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Abstract
Background Preoperative prediction of International Federation of Gynecology and Obstetrics (FIGO) stage in 
patients with epithelial ovarian cancer (EOC) is crucial for determining appropriate treatment strategy. This study 
aimed to explore the value of contrast-enhanced CT (CECT) radiomics in predicting preoperative FIGO staging of EOC, 
and to validate the stability of the model through an independent external dataset.

Methods A total of 201 EOC patients from three centers, divided into a training cohort (n = 106), internal (n = 46) 
and external (n = 49) validation cohorts. The least absolute shrinkage and selection operator (LASSO) regression 
algorithm was used for screening radiomics features. Five machine learning algorithms, namely logistic regression, 
support vector machine, random forest, light gradient boosting machine (LightGBM), and decision tree, were utilized 
in developing the radiomics model. The optimal performing algorithm was selected to establish the radiomics 
model, clinical model, and the combined model. The diagnostic performances of the models were evaluated through 
receiver operating characteristic analysis, and the comparison of the area under curves (AUCs) were conducted using 
the Delong test or F-test.

Results Seven optimal radiomics features were retained by the LASSO algorithm. The five radiomics models 
demonstrate that the LightGBM model exhibits notable prediction efficiency and robustness, as evidenced by AUCs 
of 0.83 in the training cohort, 0.80 in the internal validation cohort, and 0.68 in the external validation cohort. The 
multivariate logistic regression analysis indicated that carcinoma antigen 125 and tumor location were identified as 
independent predictors for the FIGO staging of EOC. The combined model exhibited best diagnostic efficiency, with 
AUCs of 0.95 in the training cohort, 0.83 in the internal validation cohort, and 0.79 in the external validation cohort. 
The F-test indicated that the combined model exhibited a significantly superior AUC value compared to the radiomics 
model in the training cohort (P < 0.001).
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Background
Epithelial ovarian cancer (EOC) is the most prevalent 
malignant neoplasm of the ovaries, with the highest fatal-
ity rate among gynecological malignancies [1, 2]. Despite 
significant progress achieved in chemotherapy regimens 
and targeted therapy, the prognosis remains unsatis-
factory, with a 5-year survival rate of less than 40% [3]. 
According to the International Federation of Gynecology 
and Obstetrics (FIGO) staging system, EOC patients are 
classified as early-stage (FIGO stage I-II) or advanced-
stage (FIGO stage III-IV) [4]. The treatment options for 
EOC patients largely depend on the FIGO stage at the 
time of diagnosis. Fertility-sparing surgery is a viable 
option for patients with early-stage EOC, potentially 
avoiding chemotherapy [5]. However, in advanced-stage 
EOC, when initial cytoreductive surgery is unlikely to 
achieve complete tumor shrinkage, combination neoad-
juvant chemotherapy should be considered [6]. Accurate 
staging is crucial for predicting the prognosis of EOC 
patients and determining appropriate treatment plans 
[7]. However, achieving accurate FIGO staging typically 
requires invasive surgery or tissue biopsy, which comes 
with potential risks such as disease metastasis [8].

Various imaging modalities, including positron emis-
sion tomography (PET)/CT, CT, and magnetic resonance 
imaging (MRI), have been explored to assess feasibility of 
tumor resection, eligibility for efficacious cytoreductive 
surgery, and the necessity of postoperative chemotherapy 
in cases where optimal tumor reduction is not achieved 
[9, 10]. The diagnostic effectiveness of PET/CT in EOC 
is comparatively inferior to that of MRI and CT, exhibit-
ing lower sensitivity and specificity [11]. Despite its high 
soft tissue contrast MRI does not significantly outper-
form CT in detecting peritoneal implantation metastasis 
in late-stage EOC patients [12]. CT scanning, a rapid and 
widely used imaging technique, can be utilized for strati-
fied treatment of EOC and to assess the initial extent of 
the disease for surgical planning purposes [13]. The Euro-
pean Society of Urogenital Radiology recommends CT 
as the preferred imaging method for preoperative stag-
ing and follow-up of EOC [7]. Nevertheless, the non-
invasive CT approach for assessing the FIGO staging of 
EOC predominantly relies on the subjective expertise of 
radiologists.

Radiomics involves the high-throughput extraction 
of numerous latent image features from CT or MRI 
images, coupled with modeling and analytical techniques 
such as machine learning, to transform digital medical 

images into multidimensional data that can be explored 
[14]. EOC is known for its tumor heterogeneity, which 
manifests as spatial variations at the morphological 
and histopathological levels, encompassing alterations 
in cell count, angiogenesis, necrosis, and extracellular 
matrix [15, 16]. Radiomics has emerged as a significant 
non-invasive modality for assessing the heterogeneity 
of malignant tumors. This technique has the ability to 
identify subtle structures and uncover potential image 
information that may not be discernible to the unaided 
eye, thereby enhancing the accuracy of diagnosis and 
prognosis evaluation [17, 18]. Recent investigations have 
explored the utility of CT-based radiomics in differen-
tial diagnosis, treatment prognosis, recurrence risk, and 
assessment of tumor heterogeneity [19–22]. Thus, it is 
posited that a CT radiomics model predicated on pri-
mary tumors of EOC may yield precise prognostication 
of FIGO staging. The objective of our study is to evalu-
ate the performance of a contrast-enhanced CT (CECT) 
radiomics model in predicting the FIGO staging of EOC, 
with the ultimate aim of assisting clinical practitioners 
in devising individualized treatment regimens for EOC 
patients.

Methods
Patients
This multicenter retrospective study received approval 
from the Institutional Review Board of three medi-
cal centers. Written informed consent for participants 
was not required for this study in accordance with the 
national legislation and the institutional requirements. 
The study involved a retrospective analysis of clinical data 
and CECT images obtained from patients diagnosed by 
pathology with EOC at Center A (from April 2017 to June 
2022), Center B (January 2019 to September 2022), and 
Center C (December 2019 to October 2022). Informa-
tion for these three medical centers is shown in the Addi-
tional file 1: Table S1. The inclusion criteria consisted 
of patients who met the following conditions: [1] histo-
pathologically confirmed EOC, [2] no previous history of 
pelvic surgery or treatment, and [3] underwent pre-treat-
ment CECT. Patients with concurrent malignant tumors, 
with poor CT quality, or incomplete clinicopathological 
records were excluded from the study. Finally, a total of 
201 EOC patients were included (105 from Center A, 47 
from Center B, and 49 from Center C). The flowchart of 
patient selection from three centers was shown in Fig. 1. 
According to the FIGO 2014 staging system, all patients 

Conclusions The combined model integrating clinical characteristics and radiomics features shows potential as a 
non-invasive adjunctive diagnostic modality for preoperative evaluation of the FIGO staging status of EOC, thereby 
facilitating clinical decision-making and enhancing patient outcomes.
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were categorized into either the early-stage (the nega-
tive class) and advanced-stage (the positive class) groups. 
Patients from Center A and B were randomly divided 
into training and internal validation cohort in a ratio of 
7:3. Data from Center C were exclusively for an external 
validation cohort to evaluate the generalizability of the 
models developed on data from different institutions.

The clinicopathological information, including preop-
erative carcinoma antigen 125 (CA125) and carbohydrate 
antigen 199 (CA199) level, age, FIGO stage, histologic 
subtypes, tumor location, peritoneal metastasis, Ki-67 
expression, and menopausal status, was retrieved from 
the patients’ medical records.

CECT images Acquisition
All patients underwent abdominopelvic CECT scans 
before surgery. The scans were performed using the 
Brilliance 16 and IQon Spectral scanners (both Philips 
Healthcare, Netherlands), SOMATOM scanner (Siemens 
Healthcare, Germany) or Discovery 750 HD scanner 
(GE Healthcare, USA). Detailed information regarding 
the CT equipment used at each center is presented in 
Additional file 1: Table S1. In all patients, the CECT was 
acquired 50  s after an injection of iodinated contrast 
media (370 mg I/mL, Heng Rui Pharma, Jiangsu, China; 
3–4 mL/s, 1.5 mL/kg body weight) via the antecubital 
vein using a high-pressure syringe (Ulrich, Germany).

Tumor segmentation and radiomic feature extraction
Tumors segmentation was performed using 3D Slicer 
(version 4.13.0, www.slicer.org). Firstly, a highly experi-
enced radiologist (Radiologist A) with a decade of expe-
rience in diagnosing pelvic imaging manually delineated 
the volume of interest (VOI) layer by layer along the 
lesion’s edge, making efforts to avoid blood vessels and 
calcified areas. If the tumor was multifocal, only the one 
with the largest diameter on the axial image was delin-
eated. To assess the reproducibility of the segmentation, 
another experienced radiologist (Radiologist B) with 
over eight years of experience in imaging diagnosis ran-
domly selected 30 patients and replicated the segmen-
tation using the identical methodology. After a month, 
Radiologist A repeated the segmentation for the same 30 
patients. The Intraclass correlation coefficient (ICC) was 
utilized to evaluate the consistency of the CT radiomics 
features extracted by two radiologists from the segmenta-
tion results of the 30 patients.

Before radiomics feature extraction, resampling and 
intensity normalization was performed to eliminate 
the heterogeneity of CT scan parameters. All CECT 
images were preprocessed by algorithm written in 
Python 3.9, which resampled the images to a voxel size of 
1.0 × 1.0 × 1.0 mm³ using linear interpolation. To facilitate 
feature extraction, the images were discretized with a bin 
width of 25 HU. Radiomics features were automatically 
extracted from the VOI using the open-source package 
PyRadiomics (version 3.0.1). A total of 851 radiomics 

Fig. 1 The flowchart of patient selection from three centers
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features were extracted from each VOI, including 107 
original features and 744 wavelet features. These features 
encompassed various categories, including first-order 
features (n = 162), shape features (n = 14), gray-level run 
length matrix (GLRLM) features (n = 144), gray-level 
dependency matrix (GLDM) features (n = 126), gray-level 
co-occurrence matrix (GLCM) features (n = 216), neigh-
borhood gray-tone difference matrix (NGTDM) features 
(n = 45), and gray-level size zone matrix (GLSZM) fea-
tures (n = 144).

Feature postprocessing and feature selection
To reduce the dimensionality of radiomics features, we 
employed a three-step approach to select the features 
within the training cohort. Initially, the radiomics fea-
tures of the training cohort were standardized through 
Z-score normalization. Subsequently, the maximum rel-
evance minimum redundancy (mRMR) and spearman’s 
rank correlation coefficient method were utilised to 
retain the best radiomics features for the prediction and 
eliminate the irrelevant and redundant ones. Finally, the 
least absolute shrinkage and selection operator (LASSO) 
algorithm was utilized to optimize the regularization 
parameter (λ) by employing to the 1-standard error of 
the minimum. This approach effectively controls the level 
of regularization, thereby reducing the complexity of the 
radiomics model by incorporating selected features with 
non-zero coefficients.

Radiomics models building
We utilized five different machine learning algorithms, 
including regularized logistic regression (LR), sup-
port vector machine (SVM), random forest (RF), light 
gradient boosting machine (LightGBM), and decision 
tree (DT), to construct the radiomics models. We used 
10-fold cross-validation for hyper-parameter tuning. The 
optimal machine learning algorithm was selected based 
on the evaluation of both fitting performance and gener-
alization performance.

Combined model building and evaluation
The clinical characteristics included preoperative CA125 
and CA199 level, age, tumor location, and menopause 
status. After univariate logistic regression analyses, the 
significant clinical characteristics variables of the train-
ing cohort were included in a multivariate logistic regres-
sion analysis to identify independent predictive factors. 
A clinical model was constructed by these independent 
predictive factors. Subsequently, a combined model was 
established by integrating independent predictive fac-
tors with radiomics features (λ ≠ 0). The aim was to inves-
tigate whether this integration could further improve 
the predictive performance. To ensure comparability, 
we employed the optimal machine learning algorithm 
as used in the radiomics model. The overall workflow 
is depicted in Fig.  2, illustrating the step-by-step pro-
cess of our study. The performance of the three models 
(clinical model, radiomics model, and combined model) 
in predicting advanced-stage EOC was assessed using 
the receiver operating characteristic (ROC) curves. The 
evaluation indicators for model performance include 
accuracy, sensitivity, specificity, and F1 score. Delong test 
was employed to compare the area under curve (AUC) 
among the clinical and radiomics models. The F-test was 
used to compare the AUC values of radiomics and com-
bined models, as well as clinical and combined models. 
Decision curve analysis (DCA) was utilized to assess and 
compare the net benefit difference among the clinical 
model, radiomics model and the combined model across 
various threshold probabilities. Net benefit is a weighted 
composite of true and false positives, with weights 
derived from the threshold probability [23].

Statistical analysis
Statistical analysis was conducted using SPSS 26.0, 
Python (version 3.9), and R software (version 4.2.1). The 
chi-square test was employed to compare qualitative 
data. The Kolmogorov-Smirnov test was utilized to assess 
the normal distribution of quantitative data. For normally 
distributed quantitative data, mean ± SD was used to 

Fig. 2 The workflow of radiomics. LASSO, least absolute shrinkage and selection operator
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express the results, and the t-test was employed for group 
comparisons. Non-normally distributed quantitative data 
were presented as medians with interquartile ranges, and 
comparisons were perfomed using the Mann-Whitney 
U-test. A significance level of P < 0.05 was considered sta-
tistically significant. The R packages and Python libraries 
used in this study are provided in Additional file 2: S1.

Results
Clinical characteristics
A total of 201 patients (77 in the early-stage group and 
124 in the advanced-stage group) were included in this 
study, with a training cohort of 106, an internal valida-
tion cohort of 46, and an external validation cohort of 
49. Details of the clinicopathological characteristics 
between the two groups are listed in Table 1. Significant 
differences were observed between the groups in CA125, 
histologic subtypes, tumor location and peritoneal 
metastasis (P < 0.05). There was a statistically significant 
difference in CA125 levels and tumor location between 
the early-stage and advanced-stage groups within the 
training cohort (P < 0.05) (Table 2). No significant differ-
ences were seen in terms of clinical characteristics among 
these three data cohorts (all P > 0.05). The results of the 
multivariate logistic regression analysis indicated that 
CA125 [P = 0.005, odds ratio (OR) = 1, confidence interval 
(CI) = 1-1.001] and tumor location (P = 0.027, OR = 2.228, 
CI = 1.094–4.538) were identified as significant indepen-
dent predictors for the FIGO staging of EOC.

Feature selection
A total of 851 radiomics features were initially extracted 
from each CT image. Subsequently, 610 radiomics fea-
tures demonstrating good consistency (ICC > 0.75) were 
selected for further feature screening. Then, the mRMR 
and spearman’s rank correlation coefficient method 
were used to retain 30 optimal radiomics features for 
predicting FIGO staging. Finally, the LASSO algorithm 
identified seven features with non-zero coefficients in 
the training cohort which were used to construct the 
radiomics model (Additional file 3: Figure S1). The weight 
of each feature was depicted in Fig. 3.

Table 1 The clinicopathological and radiological characteristics 
of EOC patients
Characteristics Early-stage 

(n = 77)
Advanced-
stage (n = 124)

P-value

Age (years) 53 (49, 59.5) 56 (49, 65) 0.1441

CA125 (U/mL) 229.4 (98.16, 
614.5)

815.95 (249.73, 
2187)

< 0.0011

CA199 (U/mL) 12.95 (5.4, 43.83) 13.03 (7.52, 
26.28)

0.8581

Menopause status 0.7212

Yes 56 (72.7%) 93 (75%)
No 21 (27.3%) 31 (25%)
Histologic subtypes < 0.0012

HGSC 45 (58.4%) 116 (93.5%)
Non-HGSC 32 (41.6%) 8 (6.5%)
Ki-67 expression 0.3502

≤ 50 40 (51.9%) 56 (45.2%)
> 50 37 (48.1%) 68 (54.8%)
Tumor location < 0.0012

Bilateral 26 (33.8%) 80 (64.5%)
Unilateral 51 (66.2%) 44 (35.5%)
Peritoneal metastasis < 0.0012

Yes 8 (10.4%) 94 (75.8%)
No 69 (89.6%) 30 (24.2%)
Data are presented as median (interquartile range) for non-normally distributed 
continuous variables, or number (%) for categorical variables. EOC, epithelial 
ovarian cancer; CA125, carcinoma antigen 125; CA199, carbohydrate antigen 
199; HGSC, high-grade serous carcinoma. 1Mann-Whitney U test. 2chi-square 
test

Table 2 Clinical characteristics of the training and validation cohorts
Characteristics Training (n = 106) P-value Internal validation (n = 46) P-value External validation (n = 49) P-value

Early-stage
(n = 39)

Advanced- 
stage (n = 67)

Early-stage
(n = 17)

Advanced-
stage (n = 29)

Early-stage
(n = 21)

Advanced- 
stage 
(n = 28)

Age (years) 54.56 ± 7.76 55.76 ± 9.72 0.5131 53.1 ± 13.6 58.31 ± 10.29 0.1461 55.57 ± 7.97 56.07 ± 8.67 0.8371

Menopause 0.6902 0.2762 0.9302

Yes 31 (79.5%) 51 (76.1%) 11 (64.7%) 23 (79.3%) 14 (66.7%) 19 (67.9%)
No 8 (20.5%) 16 (12.9%) 6 (35.3%) 6 (20.7%) 7 (33.3%) 9 (32.1%)
CA125 (U/mL) 236.2

(120.4, 630)
1158
(247, 2973.7)

0.0023 221.6
(88, 622.2)

676
(255,1187.3)

0.0333 224.9
(73.0, 802)

1058
(332.7,1997)

0.0033

CA199 (U/mL) 14.38
(5.75, 38.2)

14.7
(8.9, 27.6)

0.5933 9.33
(4.0, 36.3)

14.58
(8.11, 28.7)

0.9373 13.51
(6.1, 149.9)

9.52
(5.48, 19.3)

0.3323

Tumor location 0.0272 0.0792 < 0.0012

Bilateral 14 (35.9%) 39 (58.2%) 6 (35.3%) 18 (62.1%) 6 (28.6%) 23 (82.1%)
Unilateral 25 (64.1%) 28 (41.8%) 11 (64.7%) 11 (37.9%) 15 (71.4%) 5 (17.9%)
Data are presented as mean ± standard deviation for normally distributed continuous variables, median (interquartile range) for non-normally distributed continuous 
variables, or number (%) for categorical variables. CA125, carcinoma antigen 125; CA199, Carbohydrate antigen 199. 1t test. 2chi-square test. 3Mann-Whitney U test
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Radiomic models building and comparison
The results of constructing radiomics models using five 
machine learning algorithms are presented in Table  3. 
The LR model outperformed the SVM model in the 
training cohort (AUC of 0.80 vs. 0.75). However, both 
the SVM model and LR model showed unstable in the 
external validation cohort, with low AUCs (AUC of 0.54 
and 0.51 respectively). Conversely, the DT, and RF mod-
els exhibited trend of overfitting across all three cohorts. 
The LightGBM model displayed promising AUCs of 0.83, 
0.80, and 0.68 in the training cohort, internal valida-
tion cohort, and external validation cohort, respectively. 

These results indicate that the radiomics model con-
structed using the LightGBM algorithm emerges as the 
optimal choice for preoperative FIGO staging prediction 
of EOC.

Combined model evaluation
Table 4 lists the performance metrics of the three mod-
els for prediction EOC stage. Figure  4 shows the ROC 
curves of the three models for the training, internal vali-
dation and external validation cohorts. The combined 
model demonstrated the highest diagnostic efficiency, 
achieving the AUCs of 0.95 (95% CI, 0.91–0.99; accuracy, 

Table 3 The results of five machine learning algorithms utilized for constructing radiomics models
Model AUC (95% CI) Sensitivity Specificity Accuracy F1 score
LightGBM
Training 0.83 (0.75–0.91) 0.75 0.77 0.75 0.79
Internal validation 0.80 (0.67–0.93) 0.76 0.65 0.72 0.77
External validation 0.68 (0.52–0.84) 0.68 0.76 0.71 0.73
LR
Training 0.80 (0.71–0.89) 0.75 0.77 0.76 0.82
Internal validation 0.80 (0.66–0.93) 0.72 0.77 0.74 0.78
External validation 0.51 (0.34–0.67) 0.46 0.48 0.47 0.40
SVM
Training 0.75 (0.65–0.86) 0.88 0.59 0.77 0.81
Internal validation 0.83 (0.71–0.96) 0.72 0.88 0.78 0.81
External validation 0.54 (0.37–0.70) 0.64 0.38 0.53 0.44
DT
Training 0.95 (0.91–0.98) 0.75 1.00 0.84 0.89
Internal validation 0.62 (0.45–0.79) 0.97 0.41 0.76 0.84
External validation 0.60 (0.44–0.75) 0.86 0.33 0.63 0.73
RF
Training 0.99 (0.98-1.00) 0.93 1.00 0.95 0.95
Internal validation 0.75 (0.60–0.90) 0.76 0.71 0.74 0.78
External validation 0.67 (0.51–0.83) 0.54 0.81 0.65 0.69
LightGBM, light gradient boosting machine; LR, logistic regression; SVM, support vector machine; DT, decision tree; RF, random forest; AUC, area under the curve; 
95% CI, 95% confidence interval

Fig. 3 Radiomics features selected by the least absolute shrinkage and selection operation regression method and their corresponding weights. GLCM, 
gray-level co-occurrence matrix; GLDM, gray-level dependency matrix; GLSZM, gray-level size zone matrix
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90%; sensitivity, 84%; specificity, 100%; F1 score, 91%) in 
training cohort, 0.83 (95% CI, 0.71–0.96; accuracy, 83%; 
sensitivity, 90%; specificity, 71%; F1 score, 87%) in the 
internal validation cohort, and 0.79 (95% CI, 0.66–0.92; 
accuracy, 78%; sensitivity, 82%; specificity, 71%; F1 score, 
81%) in the external validation cohort. In the internal val-
idation cohort, the radiomics model achieved a moder-
ate AUC of 0.80 (95% CI, 0.67–0.93), outperforming the 
clinical model with an AUC of 0.68 (95% CI, 0.51–0.85). 
The Delong test showed that there were no differences in 
AUC values between the clinical model and the radiomics 
model among the three cohorts (all P > 0.05). F-test 
showed that the AUC values of the combined model were 
significantly better than those of the radiomics model 
in the training cohort, internal validation cohort, and 
external validation cohort (P < 0.001, P = 0.024, P = 0.011, 
respectively). However, the AUC value of the combined 
model was only higher than that of the clinical model 
in the training cohort (P = 0.016). The DCA indicated 
that the combined model had a higher total benefit than 
the clinical model and radiomics model across the most 
reasonable threshold probabilities, meaning that the 

combined model was useful in predicting FIGO stage sta-
tus in EOC patients (Fig. 5).

Discussion
In this multicenter study, a combined model was devel-
oped that integrates radiomics features and clinical 
characteristics to forecast the FIGO stage of patients 
with EOC. The combined model exhibited superior 
predictive efficacy in staging EOC, surpassing both the 
individual clinical model and radiomics model. Exter-
nal independent datasets were employed to validate the 
model, affirming its predictive worth and generalizability, 
while also highlighting its potential for clinical applica-
tion. Our study suggests that the combined model has the 
potential to be a noninvasive tool for staging EOC, which 
could assist in the decision-making process for selecting 
a therapeutic strategy.

CA125 is presently the most frequently employed bio-
marker for ovarian cancer, with over 80% of EOC patients 
showing elevated blood levels of this marker. CA125 
serves as a crucial reference indicator for assessing the 
effectiveness of diagnostic and treatment approaches, as 
well as predicting the likelihood of recurrence in EOC 

Table 4 Predictive performance of the three models for staging EOC.
Model AUC (95% CI) Sensitivity Specificity Accuracy F1 score
Training cohort
Clinical model 0.81 (0.72–0.90) 0.79 0.72 0.76 0.81
Radiomics model 0.83 (0.75–0.91) 0.75 0.77 0.75 0.79
Combined model 0.95 (0.91–0.99) 0.84 0.99 0.90 0.91
Internal validation cohort
Clinical model 0.68 (0.51–0.85) 0.59 0.76 0.65 0.68
Radiomics model 0.80 (0.67–0.93) 0.76 0.65 0.72 0.77
Combined model 0.83 (0.71–0.96) 0.90 0.71 0.83 0.87
External validation cohort
Clinical model 0.73 (0.57–0.88) 0.71 0.67 0.69 0.73
Radiomics model 0.68 (0.52–0.84) 0.68 0.76 0.71 0.73
Combined model 0.79 (0.66–0.92) 0.82 0.71 0.78 0.81
EOC, epithelial ovarian cancer; AUC, area under the curve; 95% CI, 95% confidence interval

Fig. 4 Receiver operating characteristic curves for the clinical model, radiomics model, and combined model in the training cohort (A), internal validation 
cohort (B), and the external validation cohort (C). ROC, receiver operating characteristic. AUC, area under the curve
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[24]. However, it is important to note that CA125 lacks 
specificity as a diagnostic marker for EOC, as it also 
exhibits a certain degree of positivity in other malig-
nancies such as lung cancer and various gynecological 
tumors. The American College of Radiology appropri-
ateness criteria guidelines have assigned CA125 with 
a rating of utmost appropriateness, comparable to CT, 
underscoring the comprehensive significance of CA125 
in preoperative staging [25]. The present study has 
revealed that both tumor location and CA125 are inde-
pendent risk factors for diagnosing FIGO staging of EOC 
patients. After being incorporated into the clinical model, 
the AUC value was 0.81 (95% CI, 0.72–0.90), while the 
sensitivity and accuracy were 79% and 76% respectively. 
The diagnostic performance in predicting the FIGO stag-
ing of EOC was deemed to be moderate.

Radiomics is capable of extracting a substantial quan-
tity of quantitative imaging characteristics that are 
indicative of texture, intensity, heterogeneity, and mor-
phological information with a high degree of efficiency. 
These characteristics are not discernible through visual 
assessment, but they can reflect tumor heterogeneity at 
the cellular level [19, 26]. In our radiomics model, the fea-
ture with the highest weightage is shape sphericity. The 
concept of sphericity relates to the degree of circularity 
of a shape in comparison to a sphere [27]. Our observa-
tions reveal a statistically significant decrease in spheric-
ity among patients with advanced-stage EOC compared 
to those in early-stage. This phenomenon may be attrib-
uted to the distinct growth patterns exhibited by the two 
stages. Early-stage EOC is distinguished by a gradual and 
localized progression limited to the ovary. Conversely, 
advanced-stage EOC exhibits a significantly aggressive 
and genetically unstable phenotype, leading to an irregu-
lar growth pattern that deviates from a spherical shape 
[28]. Radiomics has the capability to forecast the FIGO 
staging status of EOC by analyzing the microstructural 
alterations in the tumor region.

Currently, diverse machine learning algorithms, 
including LR, RF, and SVM, have been employed in 
the radiomics analysis. LightGBM is an innovative and 
sophisticated gradient boosting decision tree algorithm 
that facilitates efficient parallel training. This algorithm 
significantly improves the speed and precision of train-
ing and inference through effective histogram optimi-
zation and acceleration techniques [29]. Dong et al. 
investigated whether patients with advanced non-small 
cell lung cancer had oligomyosis by combining chest CT 
radiomics features with the LightGBM classifier. After 
bayesian hyperparameter tuning of the LightGBM model, 
the model achieved better predictive performance [30]. 
In our study, the LightGBM model achieved a moderate 
AUC of 0.83, and 0.80 in the training cohort, and internal 
validation cohort, respectively. F1 score was employed to 
assess the balance between precision and recall, yielded 
values of 0.79 and 0.77 on the training cohort and inter-
nal validation cohort, respectively. These findings suggest 
that the predictive capacity of the model for FIGO stag-
ing in EOC patients is commendable, and may facilitate 
the development of tailored therapeutic strategies in clin-
ical settings.

In recent years, several studies have been conducted 
on CT radiomics to forecast the clinicopathological attri-
butes of ovarian cancer. These studies encompass the 
differentiation between primary and secondary ovarian 
cancers, the prediction of histologic subtypes, and the 
identification of lymph node metastasis associated with 
ovarian cancer [31–33]. However, there is currently a 
lack of research on models for preoperative prediction 
of the staging of EOC. Accurately predicting the FIGO 
staging of EOC before treatment is crucial in formulat-
ing effective treatment strategies. Based on this, this 
study constructed a radiomics model by extracting high-
throughput information from the CECT images. The 
AUC value was 0.83 (95% CI, 0.75–0.91), and the sensi-
tivity and accuracy were 75% and 75%, respectively. The 

Fig. 5 Decision curve analysis of clinical model, radiomics model, and combined model in the training cohort (A), internal validation cohort (B), and ex-
ternal validation cohort (C). The combined model had a higher overall net benefit in the differentiation of advanced-stage (dashed line) from early-stage 
(black solid line) across the full range of threshold probabilities at which an EOC patient would have an FIGO stage-positive
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diagnostic performance of predicting the EOC staging 
was moderate. After incorporating the clinical variables 
(CA125 and tumor location) to construct a combined 
model, the AUC value increased to 0.95 (95% CI, 0.91–
0.99), further improving the diagnostic efficacy of pre-
dicting the EOC staging. The utilization of an external 
independent dataset to validate the model yielded an 
AUC value of 0.79 (95% CI, 0.66–0.92), indicating the 
model’s robustness and potential for practical imple-
mentation in clinical settings. The DCA also showed 
that whether it is the training cohort, internal valida-
tion cohort, or external validation cohort, the combined 
model yielded more net benefits than other models for 
preoperative prediction of EOC stage. DCA helps deter-
mine which patients should receive treatment by cal-
culating net benefits. For advanced-stage patients, the 
approach involves the combination of neoadjuvant che-
motherapy with surgical treatment, ensuring precise and 
appropriate clinical interventions. Conversely, early-stage 
patients undergo surgical treatment alone, thus avoiding 
unnecessary chemotherapy.

The majority of CT radiomics studies currently are 
conducted by single institution, resulting in limited vali-
dation of their conclusions. Furthermore, variations in 
research locations, suppliers, or protocols may impact 
the voxel intensity spectrum, thereby compromising the 
universality of the model [34]. To address this, our study 
adopted a multicenter approach, leveraging data from 
two prominent institutions for the training and internal 
validation datasets. Additionally, an independent exter-
nal dataset from another center was used to validate the 
model’s performance. The research findings demonstrate 
that the AUC of the combined model in the external vali-
dation cohort is 0.79 (95% CI, 0.66–0.92), which suggests 
its predictive efficacy and potential for generalization.

This multicenter study has some limitations. First, the 
tumor segmentation process was performed manually, 
potentially being influenced by the radiologist’s level 
of expertise. One of our future research directions will 
involve the exploration of automatic segmentation tech-
niques for tumor lesions. Additionally, despite the utili-
zation of patients from three prominent medical centers, 
our study’s sample size remained relatively small. Studies 
with larger sample sizes are needed to further validate 
our findings in subsequent investigation.

Conclusions
In summary, the combined model based on CECT 
radiomics features and clinical characteristics shows 
promise as a non-invasive supplementary diagnostic tool 
for preoperative evaluation the FIGO staging status of 
EOC. Our discoveries could provide valuable direction 
for preoperative clinical decision-making and enhance 
patient outcomes.

Abbreviations EOC Epithelial ovarian cancer.

FIGO International Federation of Gynecology and 
Obstetrics.

PET Positron emission tomography.
MRI Magnetic resonance imaging.
CECT Contrast-enhanced computed tomography.
CA125 Carcinoma antigen 125.
CA199 Carbohydrate antigen 199.
VOI Volume of interest.
ICC Intraclass correlation coefficient.
GLRLM Gray-level run length matrix.
GLDM Gray-level dependence matrix.
GLCM Gray-level co-occurrence matrix.
NGTDM Neighborhood gray-tone difference matrix.
GLSZM Gray-level size zone matrix.
mRMR Maximum relevance minimum redundancy.
LASSO Least absolute shrinkage and selection 

operator.
LR Logistic regression.
SVM Support vector machine.
RF Random forest.
LightGBM Light gradient boosting machine.
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AUC Area under curve.
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