 (T-cell immu-
noglobulin and mucin domain-containing protein 3), 
CD274 (Cluster of Differentiation 274, also known as 
PD-L1), PDCD1 (Programmed cell death protein 1, also 
known as PD-1), LAG3 (Lymphocyte-activation gene 3), 
CTLA4 (Cytotoxic T-lymphocyte-associated antigen 4), 
and PDCD1LG2 (Programmed cell death 1 ligand 2, also 
known as PD-L2).

Sensitivity to chemotherapy and immunotherapy 
outcomes based on potential biomarkers expression levels
Data from The Cancer Immunome Atlas (TCIA) data-
base (https://www.tcia.at/home) [24, 25] were used to 
predict the impact of mRNA levels of potential biomark-
ers on the response to immunotherapy with CTLA4 and 
PD-1 inhibitors. The Cancer Drug Sensitivity Genomics 
(GDSC) database (www.cancerRxgene.org) [26, 27] was 
used to investigate variations in chemotherapy sensitiv-
ity based on high and low mRNA levels of these potential 
biomarkers.

ELISA validation
To confirm the diagnostic significance of potential bio-
markers, we obtained serum samples from 30 individu-
als diagnosed with GC and 22 healthy individuals as 
controls. Serum levels of ILF2 were measured using a 
commercially available enzyme-linked immunosorbent 
assay (ELISA) kit (SAB, USA) according to the manufac-
turer’s instructions. Briefly, 100 μL of serum diluted 1:50 
was incubated with capture antibodies at 37  °C for 2  h. 
After removal of the liquid, 100 μL of biotinylated anti-
body was added and incubated for one hour. After wash-
ing three times, streptavidin-HRP conjugate was added 
and incubated for 1  h. The liquid was then discarded, 
the wells were washed five times, and tetramethyl ben-
zidine (TMB) substrate was added and incubated for 
15 min in the dark. After stopping the reaction, the opti-
cal density (OD) values were measured at 450 nm using 
a JS-THERMO Varioskan Flash (Thermo Fisher Scien-
tific, USA). A standard curve was simultaneously gener-
ated and used to determine serum concentrations of the 
potential biomarkers. The AUROC was used to evaluate 
the diagnostic value of the potential biomarker.

In addition, the culture supernatants of BGC-823 and 
GES-1 cells were collected at 24, 48, and 72 h of culture 
(3000 cells per well) and the levels of potential biomark-
ers were determined as described above.

RT-qPCR
RT-qPCR was utilized to detect the mRNA expression 
levels of potential biomarkers in the four types of GC 
cells and the control GES-1 cells. Cells were harvested 
at their logarithmic growth phase, and total RNA was 
extracted using a commercial kit provided by Yeasen 
(China). RNA quantification was performed using Nano-
drop 2000 (Thermo Fisher Scientific, USA). Reverse tran-
scription and quantitative PCR amplification of the target 
genes were performed using Yeasen (China) kits. PCR 
amplification primers were designed and synthesized by 
Sangon Biotech Co., Ltd. (Shanghai, China).

https://www.tcia.at/home
http://www.cancerRxgene.org
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Plasmid extraction
The DH-5α glycerol bacteria harboring the overexpressed 
plasmid were provided by Shanghai Genechem Co., Ltd 
(China). After carefully homogenizing the bacterial sus-
pension, we diluted it by 100, 1000, and 10,000, respec-
tively, and spread the dilutions onto an LB solid culture 
plates containing ampicillin. The plates were incubated at 
37℃ for 12–16 h. Following incubation, individual colo-
nies were carefully selected and inoculated into LB liquid 
medium containing ampicillin. These cultures were incu-
bated with shaking at 37℃ and 220 rpm for 12–16 h to 
amplify bacterial growth. Finally, plasmid extraction was 
performed using a kit from TIANGEN Biotech(Beijing)
Co., Ltd (China).

Cell culture and transfection
Human gastric cancer cell lines (AGS, MKN45, and 
HGC27) and normal gastric mucosal epithelial cell line 
(GES1) were purchased from the Cell Bank of the Chi-
nese Academy of Sciences. The human gastric cancer cell 
line BGC823 was purchased from Shanghai FuHeng Biol-
ogy Co., Ltd. (China). These cells were routinely cultured 
at 37  °C with 5% CO2. The cell lines GES-1, HGC27, 
MKN45, and BGC823 were cultured in RPMI-1640 
medium with 10% fetal bovine serum (GIBCO USA), 
while AGS cells were cultured in DMEM-F12 medium 
with 10% fetal bovine serum.

To regulate the mRNA expression of potential bio-
markers in GC cells, we used small interfering RNA 
(siRNA) for downregulation and overexpression plasmid 
for upregulation. GC cells were seeded in cell plates and 
cultured to 40% confluence. The siRNA sequences and 
over-expressed plasmids targeting the potential biomark-
ers were transfected using LIPO3000 reagent (Invitrogen, 
USA). Following transfection, the cells were incubated 
for 24–72 h for mRNA level analysis of the potential bio-
markers. The siRNA sequences were designed and syn-
thesized by a company (Genepharma, China).

Cell counting Kit-8
After a 24-hour transfection period, the cells underwent 
trypsin digestion and were resuspended in a complete 
culture medium to achieve a concentration of 2 × 10^4 
cells/ml. Subsequently, 100 μl aliquots of this cell suspen-
sion were dispensed into a 96-well plate and incubated 
under standard cell culture conditions. At specific time 
intervals (0, 24, 48, 72, and 96 h), 10 μl of Cell Counting 
Kit-8 (CCK-8) reagent (GLPBIO, USA) was added to each 
well, followed by 2  h of incubation in the dark. Finally, 
the optical density (OD) was measured at 450 nm using 
a microplate reader (Thermo Fisher Scientific, USA) and 
utilized to construct cell proliferation curves.

Cell clone formation
After a 24-hours transfection period, the cells were 
detached using trypsin and diluted to achieve a density of 
700 cells/ml. Subsequently, 2 ml aliquots of the cell sus-
pension were dispensed into each well of a 6-well plate, 
and the cultures were maintained with regular medium 
changes every three days. The incubation period lasted 
for 14 days or until the majority of individual cell clones 
exceeded 50 cells. Once the culturing was terminated, 
the cells were washed with PBS, fixed with 4% parafor-
maldehyde for 30  min, stained with crystal violet for 
10–20  min, and finally rinsed thoroughly with PBS and 
dried naturally.

Statistical analysis
The statistical analysis was carried out using R soft-
ware (version 4.2.2) and GraphPad Prism 8.0 software. 
Continuous variables are presented as Mean ± standard 
deviation. For comparisons between groups, t-tests were 
utilized when the data followed a normal distribution. 
Wilcoxon rank-sum tests were employed for data that did 
not adhere to a normal distribution. P < 0.05 was statisti-
cal significance.

Results
Candidate biomarkers identified by trans-omics analysis
In our previous proteomic dataset utilizing aptamers, 
we identified 236 differentially expressed serum pro-
teins specific to GC (Supplementary Table 1). Their cor-
responding genes were found in the UniProt database. 
Analysis of the TCGA-STAD transcriptomic dataset 
uncovered 10,637 differentially expressed genes (Sup-
plementary Fig.  1). There were 119 overlapping DEGs 
between the two datasets (Supplementary Table 2, Sup-
plementary Fig. 2).

To identify key DEGs, we employed LASSO regres-
sion and random forest analyses on the overlapping DEG 
set. The LASSO regression with λ = 0.002 selected 22 
key DEGs (Fig.  1A, B). The random forest analysis pin-
pointed the 24th decision tree with the lowest OOB error 
rate of 0.0172 for GC vs. normal sample classification, in 
which six genes had importance scores > 2, as evaluated 
by Gini importance (Fig. 1C, D). The LASSO regression 
and random forest selection identified four DEGs that 
overlapped, namely interleukin enhancer-binding factor 
2 (ILF2), immunoglobulin J chain (JCHAIN), chromo-
domain helicase DNA-binding protein 7 (CHD7), and 
phosphoglucomutase-2-like 1 (PGM2L1) (Fig. 1E), which 
were designated as candidate biomarkers for GC.

Validation of candidate biomarker expression
In the TCGA-STAD dataset used for internal validation, 
ILF2 (Interleukin enhancer-binding factor 2), CHD7 
(Chromodomain-helicase-DNA-binding protein 7), and 
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PGM2L1 (Glucose 1,6-bisphosphate synthase) demon-
strated significantly higher mRNA expression levels in 
GC than in control tissues, whereas JCHAIN (Immu-
noglobulin J chain) showed significantly lower mRNA 
expression levels (Fig.  2A). In the external validation 
using the merged GSE dataset, these candidate biomark-
ers showed the same trends in mRNA expression lev-
els and significant differences between GC tissues and 
adjacent normal tissues (Fig.  2B). Before analysis, the 
external validation datasets (GSE27342, GSE54129, and 
GSE66229) retrieved from the GEO database underwent 
standardization, resulting in consistent gene expression 
distributions (Supplementary Fig.  3A). Following batch-
effect correction, the differences among these datasets in 
the principal component space were significantly reduced 
(Supplementary Fig.  3B, C), indicating successful merg-
ing of the three GES datasets.

Diagnostic value of candidate biomarkers for GC
We assessed the diagnostic significance of mRNA lev-
els for the four potential biomarkers in GC using the 
receiver operating characteristic curve (ROC). In the 
TCGA-STAD dataset, the AUROCs for diagnosing 
GC with PGM2L1, ILF2, CHD7, and JCHAIN were 

0.950, 0.920, 0.919, and 0.629, respectively (Fig.  2C). 
In the external validation dataset (the merged GSE 
dataset), the AUROCs for PGM2L1, ILF2, CHD7, and 
JCHAIN in diagnosing GC were 0.820, 0.784, 0.745, and 
0.736, respectively (Fig.  2D). These results showed that 
PGM2L1, ILF2, and CHD7 (but not JCHAIN) all had 
AUROCs greater than 0.7 in both the datasets, highlight-
ing their diagnostic potential for GC and were therefore 
selected as valuable biomarkers for subsequent studies.

Associations of the valuable candidate biomarkers with 
tumor immunity
Using CIBERSORT analysis, we compared the immune 
cell infiltration status in GC tissues between high and low 
expression levels of each biomarker. The results showed 
that ILF2, CHD7, and PGM2L1 were significantly associ-
ated with 14, 11, and 2 of 22 types of infiltrating immune 
cells, respectively (Fig.  3A-C). From the transcriptome 
data in the TCGA-STAD dataset, we extracted expression 
levels of 8 immune checkpoint genes (TIGIT, HAVCR2, 
CD274, SIGLEC15, LAG3, PDCD1, PDCD1LG2, and 
CTLA4). Comparing differences in their expression 
between high and low levels of each biomarker, we found 
that ILF2 expression was significantly associated with 

Fig. 1 Identification of candidate biomarkers for gastric cancer. A, B: The selection of key overlapping differentially expressed genes (DEGs) by least ab-
solute shrinkage and selection operator (LASSO) regression analysis. C, D: The selection of key overlapping DEGs by random forest (RF) analysis. E: Venn 
diagram of key overlapping DEGs selected by LASSO regression and RF analysis
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CD274, CTLA4, and SIGLEC15; CHD7 was significantly 
associated with CD274; and PGM2L1 was significantly 
associated with SIGLEC15 (Fig.  4A-C). These findings 
suggest that, among the three biomarkers, ILF2 exhibits 
the strongest association with tumor immunity in GC, 
involving multiple immune checkpoint genes. Therefore, 

ILF2 was selected as a potential biomarker for subse-
quent studies.

Associations of ILF2 with immunotherapy and 
chemotherapy responses
We utilized the GDSC database to analyze the varia-
tions in response to standard chemotherapy drugs 

Fig. 2 Expression and diagnosis value of the four candidate biomarkers in gastric cancer and normal control tissues. * P < 0.05, ** P < 0.01, *** P < 0.001. 
A: STAD dataset from The Cancer Genome Atlas database; B: Merged datasets of GSE27342, GSE54129 and GSE66229 datasets from the Gene Expression 
Omnibus (GEO) database. C: STAD dataset from The Cancer Genome Atlas database; D: Merged dataset of GSE27342, GSE54129 and GSE66229 datasets 
from the Gene Expression Omnibus (GEO) database; AUC: area under the curve
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Fig. 3 Heatmaps of immune cell scores and comparisons between high and low biomarker expression groups. *P < 0.05, **P < 0.01, ***P < 0.001. A: ILF2; 
B: CHD7; C: PGM2L1
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(5-fluorouracil, paclitaxel, docetaxel, and cisplatin) [26] 
among gastric cancer patients with different levels of 
ILF2 expression. The findings indicate that the IC50s 
were lower in the high-level ILF2 group compared with 
the low-level ILF2 group. Hence, GC with increased 
ILF2 levels exhibits enhanced response to these drugs 
(Fig.  4D-G). Additionally, using the TCIA database, we 
calculated CTLA4- and PD-1-based immunophenotype 
scores (IPS) for GC patients and compared the response 
to anti-CTLA4 and anti-PD-1 immunotherapy between 
patients with high and low ILF2 expression levels. The 
results indicated that individuals with elevated ILF2 
levels exhibited significantly attenuated responses to 
CTLA4 and PD-1 inhibitors (Fig. 4H-K).

Clinical validation of the diagnostic significance of serum 
ILF2 levels in gastric cancer
Utilizing ELISA (its standard curve shown in Figure 5A), 
serum levels of ILF2 protein were measured and notably 

elevated in the GC group when compared to the con-
trol group (443.23 ± 303.29 ng/mL vs. 72.31 ± 45.18 ng/
mL, P < 0.0001) (Fig.  5, B). ILF2 levels were valuable for 
diagnosing GC with an AUROC of 0.944 (Fig.  5C). The 
baseline information of the patients is shown in Supple-
mentary Table S3.

Detection of ILF2 expression in the supernatant of gastric 
cancer cell culture
The presence of ILF2 protein was observed in the culture 
supernatants of BGC823 GC cells, and its concentration 
increased as the culture time progressed. However, it was 
not detected in the supernatants of GES-1 gastric epithe-
lial cells (Fig. 5D), indicating that gastric cancer cells can 
secret ILF2.

Expression levels of ILF2 in GC cells
The ILF2 mRNA expression was detected by RT-qPCR in 
four GC cell lines (AGS, MKN45, HGC27, and BGC823) 

Fig. 4 Bioinformatics analyses of ILF2 in gastric cancer. *P < 0.05, **P < 0.01, ***P < 0.001. A-C: Comparison of immune checkpoint-related gene expression 
levels between the high and low expression groups of biomarkers. D-G: Comparison of sensitivity to anticancer drugs between the high and low ILF2 
expression groups. H-K: Comparison of response to immunotherapy between the high and low ILF2 expression groups; IPS, the Immunophenoscore; 
POS, positive; NEG, negative
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Fig. 5 Clinical and functional validation of ILF2. A: The standard curve for the detection of ILF2 by enzyme-linked immunosorbent assay. B: Serum ILF2 
levels and comparison between gastric cancer and control group. C: The receiver operating characteristic curve of serum ILF2 levels for the diagnosis of 
gastric cancer. D: ILF2 levels in cell culture supernatants. E: Relative mRNA expression levels of ILF2 in different gastric cancer cell lines; F, G: The effect of 
siRNA-mediated ILF2 knockdown on mRNA expression in HGC-27 and AGS cells; H-J: Comparisons of HGC-27 cell proliferation between siRNA-mediated 
ILF2 knockdown and control groups. K: The effect of siRNA-mediated ILF2 knockdown on clone formation in AGS cells. AUC, Area Under Curve; CI, Con-
fidence Interval; OD, Optical Density
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and one control cell line (GES-1). The primer sequences 
used for the PCR amplification of ILF2 were 5’-  G G G G A 
A C A A A G T C G T G G A A A G-3’ (forward) and 5’-  C C A G T 
T T C G T T G G T C A G C A-3’ (reverse). The results indicated 
a significant upregulation of ILF2 mRNA expression in all 
four GC cell lines compared to the control (Fig. 5E).

Effect of ILF2 knockdown on GC cell growth
We knocked down ILF2 transcription using siRNAs in 
HGC27 and AGS cells. Three ILF2 mRNA-specific siRNA 
sequences (siILF2-1, siILF2-2, and siILF2-3) and one 
control sequence (siILF2-CONT) were employed in the 
knockdown experiments. Their nucleic acid sequences 
(sense) were as follows:

siILF2-1: 5’- G A U A G U A A C A C C U U C A G A A T T-3’.
siILF2-2: 5’- C U U U G U A C C A C A U A U C C C A T T-3’.
siILF2-3: 5’- G C U A C A G U G A A G A U U C U C A T T-3’.
siILF2-CONT: 5’- U U U C U C C G A A C G U G U C A C G U T 

T-3’.
The findings indicated that the siRNA depletion nota-

bly reduced the ILF2 mRNA levels (Fig.  5F, G). Among 
the three siRNAs, siILF2-2 exhibited the most effective 
knockdown. In CCK-8 experiments, there was a nota-
ble reduction in cell proliferation at 48, 72, and 96  h in 
HGC27 cells and 72 and 96  h in AGS cells transfected 
with siILF2-2 and siILF2-3 compared to the control 
(Fig.  5H-J). In clone formation experiments (Fig.  5K), 
the number of AGS cell clones with knocked-down ILF2 
decreased significantly.

Effect of ILF2 overexpression on the growth of gastric 
cancer cells
The ILF2 overexpression plasmid was designed by Shang-
hai Genechem Co., Ltd (China), and vector details are 
presented in Fig.  6A. The results indicated that ILF2 
overexpression significantly increased the level of ILF2 
mRNA, as demonstrated in Fig.  6B, C. In the CCK-8 
assay, BGC823 and MKN45 cells with overexpression of 
ILF2 exhibited significantly enhanced proliferative capac-
ity compared to the control group (Fig.  6D-E). Addi-
tionally, In the clone formation experiment (Fig.  6F), 
the number of MKN45 cell clones overexpressing ILF2 
increased significantly.

Discussion
Through the cross-analysis of our aptamer-based serum 
proteomic dataset and the TCGA-STAD tissue transcrip-
tomic dataset, we have discovered four candidate bio-
markers for GC: ILF2, JCHAIN, PGM2L1, and CHD7. 
Except for JCHAIN, all the candidate biomarkers proved 
useful in diagnosing GC in both the TCGA-STAD and 
the merged GSE dataset. Among the three candidate bio-
markers with significant value, ILF2 stood out as it exhib-
ited a strong correlation with the infiltration of immune 

cells and the expression of immune checkpoint genes in 
GC. As a result, ILF2 was selected as a promising diag-
nostic biomarker for GC. Subsequent studies showed 
that ILF2 was significantly associated with GC in terms of 
chemotherapy sensitivity and immunotherapy response. 
In the clinical validation study, ILF2 protein levels were 
significantly elevated in GC serum samples and exhibited 
good diagnostic performance for GC. In vitro experi-
ments demonstrated that GC cells exhibited elevated lev-
els of ILF2 expression and the ability to secrete ILF2. The 
suppression of ILF2 expression impeded the proliferation 
and clone formation of GC cells, while overexpression of 
ILF2 promoted these processes.

ILF2, also known as nuclear factor 45 (NF45), interacts 
with different partners to play a role in controlling gene 
expression at both the transcriptional and post-transcrip-
tional stages. By binding to the interleukin-2 enhancer, 
ILF2 promotes the transcription of interleukin-2 in acti-
vated T cells [28]. ILF2 can interact with lncRNA, a type 
of ribonucleic acid that does not code for proteins, to 
control the maturation of miRNA [29]. Additionally, ILF2 
can also interact with nuclear proteins like YB-1 to regu-
late the processes of RNA splicing and degradation [30].

ILF2 gene amplification and overexpression in different 
human cancers promote cellular processes such as cell 
growth, programmed cell death, and invasion [31]. ILF2 
is upregulated in several malignancies, including liver 
and lung cancer, where its high expression stimulates 
malignant phenotypes in liver cells [32, 33] and interacts 
with E2F transcription factor 1 (E2F1) to promote lung 
cancer progression [34]. The suppression of ILF2 expres-
sion leads to improved prognosis in breast cancer [35].

Reports on the study of ILF2 in GC are limited. Yin et 
al. [36] first detected the ILF2 expression levels in both 
tumor and paired normal tissues of GC using qRT-PCR, 
Western blot, and immunohistochemistry, and found that 
ILF2 was predominantly localized to the nuclei of gastric 
cancer cells, and also exhibited a low level of expres-
sion in the cytoplasm. Furthermore, the overexpression 
of ILF2 in tumor tissues had substantial prognostic sig-
nificance in gastric cancer. Arai et al. [37] further iden-
tified ILF2 as a notable protein present in both gastric 
cancer tissues and cell lines, functioning as a DNA dam-
age response (DDR) protein. In addition, the ILF2/ILF3 
complex dynamically regulates the expression of lncRNA 
ELF3-AS1 and transcription factor ELF3, thereby influ-
encing GC metastasis [38]. However, the impact of ILF2 
on GC diagnosis and therapy and the association of 
ILF2 with GC cell growth and tumor immunity remain 
unclear.

In the present study, we found that ILF2 had a good 
diagnostic value for GC. The high expression of ILF2 at 
the transcriptional level in GC tissues effectively distin-
guished cancer tissues from control tissues, which was 
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confirmed not only in the discovery dataset (TCGA-
STAD dataset) but also in the large-sample validation 
dataset merged from three independent GSE datasets of 
GC. More importantly, we also detected an elevated level 
of ILF2 in the serum samples of GC patients, approxi-
mately 6-fold higher than that of control samples. The 
AUROC for the diagnosis of GC reached 0.944. Given the 

absence of a valuable serum biomarker for GC and the 
ease of collecting serum samples in clinical practice, our 
discovery suggests a promising opportunity for clinical 
application and warrants additional investigation.

The findings of this research offer a solid biological 
foundation for the considerable diagnostic importance 
of ILF2 in GC. Through bioinformatics analysis, we 

Fig. 6 The effect of overexpressing ILF2 on the function of gastric cancer cells. A The vector of ILF2. B, C The effect of ILF2 overexpression on mRNA 
expression in BGC823 and MKN45 cells. D, E: Comparisons of cell proliferation between ILF2 over-expressed groups and control groups in BGC823 and 
MKN45 cells. F. The effect of ILF2 over-expressed on clone formation in MKN45 cells. OE, over expression

 



Page 12 of 13Liu et al. BMC Cancer          (2024) 24:465 

discovered a strong correlation between ILF2 expres-
sion levels in GC tissues and tumor immunity, encom-
passing immune cell infiltration, expression of immune 
checkpoint genes, immunotherapy response, as well as 
chemosensitivity. In vitro experiments demonstrated that 
GC cell lines overexpressing ILF2 secreted the protein 
extracellularly and exhibited different chemosensitivity 
based on ILF2 expression levels. Moreover, the knock-
down of ILF2 expression inhibited cell proliferation and 
colony formation, and overexpression of ILF2 promoted 
the proliferation and colony formation of gastric cancer 
cells. However, the question here is how ILF2, a nuclear 
protein, is secreted outside the cell. Future studies are 
required to clarify the unclear underlying mechanism.

In this study, we used multiple datasets, including the 
TCGA-STAD dataset, the GEO dataset, and our serum 
proteomics dataset and serum specimen dataset. The 
good representation of datasets from different sources 
used in the same study favors obtaining research results 
with better generalization. However, some limitations of 
these datasets may cause bias; for example, the TCGA-
STAD dataset has an imbalance in case numbers between 
gastric cancer and control groups, there are differences in 
RNA-Seq data between the GEO datasets (although com-
pensated by data processing techniques), and our own 
serum sample dataset has a small sample size and insuf-
ficient control groups. Although we have successfully 
screened and validated ILF2 as a valuable biomarker for 
gastric cancer through rigorous multistep screening and 
validation, a larger sample size and multicenter validation 
of the results are still needed.

Moreover, further elucidation is needed in several 
areas, including clarifying the mechanism by which gas-
tric cancer cells secrete ILF2 and investigating the impact 
of inhibiting the functional activity of extracellular ILF2 
with neutralizing antibodies or small molecules (if avail-
able) on the biological behavior of gastric cancer, which 
will be crucial for revealing the therapeutic potential 
of ILF2. Additionally, in-depth research is required to 
understand how ILF2 regulates the biological behaviors 
of gastric cancer and assess the influence of ILF2 expres-
sion on migration, invasion phenotypes, and immune 
modulation in gastric cancer. To gain a deeper under-
standing of the role and exact regulatory mechanisms of 
ILF2 in gastric cancer, further in vivo and in vitro studies 
are essential.

Conclusions
In this study, we utilized cross-omics analysis and iden-
tified ILF2 as a promising serum diagnostic marker for 
gastric cancer, exhibiting good diagnostic value and 
applicability. Bioinformatics analysis revealed a sig-
nificant correlation between ILF2 and immune sta-
tus and therapeutic response in gastric cancer. In vitro 

experiments confirmed that ILF2 is highly expressed in 
gastric cancer cells and influences cell growth. ILF2 levels 
were significantly elevated in the serum of gastric can-
cer patients, demonstrating its diagnostic significance. 
However, there are still several related issues that require 
clarification, including the secretion mechanism of ILF2 
from gastric cancer cells and the precise mechanism by 
which ILF regulates the biological behaviors of gastric 
cancer. Furthermore, the diagnostic significance of serum 
ILF2 concentration for gastric cancer should be validated 
through large-sample and multicenter studies.
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