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Abstract 

Background Predicting short-term efficacy and intracranial progression-free survival (iPFS) in epidermal growth 
factor receptor gene mutated (EGFR-mutated) lung adenocarcinoma patients with brain metastases who receive 
third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) therapy was of great signifi-
cance for individualized treatment. We aimed to construct and validate nomograms based on clinical characteristics 
and magnetic resonance imaging (MRI) radiomics for predicting short-term efficacy and intracranial progression free 
survival (iPFS) of third-generation EGFR-TKI in EGFR-mutated lung adenocarcinoma patients with brain metastases.

Methods One hundred ninety-four EGFR-mutated lung adenocarcinoma patients with brain metastases who 
received third-generation EGFR-TKI treatment were included in this study from January 1, 2017 to March 1, 2023. 
Patients were randomly divided into training cohort and validation cohort in a ratio of 5:3. Radiomics features 
extracted from brain MRI were screened by least absolute shrinkage and selection operator (LASSO) regression. Logis-
tic regression analysis and Cox proportional hazards regression analysis were used to screen clinical risk factors. Single 
clinical (C), single radiomics (R), and combined (C + R) nomograms were constructed in short-term efficacy predicting 
model and iPFS predicting model, respectively. Prediction effectiveness of nomograms were evaluated by calibration 
curves, Harrell’s concordance index (C-index), receiver operating characteristic (ROC) curves and decision curve analy-
sis (DCA). Kaplan-Meier analysis was used to compare the iPFS of high and low iPFS rad-score patients in the predic-
tive iPFS R model and to compare the iPFS of high-risk and low-risk patients in the predictive iPFS C + R model.

Results Overall response rate (ORR) was 71.1%, disease control rate (DCR) was 91.8% and median iPFS was 12.67 
months (7.88–20.26, interquartile range [IQR]). There were significant differences in iPFS between patients with high 
and low iPFS rad-scores, as well as between high-risk and low-risk patients. In short-term efficacy model, the C-indexes 
of C + R nomograms in training cohort and validation cohort were 0.867 (0.835-0.900, 95%CI) and 0.803 (0.753–0.854, 
95%CI), while in iPFS model, the C-indexes were 0.901 (0.874–0.929, 95%CI) and 0.753 (0.713–0.793, 95%CI).
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Conclusions The third-generation EGFR-TKI showed significant efficacy in EGFR-mutated lung adenocarcinoma 
patients with brain metastases, and the combined line plot of C + R can be utilized to predict short-term efficacy 
and iPFS.

Keywords MRI, Radiomics, Lung adenocarcinoma, Brain metastases, Third-generation EGFR-TKI

Background
Brain metastasis, as one of the most prevalent sites for 
non-small cell lung cancer (NSCLC) metastasis, is associ-
ated with a dismal prognosis, with untreated patients hav-
ing a median overall survival (OS) of less than 2 months 
[1]. The incidence of brain metastasis in NSCLC patients 
with EGFR mutation is approximately 50%, significantly 
higher than that in wild-type patients [2–4]. Targeted 
therapy with EGFR-TKI has substantially improved the 
prognosis of EGFR-mutated NSCLC patients with brain 
metastasis [5]. The third-generation EGFR-TKIs, such 
as osimertinib, almonertinib, and furmonertinib, exhibit 
superior blood-brain barrier permeability, selectivity, and 
safety compared to their predecessors [6]. These agents 
have become the standard treatment for EGFR-mutated 
NSCLC patients with brain metastases who have devel-
oped resistance to previous EGFR-TKIs due to T790M 
mutation or for untreated patients receiving first-line 
therapy [7]. However, not all patients achieve satisfac-
tory outcomes following treatment with third-generation 
EGFR-TKIs. Approximately 20% of patients experience 
resistance upon initial administration. Furthermore, even 
if an initial response is observed when using these agents, 
the timing of disease progression varies [8]. Therefore, 
accurate prediction of therapeutic efficacy and timely 
adjustment of treatment plans are crucial. Previous stud-
ies have demonstrated a significant correlation between 
baseline clinical characteristics and the effectiveness of 
EGFR-TKI therapy [9]. Radiomics enables extraction 
of high-throughput quantitative features from medi-
cal images such as computed tomography (CT), mag-
netic resonance imaging (MRI), and positron emission 
tomography-computed tomography (PET-CT), which 
may be imperceptible to human observers [10]. Nomo-
grams serve as predictive tools by integrating multiple 
decisive variables related to efficacy and prognosis [11]. 
Nomograms incorporating radiomics and baseline clini-
cal characteristics have been extensively utilized in medi-
cal and oncology research [12–14]. This study aims to 
establish and validate radiomics models based on clinical 
features and MRI scans of EGFR-mutated lung adenocar-
cinoma patients with brain metastases prior to receiving 
third-generation EGFR-TKI treatment, in order to pre-
dict short-term efficacy and iPFS, helping clinicians to 
identify high-risk patients in a timely manner and adjust 
diagnostic and treatment strategies accordingly.

Materials and methods
Patients and design
Retrospective data was collected from EGFR-mutated 
lung adenocarcinoma patients with brain metastasis diag-
nosed at Shandong Cancer Hospital between January 1, 
2017, and March 1, 2023. As the study was retrospective, 
patient informed consent was not required and had been 
exempted by the institutional review board and ethics 
committee of Shandong Cancer Hospital. The inclusion 
criteria were as follows: (1) histopathologically confirmed 
lung adenocarcinoma through lung puncture, fiberoptic 
bronchoscopy or open surgery; (2) brain MRI examina-
tion performed within 3 weeks before treatment at our 
hospital with available MR images; (3) presence of at least 
one visible brain metastasis on MRI; (4) confirmation of 
EGFR gene mutation through amplification refractory 
mutation system (ARMS) or next-generation sequenc-
ing (NGS); (5) treated with third-generation EGFR-TKIs 
including osimertinib, almonertinib, or furmonertinib. 
Exclusion criteria were as follows: (1) extensive menin-
geal metastases accompanying brain metastases; (2) 
poor quality MR images hindering accurate identifica-
tion of brain metastases or delineation of the region of 
interest (ROI); (3) negative T790M status after previ-
ous EGFR-TKI therapy; (4) combination therapy involv-
ing craniocerebral radiation therapy, surgery or other 
local treatments alongside third-generation EGFR-TKIs. 
Figure 1 illustrated the general research process for this 
study. The process of determining the final radiomic fea-
tures mainly involved MR images acquisition and extrac-
tion and analysis of radiomics feature, while the final 
determination of clinical features was achieved through 
univariate and multivariate logistic regression analysis 
and cox proportional hazards regression analysis.

MR image acquisition
All patients were positioned supine using the same 
equipment, a GE 3.0T superconducting MRI scanner 
(Discovery 750w, GE Medical, United States), for brain 
MRI. The brain MRI sequences included T1-weighted 
enhanced scan (T1 + C), T2-weighted fluid attenu-
ated inversion recovery sequence (T2 FLAIR), diffu-
sion-weighted imaging (DWI), T1-weighted (T1), and 
T2-weighted (T2) scans. During the T1 + C sequence, 
patients received a paramagnetic contrast agent injected 
into the antecubital vein at a rate of 2.2 ml/s after routine 
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MRI and underwent examination again 5 min later. The 
layer spacing of brain MRI images was 3 mm. Complete 
MR images were retrievable from the workstation and 
exportable in DICOM format for ROI delineation and 
feature extraction.

Extraction and analysis of radiomics feature
In this study, the brain MR image processing steps were 
in line with the standard flow of previous radiomics 
prediction models and adhered to the Image Biomarker 
Standardization Initiative (IBSI) [15, 16]. Initially, all 
MR images were preprocessed to enhance the reliabil-
ity of image data analysis. The voxel size was resam-
pled to 1 × 1 × 1 mm³ with standardized voxel spacing. 
Voxel intensity values were discretized using a fixed bin 
width of 25 HU to achieve stable intensity resolution 
across all images. Standardization of the image gray-
scale values was carried out to mitigate the impact of 
variation in radiomic features caused by inconsistent 
MR imaging parameters. Two experienced radiother-
apy doctors proficient in identifying brain metasta-
ses through MRI utilized 3D-Slicer [17] (version 5.0.3, 
http:// www. slicer. org) to delineate ROIs layer by layer 
on the T1 + C images of all patients in the axial plane. 
Additionally, adjustments were made in the sagittal and 
coronal planes for three-dimensional reconstruction. 
The delineation included the areas of brain metastases 

and surrounding edema. Subsequently, using the open-
source Radiomics plugin within the 3D-Slicer software, 
radiomics features were extracted from the ROIs of all 
patients following preprocessing with a wavelet algo-
rithm. All extracted radiomics features were stand-
ardized using z-scores to ensure comparability across 
different feature dimensions. Subsequently, brain MR 
images from 30 randomly selected patients under-
went secondary ROI delineation and radiomics feature 
extraction. The radiomics features extracted in two 
rounds were analyzed for ICC using MATLAB R2015b 
(version 8.6, https:// ww2. mathw orks. cn/), and features 
with good consistency (ICC values greater than 0.8) 
were preliminarily identified. Then, Spearman correla-
tion analysis was used to eliminate redundant features 
(|r| values between 0.8 and 1). Finally, the least absolute 
shrinkage and selection operator (LASSO) regression 
was conducted using R (version 4.2.2, http:// www.r- 
proje ct. org), combined with ten-fold cross-validation, 
to identify the optimal features. Subsequently, the radi-
omics signatures for short-term efficacy (SE) model 
and iPFS model were constructed, respectively [18, 19]. 
Receiver operating characteristic (ROC) curves were 
generated for the training and validation cohorts, and 
the predictive performance of the short-term efficacy 
and iPFS radiomics signatures was assessed based on 
the area under the curve (AUC) value [20].

Fig. 1 The general research process of this study

http://www.slicer.org
https://ww2.mathworks.cn/
http://www.r-project.org
http://www.r-project.org
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Calculation and processing of radiomics signature based 
radiomics score (rad‑score)
Rad-score was calculated by multiplying the value of each 
feature by its corresponding coefficient and summing all 
the products and the constant. In this study, two types 
of radiomics signatures, namely the short-term efficacy 
(SE) signature and the intracranial progression-free sur-
vival (iPFS) signature, were developed to compute the 
rad-scores for each patient in the SE prediction model 
and the iPFS prediction model, respectively. X-tile [21] 
(version 3.6.1, Yale University School of Medicine, New 
Haven, Conn) was utilized to combine iPFS, iPFS rad-
score, and progression status to calculate the optimal 
cut-off value for iPFS rad-scores. Subsequently, patients 
were categorized into high rad-score and low rad-score 
groups based on this cut-off value, and an analysis was 
performed to ascertain differences in iPFS between these 
two groups. In addition, logistic regression was used to 
analyze the correlation between the short-term efficacy 
rad-score and the actual short-term efficacy.

Selection of clinical characteristics
This study considered several potential clinical factors 
contributing to the efficacy of third-generation EGFR-
TKI, including age, sex, Karnofsky Performance Status 
(KPS) scores, smoking status, primary lesion location, 
EGFR mutation subtype, number and volume of brain 
metastases, location of brain metastases, brain metastasis 
symptoms, T and N stages according to the 8th edition 
lung cancer stage classification of the International Union 
Against Cancer (UICC) [22], presence of liver, bone, 
pleural, and adrenal metastases. Additionally, whether 
the treatment was combined with chemotherapy or anti-
angiogenic therapy and whether third-generation EGFR-
TKI was used as first-line therapy were also included. 
Univariate logistic regression analysis was employed to 
determine the factors associated with the short-term effi-
cacy of the third-generation EGFR-TKI. Subsequently, 
multivariate logistic regression analysis was used to 
identify independent risk factors for short-term efficacy. 
Similarly, univariate Cox proportional hazard regression 
analysis was utilized to identify factors associated with 
iPFS of third-generation EGFR-TKI, followed by mul-
tivariate Cox proportional hazard regression analysis to 
determine independent risk factors for iPFS. Statistical 
significance was set at p < 0.05.

Construction and validation of prediction model
Nomograms for clinical characteristics alone (C), radi-
omics alone (R), and the combination of clinical char-
acteristics with radiomics (C + R) were developed to 
predict short-term efficacy and iPFS. The predictive 
performance of the nomograms was evaluated using the 

Harrell consistency index (C-index) [23] and the AUC 
values. Calibration curves were utilized to visually assess 
the consistency between the predicted risk of the model 
and the actual results [24]. Additionally, decision curve 
analysis (DCA) [25, 26] and Delong test were employed 
to compare the prediction performance of different C, R, 
and C + R models. Finally, we calculated the total points 
of each patient in the optimal predictive model, deter-
mined the cut-off values for these scores, and conducted 
Kaplan-Meier analysis of high-risk and low-risk patients 
in the overall cohort, training cohort, and validation 
cohort, respectively.

Follow‑up
Patients with EGFR-mutated lung adenocarcinoma and 
brain metastases, included in this study, underwent brain 
MRI and chest CT re-evaluations every 1–3 months 
subsequent to the initial treatment with third-genera-
tion EGFR-TKI. Short-term efficacy was determined by 
assessing changes in the patient’s condition at the first 
review following third-generation EGFR-TKI treatment 
compared to their condition before treatment. Systemic 
efficacy was assessed based on RECIST 1.1 [27] criteria, 
categorized as complete response (CR), partial response 
(PR), stable disease (SD), and progressive disease (PD). 
Intracranial efficacy was evaluated using RANO [28] cri-
teria and classified into intracranial complete response 
(iCR), intracranial partial response (iPR), intracranial 
stable disease (iSD), and intracranial progressive dis-
ease (iPD). The objective response rate (ORR) denoted 
the proportion of patients achieving CR and PR, while 
the disease control rate (DCR) represented the propor-
tion of patients with CR, PR, and SD. IPFS was defined 
as the duration from the initiation of third-generation 
EGFR-TKI therapy to either the first progression of an 
intracranial tumor or death due to tumor-related factors. 
Here, good efficacy encompassed CR and PR, while poor 
efficacy encompassed SD and PD. Patients surpassing the 
median iPFS duration were considered to have a favora-
ble response, whereas those progressing in less time 
than the median iPFS were considered to have a poor 
response.

Statistical analysis
In the study, IBM SPSS (version 26.0, https:// www. ibm. 
com) was utilized to randomly divide patients into train-
ing and validation cohorts in a 5:3 ratio. Subsequently, 
univariate and multivariate logistic regression analyses, 
as well as univariate and multivariate Cox proportional 
regression analyses, were conducted. The two-inde-
pendent sample t-test was employed for continuous 
variables, while the Chi-square test was applied to cat-
egorical variables. LASSO regression of the radiomics 

https://www.ibm.com
https://www.ibm.com
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features was carried out using the glmnet package in R, 
and receiver operating characteristic (ROC) curves were 
generated. Packages such as Rms, Hmisc, lattice, survival, 
survminer, Formula, ggplot2, MASS and nomogram-
Formula in R were used to create Kaplan-Meier curves, 
nomograms, calibration curves, calculate the c-index 
and the total points. MedCalc (version 22.009, https:// 
www. medca lc. org/) was used to plot ROC curves and 
perform Delong test to compare the AUC values of dif-
ferent nomograms. Additionally, Kaplan-Meier analysis 
and log-rank test was employed to assess the disparity in 
iPFS between high and low rad-score groups, as well as 
between high-risk and low-risk groups.

Results
Patients and clinical characteristics
A total of 194 EGFR-mutated lung adenocarcinoma 
patients with brain metastases receiving third-generation 
EGFR-TKI were enrolled in this study. The follow-up 
period concluded on November 10, 2023, during which 
intracranial progression was observed in 181 patients. 
The median follow-up time for the entire cohort was 
23.3 months. Of the total, 120 patients were part of the 
training cohort, while 74 were included in the validation 
cohort. There were no notable differences between the 
training and validation cohorts concerning various fac-
tors such as age, sex, KPS, smoking status, primary lesion 
location, EGFR mutation subtype, number, volume, loca-
tion, and symptoms of brain metastases, T stage, N stage, 
presence of liver metastasis, bone metastasis, pleural 
metastasis, adrenal metastasis, as well as whether third-
generation EGFR-TKI was combined with chemotherapy 
or anti-angiogenic therapy, and whether third-generation 
EGFR-TKI was used as first-line treatment. A detailed 
presentation of the baseline characteristics of the patients 
can be found in Table 1.

Treatment efficacy
The efficacy of the third-generation EGFR-TKI was sum-
marized in Table 2. The assessment revealed that out of 
the total patients, 138 were categorized as PR, 40 as SD, 
and 16 as PD, resulting in an ORR of 71.1% and a DCR 
of 91.8%. Furthermore, 34 patients were evaluated as 
iCR, 106 as iPR, 31 as iSD, and 23 as iPD, leading to an 
iORR of 72.2% and an iDCR of 88.2%. The median iPFS 
was calculated at 15.67 months (7.88–20.26, interquartile 
range [IQR]). Based on this, 138 patients were consid-
ered to have experienced a good effect, while 56 patients 
were regarded as having a poor effect. Additionally, 97 
patients, iPFS shorter than 15.67 months, were consid-
ered poor responses and 97 patients, iPFS longer than 
15.67 months, were considered good responses.

Calculation and processing of radiomics signature based 
radiomics score (rad‑score)
Firstly, we extracted 851 radiomics features from the 
ROI delineated by each patient, and then again extracted 
these features from a second delineation of the ROI from 
30 patients. All initially extracted 851 radiomic features 
were presented in Supplementary Materials Table  S1. 
Subsequently, we conducted t-tests and ICC tests on the 
different features extracted from these 30 patients in the 
two delineations, preliminarily selecting 784 radiomic 
features that met the criteria of p < 0.05 and r > 0.8. Finally, 
16 features were selected to construct the short-term 
efficacy prediction model, and 13 features were selected 
for the iPFS prediction model using LASSO regression. 
These selected features were utilized to construct radi-
omics signatures, and the rad-scores of patients in the SE 
model and iPFS model were calculated. Detailed process 
of LASSO regression was shown in Supplementary Mate-
rial Figures S1, S2 and S3 and the filtered optimal features 
were presented in Table 3.

In the SE prediction model, logistic regression was 
employed to examine the association between short-term 
efficacy and the SE rad-score. In the overall cohort, a sig-
nificant correlation was observed (p < 0.001, odds ratio 
[OR] = 24.871 [5.712, 108.296]). Similarly, in the train-
ing cohort, a significant correlation was found (p < 0.001, 
OR = 97.744 [10.758, 888.047]). In the validation cohort, 
a significant correlation was also present (p = 0.045, 
OR = 8.131 [1.044, 63.303]). These findings suggest that 
the short-term efficacy of third-generation EGFR-TKI 
was strongly associated with the SE rad-score. Regarding 
the iPFS prediction model, the cut-off value for the iPFS 
rad-score was determined as -0.1. Consequently, patients 
with a rad-score greater than − 0.1 were classified into 
the high-risk group, while those with a rad-score less 
than − 0.1 were assigned to the low-risk group. Kaplan-
Meier survival analysis demonstrated a significant cor-
relation between iPFS and the iPFS rad-score. Detailed 
Kaplan-Meier curves and log-rank test were shown in 
Fig. 2a, b and c.

Relevant factors in iPFS and short‑term efficacy models
Univariate regression analysis revealed that several fac-
tors were associated with poorer iPFS. These factors 
included age ≥ 60, KPS < 80, uncommon EGFR mutation, 
the presence of more than 5 brain metastases, an increase 
in the volume of brain metastases, brain metastases not 
limited to the cerebral hemisphere, and receiving non-
first-line treatment with third-generation EGFR-TKI. 
Additionally, KPS < 80, uncommon EGFR mutations, and 
non-first-line therapy with third-generation EGFR-TKI 
were found to be linked to poor short-term outcomes. 

https://www.medcalc.org/
https://www.medcalc.org/
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Table 1 Baseline characteristics of EGFR-mutated lung adenocarcinoma patients with brain metastases in the training cohort and 
validation cohort

Abbreviation: BM Brain metastases

Clinical Characteristics Training set(n = 120) Validation set(n = 74) P value

Gender 0.650

 Male 49(40.8%) 27(36.5%)

 Female 71(59.2%) 47(63.5%)

Age 0.462

 < 60 63(52.5%) 43(58.1%)

 ≥ 60 57(47.5%) 31(41.9%)

Smoker 0.851

 Yes 23(19.2%) 13(17.6%)

 No 97(80.8%) 61(82.4%)

KPS 0.359

 < 80 72(60.0%) 50(67.6%)

 ≥ 80 48(40.0%) 24(32.4%)

Location 0.293

 Left lung 68(56.7%) 48(64.9%)

 Right lung 52(43.3%) 26(35.1%)

EGFR mutation type 0.339

 Common 115(95.8%) 68(91.9%)

 Uncommon 5(4.2%) 6(8.1%)

Number of BMs 1.000

 ≤ 5 70(58.3%) 43(58.1%)

 > 5 50(41.7%) 31(41.9%)

Volume of BMs 0.348

Location of BMs 0.548

 Only in the hemispheres of the brain 52(43.3%) 28(37.8%)

 Exist in other location 68(56.7%) 46(62.2%)

Symptoms of BM 0.701

 Yes 20(16.7%) 14(18.9%)

 No 100(83.3%) 60(81.1%)

T categories of TNM 0.314

 = 1 35(29.2%) 16(21.6%)

 > 1 85(70.8%) 58(78.4%)

N categories of TNM 0.296

 < 3 73(60.8%) 39(52.7%)

 ≥ 3 47(39.2%) 35(47.3%)

Hepatic metastases 0.315

 Yes 22(18.3%) 9(12.2%)

 No 98(81.7%) 65(87.8%)

Bone metastases 0.765

 Yes 70(58.3%) 41(55.4%)

 No 50(41.7%) 33(44.6%)

Pleural metastases 0.255

 Yes 19(15.8%) 17(23.0%)

 No 101(84.2%) 57(77.0%)

Adrenal metastases

 Yes 14(11.7%) 7(9.5%)

 No 106(88.3%) 67(90.5%)

Combined with chemotherapy or anti blood vessel 0.124

 Yes 37(30.8%) 31(41.9%)

 No 83(69.2%) 43(58.1%)

First-line therapy 0.655

 Yes 71(59.2%) 41(55.4%)

 No 49(40.8%) 33(44.6%)
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Further multivariate regression analysis was conducted 
to determine independent risk factors for poor iPFS. The 
analysis identified LowKPS (Binary variable, KPS < 80), 
Uncommonmutation (Binary variable, EGFR uncommon 
mutations), MultipleBMs (Binary variable, BM num-
ber more than 5), and Notfirstlinetherapy (Binary vari-
able, EGFR-TKI was not used as a first-line treatment) 
as independent risk factors. Similarly, LowKPS, Uncom-
monmutation, and Notfirstlinetherapy were identified 
as independent risk factors for poor short-term efficacy. 
Detailed univariate and multifactor logistic regression 
analysis results could be found in Table 4, while univari-
ate and multifactor Cox regression analysis results were 
presented in Table 5.

Performance assessment of nomograms
In the short-term efficacy prediction model, the 
C-indexes of C + R, C and R nomograms in the train-
ing cohort were 0.867 (0.835-0.900, 95%CI), 0.815 
(0.77–0.853, 95%CI), and 0.747 (0.703–0.791, 95%CI), 
respectively. In the validation cohort, the C-indexes of 
C + R, C and R nomograms were 0.803 (0.753–0.854, 
95%CI), 0.762 (0.706–0.818, 95%CI) and 0.628 (0.555–
0.702, 95%CI), respectively. For the iPFS prediction 
model, the C-indexes of C + R, C and R nomograms in 
the training cohort were 0.901 (0.874–0.929, 95%CI), 
0.863 (0.831–0.896, 95%CI) and 0.835 (0.799–0.872, 
95%CI), respectively. In the validation cohort, the 
C-indexes of C + R, C and R nomograms were 0.753 
(0.713–0.793, 95%CI), 0.803 (0.77–0.836, 95%CI) and 
0.654 (0.610–0.698, 95%CI), respectively. The com-
bined C + R nomograms constructed in the iPFS model 
and short-term efficacy model were shown in Figs.  3 
and 4, respectively. And the remaining single C or R 

nomograms could be found in Supplementary Material 
Figure S4. The calibration curves in Figs. 5 and 6 and 
Supplementary Material Figure S5 indicated strong 
agreement between the predicted probability and 
actual observations of the C + R models developed in 
this study. Additionally, the DCA illustrated in Fig.  5 
highlighted that the combined C + R models outper-
formed the single C or R models in terms of prediction 
performance. The ROC curves and AUC values for dif-
ferent nomograms were displayed in Fig.  7; Table  6. 
Finally, the cut-off value for the total points of patients 
in the iPFS predictive model was 12.0, and Kaplan-
Meier analysis showed a significant difference in the 
iPFS between high-risk and low-risk patients in the 
overall cohort, training cohort, and validation cohort, 
with all p-values < 0.0001 (Fig. 2d, e and f ).

Discussion
In this study, we had successfully developed and validated 
radiomics nomograms based on clinical characteristics 
and MRI to predict the short-term efficacy and iPFS of 
third-generation EGFR-TKIs, including osimertinib, 
almonertinib and furmonertinib, for lung adenocarci-
noma patients with EGFR-mutated brain metastases. 
There was good consistency between predicted risks and 
actual outcomes. We compared C, R, and C + R nomo-
grams, confirming that the combined C + R nomogram 
outperforms the individual C or R nomograms. Pre-
dictive factors in the short-term efficacy nomogram 
include SE rad-score, low KPS (KPS < 80), uncommon 
EGFR mutations, and not first-line treatment with third-
generation EGFR-TKIs. Predictive factors in the iPFS 
nomogram include iPFS rad-score, low KPS (KPS < 80), 
uncommon EGFR mutations, multiple brain metasta-
ses, and not first-line treatment with third-generation 
EGFR-TKIs.

This study ultimately identified 16 radiomic fea-
tures associated with third-generation EGFR-TKIs 
short-term efficacy and 13 radiomic features related 
to iPFS, which were used to construct radiomics sig-
natures and calculate SE rad-score and iPFS rad-score 
for each patient. The optimal radiomics features asso-
ciated with short-term efficacy included 6 first-order 
features, 3 Gy level dependence matrix (GLDM) 
features, 3 Gy-level co-occurrence matrix (GLCM) 
features, 3 Gy-level run length matrix (GLRLM) fea-
tures, and 1 non-uniformity of gray tones and distance 
matrix (NGTDM) feature. The optimal radiomics 
features related to iPFS included 5 GLCM features, 
3 shape features, 2 first-order features, 1 NGTDM 
feature, 1 GLRLM feature, and 1 Gy-level size zone 
matrix (GLSZM) feature. Among them, wavelet.

Table 2 Efficacy of third-generation EGFR-TKIs

Abbreviation: IQR Interquartile range

Short-term efficacy

PR 138(71.1%)

SD 40(20.6%)

PD 16(8.2%)

ORR 71.1%

DCR 91.8%

iCR 34(17.5%)

iPR 106(54.6%)

iSD 31(15.9%)

iPD 23(11.8%)

iORR 72.2%

iDCR 88.2%

miPFS 15.67months (7.88–20.26, IQR)
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LHL_glcm_Idn was a feature obtained by combin-
ing wavelet transform with gray level co-occurrence 
matrix (GLCM) in a specific subband (LHL) and per-
forming inverse difference normalization (IDN). 
This feature was included in both the selected fea-
tures of the short-term efficacy model and the iPFS 
model. We compared previous radiomics studies on 
EGFR-mutated NSCLC brain metastases [29–31], and 
although the selected features varied due to different 
research directions and screening processes, there 
were still a few features that overlapped with our study, 
indicating their general applicability in EGFR-mutated 
NSCLC brain metastasis.

KPS reflected the physical activity and functional status 
of patients, and higher KPS in cancer patients were gen-
erally associated with better overall physical condition 
and higher tolerance. While low KPS in patients affected 
drug absorption, metabolism, and excretion, as well as 
the immune function and compliance of the body. Previ-
ous studies had confirmed that the KPS could be used to 
predict post-discharge mortality in patients with liver cir-
rhosis [32], prognosis in stage I non-small cell lung cancer 
[33], and survival in advanced pancreatic cancer patients 
[34]. Patients with lower KPS scores had a higher predic-
tive risk in the nomograms of this study, and the use of 
third-generation EGFR-TKIs for anti-tumor treatment 

Table 3 Features final filtered in iPFS prediction model and short-term efficacy model

Number Radiomics features Coefficients

iPFS

 41 originalshapeLeastAxisLength 0.0752947482352709

 43 originalshapeMaximum2DDiameterColumn 0.074154613144132

 44 originalshapeMaximum2DDiameterRow 0.232416684247666

 269 wavelet.LHLglcmIdn 0.00291763048034297

 271 wavelet.LHLglcmImc2 -0.0690107637164966

 355 wavelet.LHHglcmCorrelation 0.0000419078137924003

 433 wavelet.HLLfirstorderMean 0.103053204451169

 457 wavelet.HLLglcmImc2 -0.0834577047415401

 513 wavelet.HLLngtdmBusyness 0.0823260471375526

 620 wavelet.HHLfirstorderMedian 0.0821598313036605

 634 wavelet.HHLglcmCorrelation 0.00537992763534358

 766 wavelet.HHHglrlmLongRunLowGrayLevelEmphasis 0.11974610886021

 785 wavelet.HHHglszmSizeZoneNonUniformityNormalized -0.120438257348373

Constant 0.0755271793882138

SE

 54 originalfirstorder90Percentile -0.00419448768307154

 62 originalfirstorderMedian -0.00851220537927449

 63 originalfirstorderMinimum -0.00255113724154396

 99 originalgldmGrayLevelNonUniformity 0.021023950190984

 164 wavelet.LLHglcmAutocorrelation -0.0301755552050827

 194 wavelet.LLHgldmHighGrayLevelEmphasis -0.0784538755713116

 205 wavelet.LLHglrlmHighGrayLevelRunEmphasis -0.123749716030615

 216 wavelet.LLHglrlmShortRunHighGrayLevelEmphasis -0.0250086674965666

 244 wavelet.LHLfirstorderKurtosis 0.0451962848048691

 269 wavelet.LHLglcmIdn 0.0940595066868715

 346 wavelet.LHHfirstorderSkewness -0.0133904920459787

 462 wavelet.HLLglcmMCC -0.0345285425183703

 625 wavelet.HHLfirstorderSkewness -0.150807088704218

 843 wavelet.LLLgldmGrayLevelNonUniformity 0.0277809447444802

 853 wavelet.LLLglrlmGrayLevelNonUniformity 0.0139511659382987

 885 wavelet.LLLngtdmBusyness 0.0208305731902347

Constant -0.634115138820642
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Fig. 2 a Kaplan-Meier analysis of patients with high iPFS Rad-Score and low iPFS Rad-Score in the overall cohort, p < 0.0001. b Kaplan-Meier 
analysis of patients with high iPFS Rad-Score and low iPFS Rad-Score in the training cohort. p < 0.0001. c Kaplan-Meier analysis of patients with high 
iPFS Rad-Score and low iPFS Rad-Score in the validation cohort, p = 0.0059. d Kaplan-Meier survival analysis of high-risk and low-risk patients 
in the overall cohort, p < 0.0001. e Kaplan-Meier survival analysis of high-risk and low-risk patients in the training cohort, p < 0.0001. f Kaplan-Meier 
survival analysis of high-risk and low-risk patients in the validation cohort, p < 0.0001

Table 4 Univariable and multivariable logistic regression analysis of risk factors potentially associated with short-term efficacy in EGFR-
mutated lung adenocarcinoma patients with brain metastases

Abbreviations: Exp(B) odds ratio, CI Confidence interval, BM Brain metastases

Characteristics Univariable analysis
p value

Multivariable analysis

P value Exp(B) 95% CI

Gender (Male vs. Female) 0.733

Age (≥ 60 vs.<60) 0.185

Smoker (Yes vs.No) 0.291

KPS (< 80 vs.≥80) 0.022 0.016 0.402 0.192 0.843

Location (Left lung vs.Right) 0.956

EGFR mutation type (common vs. uncommon) 0.027 0.029 5.155 1.184 22.455

Number of BMs (≤ 5 vs.>5) 0.108

Volume of BMs 0.216

Location of BMs (Only in the hemispheres of the brain vs. 
Exists in other location)

0.438

Symptoms of BM (Yes vs.No) 0.084

T categories of TNM (1 vs.>1) 0.825

N categories of TNM (< 3 vs.≥3) 0.287

Hepatic metastases (Yes vs.No) 0.750

Bone metastases (Yes vs.No) 0.158

Pleural metastasis (Yes vs.No) 0.357

Adrenal metastasis (Yes vs.No) 0.052

Combined with chemotherapy or antiangiogenic therapy 
(Yes vs.No)

0.927

First-line therapy (Yes vs.No) 0.000 0.000 0.147 0.073 0.295
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should be conducted under the premise of improving the 
overall condition of patients as much as possible.

In this study, uncommon EGFR mutations encom-
passed 20 exon insertion mutations, G718X, S768I, and 

L861Q. Similar to the research conducted by Wu et al. 
[35], which found poor treatment responses of first-
generation EGFR-TKIs to uncommon mutations, our 
study also identified uncommon EGFR mutations as 

Table 5 Univariable and multivariable cox proportional hazard regression analysis of risk factors potentially associated with iPFS in 
EGFR-mutated lung adenocarcinoma patients with brain metastases

Abbreviations: Exp(B) odds ratio, CI Confidence interval, BM Brain metastases

Characteristics Univariable analysis
p value

Multivariable analysis

P value Exp(B) 95% CI

Gender (Male vs. Female) 0.080

Age (≥ 60 vs.<60) 0.027 0.134 1.394 0.903 2.153

Smoker (Yes vs.No) 0.388

KPS (< 80 vs.≥80) 0.008 0.008 1.933 1.190 3.139

Location (Left lung vs.Right) 0.889

EGFR mutation type (Common vs. Uncommon) 0.005 0.005 0.328 0.150 0.716

Number of BMs (≤ 5 vs.>5) 0.000 0.000 0.163 0.098 0.272

Volume of BMs 0.008 0.182 1.000 1.000 1.000

Location of BMs (Only in the hemispheres of the brain vs. 
Exist in other location)

0.002 0.829 1.058 0.636 1.758

Symptoms of BM (Yes vs.No) 0.455

T categories of TNM (1 vs.>1) 0.133

N categories of TNM (< 3 vs.≥3) 0.725

Hepatic metastases (Yes vs.No) 0.124

Bone metastases (Yes vs.No) 0.277

Pleural metastasis (Yes vs.No) 0.496

Adrenal metastasis (Yes vs.No) 0.316

Combined with chemotherapy or antiangiogenic therapy 
(Yes vs.No)

0.608

First-line therapy (Yes vs.No) 0.000 0.000 2.880 1.869 4.437

Fig. 3 Clinical plus radiomics nomogram of iPFS model
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independent risk factors for the efficacy of third-gener-
ation EGFR-TKIs. Additionally, Yang et al. [36, 37] con-
firmed that afatinib exhibited a poor response to exon 
20 insertion mutations but showed good responses to 
other uncommon mutations such as G719X, S768I, and 
L861Q. It should be noted that while third-generation 
EGFR-TKIs have shown promising results, they can-
not completely replace previous medications. Future 
targeted drug development should consider adjust-
ing for uncommon mutations. Within the nomograms 
constructed in our study, uncommon mutations were 
associated with a higher predictive risk. If feasible, 
patients could benefit from receiving third-generation 

EGFR-TKI treatment after modifying their uncommon 
EGFR mutation status.

EGFR-mutated lung adenocarcinoma patients with 
brain metastases typically experience shorter survival. 
A multicenter clinical trial [38] demonstrated that in 
EGFR-mutated NSCLC patients with brain metastases, 
first-line gefitinib treatment resulted in a median iPFS 
of 9.1 months and a median overall survival (OS) of 28.9 
months. However, after multiple disease progressions, 
patients did not significantly benefit from third-gener-
ation EGFR-TKI therapy due to compromised overall 
health. Furthermore, a study by Bai H et al. [39] suggested 
that chemotherapy might affect the EGFR mutation 

Fig. 4 Clinical plus radiomics nomogram of short-term efficacy model

Fig. 5 a Calibration curve of iPFS clinical plus radiomics nomogram. b Calibration curve of short-term efficacy clinical plus radiomics nomogram
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status of NSCLC patients, as tumors can display heter-
ogeneity in their mutational profiles. In comparison to 
other treatments, first-line therapy with third-generation 

EGFR-TKIs had fewer adverse reactions and could help 
maintain better overall health even after disease progres-
sion, enabling further treatment options. For patients 

Fig. 6 a DCA curves of short-term efficacy nomograms. b DCA curves of iPFS nomograms. R, DCA curve of radiomics nomogram; C, DCA curve 
of clinical nomogram; C + R, DCA curve of clinical plus radiomics nomogram

Fig. 7 ROC curves for the training cohort (a) and validation cohort (b) of the iPFS model, as well as the training cohort (c) and validation cohort (d) 
of the SE model



Page 13 of 15Qi et al. BMC Cancer          (2024) 24:362  

already receiving non-first-line therapy, the benefit of 
treatment with third-generation EGFR-TKIs alone was 
not substantial. Therefore, combination therapy should 
be considered to improve patient outcomes.

The number of brain metastases in patients with EGFR-
mutated lung adenocarcinoma could serve as a reflection 
of the tumor burden within the brain. However, visible 
metastases on MRI scans were often limited, making it 
challenging to assess the full extent of brain involvement. 
Higher numbers of brain metastases indicate a greater 
tumor burden, making it more difficult to achieve control 
over the disease. Chang et al. [40] confirmed that patients 
with a higher number of brain lesions were more likely to 
experience disease progression. For EGFR-mutated lung 
adenocarcinoma patients with a higher number of brain 
metastases, the timely addition of cranial radiotherapy 
has been shown to benefit these patients [41]. Regard-
ing the volume of brain metastases, Baschnagel et al. [42] 
demonstrated that tumor volume independently predicts 
the efficacy of Gamma Knife surgery in treating brain 
metastases. Although this current study did not consider 
the increase in brain metastasis volume as an independ-
ent risk factor, it did confirm through univariate Cox 
regression analysis that the volume of brain metastases is 
associated with iPFS.

There were also some limitations in this study. Firstly, 
it was a single-center study, so the predictive perfor-
mance of the model needed further validation in differ-
ent regions and among different ethnic groups. Secondly, 
being a retrospective study, it inevitably suffered from 
selection bias and confounding factors. Furthermore, 
despite efforts to mitigate these issues, the feature selec-
tion process involved multiple steps and could be subject 
to subjectivity and human bias. Finally, the differences 
in the efficacy of the three different third-generation 
EGFR-TKIs as well as the differences in the proportion of 
patients receiving treatment with each drug may impact 
the study results.

Conclusions
The third-generation EGFR-TKIs have significantly 
improved the efficacy and prognosis of patients with 
EGFR-mutated lung adenocarcinoma and brain metasta-
ses. The predictive potential of radiomics is indeed real, 
and combining clinical characteristics with radiomic 
nomograms based on MRI can be used for short-term 
efficacy and iPFS prediction in these patients. It serves 
as a non-invasive predictive tool, aiding physicians and 
patients in better understanding prognosis risks and 
allowing for personalized adjustments to patient treat-
ment plans in a timely manner.

Abbreviations
EGFR-mutated  Epidermal growth factor receptor gene mutated
EGFR-TKI  Epidermal growth factor receptor tyrosine kinase inhibitor
MRI  Magnetic resonance imaging
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R  Single radiomics
C + R  Combined clinical and radiomics
C-index  Harrell’s concordance index
DCA  Decision curve analysis
ORR  Overall response rate
DCR  Disease control rate
IQR  Interquartile range
NSCLC  Non-small cell lung cancer
OS  Overall survival
ROC  Receiver operating characteristic
AUC   Area under the curve
SE  Short-term efficacy
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