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Abstract
Background  Primary prostate cancer with metastasis has a poor prognosis, so assessing its risk of metastasis is 
essential.

Methods  This study combined comprehensive ultrasound features with tissue proteomic analysis to obtain 
biomarkers and practical diagnostic image features that signify prostate cancer metastasis.

Results  In this study, 17 ultrasound image features of benign prostatic hyperplasia (BPH), primary prostate cancer 
without metastasis (PPCWOM), and primary prostate cancer with metastasis (PPCWM) were comprehensively 
analyzed and combined with the corresponding tissue proteome data to perform weighted gene co-expression 
network analysis (WGCNA), which resulted in two modules highly correlated with the ultrasound phenotype. We 
screened proteins with temporal expression trends based on the progression of the disease from BPH to PPCWOM 
and ultimately to PPCWM from two modules and obtained a protein that can promote prostate cancer metastasis. 
Subsequently, four ultrasound image features significantly associated with the metastatic biomarker HNRNPC 
(Heterogeneous nuclear ribonucleoprotein C) were identified by analyzing the correlation between the protein and 
ultrasound image features. The biomarker HNRNPC showed a significant difference in the five-year survival rate of 
prostate cancer patients (p < 0.0053). On the other hand, we validated the diagnostic efficiency of the four ultrasound 
image features in clinical data from 112 patients with PPCWOM and 150 patients with PPCWM, obtaining a combined 
diagnostic AUC of 0.904. In summary, using ultrasound imaging features for predicting whether prostate cancer is 
metastatic has many applications.

Conclusion  The above study reveals noninvasive ultrasound image biomarkers and their underlying biological 
significance, which provide a basis for early diagnosis, treatment, and prognosis of primary prostate cancer with 
metastasis.
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Introduction
Prostate cancer ranks second in incidence and fifth in 
mortality worldwide, making it one of the most preva-
lent malignant diseases among male cancer patients [1]. 
Approximately 15% of cases are metastatic at diagnosis 
[1]. Prostate cancer without metastasis can be effectively 
treated with surgical removal or radiation therapy, result-
ing in a 5-year survival rate of more than 90%. The 5-year 
survival rate decreases to 31% for prostate cancer with 
metastasis [1, 2]. Although the metastatic sites of pros-
tate cancer exhibit diversity, the occurrence of metastasis 
depends on the biological behavior of the primary tumor 
[3]. Therefore, the assessment of prostate status before 
the biopsy is of great significance for accurate clinical 
diagnosis, formulation of optimal treatment, and evalua-
tion of patient prognosis.

Ultrasound and multiparametric MRI (mp-MRI) are 
the primary imaging methods for assessing prostate can-
cer status. Although mpMRI has high tissue resolution, 
it has certain limitations due to its long scanning time, 
high cost, and contraindications [4]. Ultrasound, a low-
cost, reproducible, and convenient imaging technology, 
is gradually gaining momentum in supplementing and 
replacing mpMRI [5, 6]. Multiple image features of ultra-
sound, such as grayscale, Doppler flow imaging, elas-
tography, and contrast-enhanced ultrasound, are often 
used in varying degrees of combination for systematic 
scanning and biopsy of prostate patients. The study has 
used contrast-enhanced ultrasound parameters to pre-
dict bone metastasis [7]. Some studies have established a 
scoring system or machine learning model based on vari-
ous ultrasonic image features and measurements, which 
are essential in identifying malignant prostate cancer and 
assessing prostate cancer risk [8–10]. However, studies 
still lack evaluating ultrasound image features to predict 
whether prostate cancer has metastasized. Using more 
comprehensive and straightforward ultrasound imag-
ing features is of great practical significance for assess-
ing prostate cancer with metastasis and a prerequisite 
for understanding the underlying biological functions 
behind the ultrasound phenotypic features.

Proteins play a critical role in completing biological 
functions. With the advancement of mass spectrometry, 
there has been a stream of proteomic studies centered on 
prostate cancer with lymph node or distant metastasis 
[11]. These studies reveal that the proteome of primary 
prostate cancer with metastasis exhibits more significant 
heterogeneity than primary prostate cancer [12]. As pros-
tate cancer progresses to an advanced stage of metastasis, 
there is a more substantial alteration in the proteomic 

changes reflecting cell cycle and DNA damage [13, 14]. 
Several studies have identified protein markers that 
promote prostate cancer metastasis using proteomics 
techniques [15, 16]. However, molecular markers that 
accurately predict metastatic risk are still lacking. Also, 
these proteomic studies need to be matched with imag-
ing and pathology to determine their clinical significance.

Radiogenomics combines the radiomics features with 
the molecular characteristics of tumor tissue, including 
genome, transcriptome, proteome, and metabolome, pro-
viding a new way to understand the biological functions 
behind the image [17]. The application of radiogenomics 
in studying ultrasonic phenotype and proteomics of pros-
tate cancer with metastasis remains blank. This research 
extracted the ultrasonic phenotypic characteristics of 
patients with benign prostate cancer, prostate cancer 
without metastasis, and prostate cancer with metastasis. 
We then combined this data with proteomic information 
obtained from puncture biopsy tissues. Through correla-
tion analysis, we aimed to uncover changes in proteomics 
associated with the ultrasonic phenotype of prostate can-
cer with metastasis and to investigate its potential biolog-
ical significance.

Materials and methods
Ethical approval
All human tissues, clinical data, ultrasound images, and 
pathology results used in this study were approved by the 
Chongqing University Affiliated Tumor Hospital Ethics 
Review Committee (protocol code 2019 − 177 and date 
of approval 23 October 2019), and written consent was 
obtained from the patients. Patients’ names were anony-
mized according to ethical and legal standards.

Clinical material and patient inclusion criteria
We collected clinical data, ultrasound images, and 
pathological results of prostate patients who under-
went ultrasound-guided puncture at Chongqing Univer-
sity Affiliated Tumor Hospital from November 2018 to 
December 2022. Inclusion criteria were as follows: (1) 
Patients who underwent ultrasound-guided prostate tar-
geted biopsy or radical prostatectomy within one week 
after contrast-enhanced ultrasound examination and 
obtained successful pathological results. (2) Ultrasound 
images, including grayscale, Doppler flow imaging, and 
contrast-enhanced ultrasound, were recorded and saved 
in DICOM format. Exclusion criteria were as follows: (1) 
Patients had a history of prostate disease or prostate sur-
gery. (2) Patients were taking 5-alpha reductase inhibi-
tors and/or endocrine therapy drugs for prostate cancer 
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based on Pinto F et al.‘s report [18]. (3) The ultrasound 
images were missing or incomplete. (4) The pathological 
results and Gleason score were incomplete.

Ultrasound scanning and imaging feature analysis
The patient’s prostate was sequentially scanned in the 
apex, middle, and base planes using the CANON Aplio 
500 or i800 instrument equipped with a rectal cav-
ity probe operating at a frequency of 5 ~ 9  MHz. Sub-
sequently, the prostate was observed in the axial plane. 
All patients were diagnosed, and ultrasound doctors 
extracted ultrasound image features with more than 
three years of experience. Conventional ultrasound tech-
niques employed in this process include grayscale and 
Doppler flow imaging, encompassing color Doppler flow 
imaging and power Doppler flow imaging. Imaging fea-
tures observed and recorded in prostate cancer patients 
include envelope integrity, bilateral morphological sym-
metry, the demarcation between the inner and outer 
glands, features of suspected lesions (length, boundary, 
shape, echo pattern, and blood flow), suspected lesion 
state, suspected lesion location, suspected lesion distri-
bution, and vessels penetrating between the inner and 
outer gland.

For contrast-enhanced ultrasound, 2.4 mL of Sonovar 
contrast agent was injected through the cubital vein, fol-
lowed by 5 mL of normal saline. Upon initial injection 
of the contrast agent, the prostate was rapidly scanned 
sequentially. When suspicious lesions were detected, the 
probe was fixed, and another contrast agent injection was 
administered. Real-time monitoring of perfusion and 
regression patterns was carried out for approximately 
5  min. A comparison was made between the suspected 
lesion and the surrounding tissue, as well as the corre-
sponding site on the opposite side, to observe imaging 
features specific to prostate cancer patients. The con-
trast-enhanced Ultrasound imaging features include the 
demarcation between inner and outer glands, time to 
arrival compared to the normal region of the outer gland, 
peak enhancement compared to the normal region of the 
outer gland, time to arrival compared to the inner gland, 
and peak enhancement compared to the inner gland. All 
the collected ultrasound features mentioned above can 
be found in Supplementary Table 2.

LC-MS/MS analysis
All tissue samples were collected from lesions with 
abnormal features by an experienced radiologist using an 
18-G needle under ultrasound guidance. An automated 
tissue homogenizer (SPEX SamplePrep, MiniG) was 
employed to extract total protein from prostate tissues 
with SDS lysis solution (Beyotime, P0013G). The pro-
teins (200 µg /sample) were digested for 16 h by trypsin. 
Q Exactive Orbitrap Mass Spectrometers equipped with 

UltiMate 3000 RSLCnano System (3 μm, 0.075 × 150 mm, 
Thermo Fisher) were used in this study. Previous articles 
described the liquid phase and mass spectrometry condi-
tions [19, 20]. We identified and quantified proteins from 
the raw data of mass spectrometry using Proteome Dis-
coverer (PD) 2.0 against the human RefSeq protein data-
base. The search criteria are consistent with our previous 
reports [21–23].

Construction of the weighted gene co-expression network
Weighted Gene Co-expression Network Analysis 
(WGCNA) analyzes gene expression patterns in mul-
tiple samples and clusters genes with similar expres-
sion patterns into modules that can be correlated with 
ultrasound phenotypes. We used the WGCNA software 
package to construct the gene co-expression network. To 
improve the reliability of the results, we set the minimum 
gene number to 30 and the sensitivity to 3.0 to construct 
a weighted co-expression network. Pearson correlation 
test was used to evaluate the correlation between each 
module and ultrasonic image features, and the key mod-
ules were analyzed.

Survival analysis
Using data from the Human Protein Atlas website 
(https://www.proteinatlas.org/), we performed a Kaplan-
Meier survival analysis by dividing prostate cancer 
patients into two groups based on the level of HNRNPC 
protein expression. We compared the survival outcomes 
of the two groups by log-rank tests (accession date: 
2023-9-28).

Receiver operating characteristic (ROC) curve analysis
The ROC analyses were presented using GraphPad 
Prism 8.3 software. A total of 262 patients who under-
went ultrasound-guided puncture at Chongqing Univer-
sity Affiliated Tumor Hospital from November 2018 to 
December 2022 were included in this study.

Protein-protein interaction network analysis
We used the STRING database (https://string-db.org/) 
for protein-protein interaction network analysis, setting 
the interaction score greater than 0.7. We used Cyto-
scape software to beautify the protein-protein interaction 
network.

Bioinformatics analysis
The Gene ontology (GO) enrichment and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analyses 
were performed using an online tool (The WebGestalt 
system, http://www.webgestalt.org/), setting significance 
level p < 0.05. The R software was used for other analyses 
in this study.

https://www.proteinatlas.org/
https://string-db.org/
http://www.webgestalt.org/
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Statistical analysis
We employed GraphPad Prism 8.3 software for statistical 
analysis and described the methods of analyzing signifi-
cance in the corresponding figure legends.

Results
Description of the overall research program
To investigate the ability of ultrasound features combined 
with proteomics to detect primary prostate cancer with 
metastasis, we extracted 17 features from ultrasound 
images and established scoring rules (Supplemental 
Table 2). On the other hand, we collected prostate tissue 
from 24 patients for mass spectrometry analysis. How-
ever, with incomplete ultrasound imaging data from 3 
patients, mass spectrometry data from 21 patients were 
used in subsequent research, including five patients with 
BPH, six with PPCWOM, and ten with PPCWOM. We 
showed the sample information, including the patient’s 
age (Supplemental Fig.  1A), the tumor-to-sample ratio 
(Supplemental Fig.  1B), the Gleason score (Supplemen-
tal Fig. 1C) and the free-to-total ratio of prostate-specific 
antigen (PSA, Supplemental Fig. 1D). We also displayed 
the H&E staining results of prostate tissue from 21 
patients (Supplemental Fig.  2). Further, we presented 
clinical information (Supplemental Table 1), ultrasound 
feature scores (Supplemental Table 4), and proteins 
detected (Supplemental Table 3) from prostate tissue 
for these 21 patients. After a complex analytical process 
(Fig. 1), we developed an ultrasound-protein model that 

can be used to predict prostate cancer with metastasis. 
Finally, we validated this model using ultrasound charac-
teristics and clinical data from 262 patients (Supplemen-
tal Table 5).

Integrated analysis of ultrasound features and proteomic 
data
We constructed a hierarchical clustering tree using an 
unscaled co-expression network and topological overlap 
techniques based on ultrasound image features from 21 
samples and their corresponding proteomic information. 
To create a scale-free network, we selected β = 5 as the 
soft-threshold power (Fig. 2A). Subsequently, we identi-
fied seven modules within the scale-free network (Fig. 2B 
and C). Each module was assigned a color, namely blue, 
brown, turquoise, grey, yellow, green, and red, with corre-
sponding module protein counts of 1066, 514, 2900, 537, 
387, 148, and 52, respectively (Fig.  2D). We have found 
a strong correlation between three modules and several 
ultrasound image features. Specifically, the turquoise 
module is highly correlated with feature 4 (R2 = 0.624, 
p = 0.0025), as well as feature 14 (R2 = 0.624, p = 0.0025) 
and feature 15 (R2 = 0.624, p = 0.0025). The brown mod-
ule exhibits a strong correlation with feature 1 (R2 = 0.666, 
p = 0.000981), feature 2 (R2 = 0.774, p = 0.0000384), fea-
ture 3 (R2 = 0.719, p = 0.00024), feature 8 (R2 = 0.644, 
p = 0.00163), and feature 11 (R2 = 0.683, p = 0.000644). 
Similarly, the yellow module highly correlates with fea-
ture 2 (R2 = 0.706, p = 0.000349) and feature 3 (R2 = 0.622, 

Fig. 1  Flowchart of the study in this paper and inclusion criteria for clinical patients
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p = 0.00261). Notably, the brown and turquoise modules 
showed a higher correlation with multiple ultrasound 
features, and the brown and turquoise modules were 
identified as hub modules (Fig. 2E).

Screening of differential expression proteins and 
functional analysis in the turquoise module
We analyzed the expression patterns of the turquoise 
module in BPH, PPCWOM, and PPCWM (Fig.  3A). 
Based on a p-value < 0.01 and log2FC ≥ 2, we selected 

Fig. 2  Identification of critical modules based on WGCNA. (A) Analyze the scale-free topology model fitting index (ft) and mean connectivity across a 
range of soft threshold powers (β) from 1 to 20. (B) Visualize protein networks using a network heatmap. Proteins are grouped into different modules 
through hierarchical clustering, and different colors represent different modules. (C) Clustering dendrogram: the top half represents a hierarchical cluster-
ing tree diagram of the proteins, while the bottom half corresponds to the protein modules. (D) Member number in modules. (E) Correlation between 
module and trait. 1 to 17 represent different ultrasound features. 1: Lesion length, 2: Envelope integrity, 3: Bilateral morphological symmetry, 4: The de-
marcation between the inner and outer glands, 5: Lesion boundary, 6: Shape of the lesion, 7: Echo pattern, 8: Lesion state, 9: Lesion location, 10: Lesion 
distribution, 11: Blood flow, 12: Penetrating vessel, 13: The demarcation between inner and outer glands after contrast-enhanced ultrasound, 14: Time to 
arrival compared to the normal region of the outer gland, 15: Peak enhancement compared to the normal region of the outer gland, 16: Time to arrival 
compared to the inner gland, 17: Peak enhancement compared to the inner gland

 



Page 6 of 13Fu et al. BMC Cancer          (2024) 24:290 

Fig. 3  The protein expression and functional analysis of the turquoise module. (A) Heatmap depicting the expression of proteins in the turquoise module 
across samples of BPH (benign prostatic hyperplasia), PPCWOM (primary prostate cancer without metastasis), and PPCWM (primary prostate cancer with 
metastasis). (B) Differential expression proteins volcano plot between BPH and PPCWOM in the turquoise module. (C) Differential expression proteins vol-
cano plot between BPH and PPCWM in the turquoise module. (D) Venn diagram shows 82 increased proteins shared in PPCWOM/BPH and PPCWM/BPH. 
(E) GO enrichment analysis of 82 differential expression proteins in biological process, molecular function, and cellular component. (F) KEGG pathway 
enrichment results for 82 differential expression proteins
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926 differential expression proteins in PPCWOM/BPH 
(Fig.  3B), as well as 215 differential expression proteins 
in PPCWM/BPH (Fig.  3C). Furthermore, we identified 
82 shared differential expression proteins in PPCWOM/
BPH and PPCWM/BPH (Fig. 3D). We used GO enrich-
ment analysis to reveal the functional distribution of 
these proteins in the Biological process (BP)、Cellular 
component (CC), and Molecular function (MF) (Fig. 3E). 
In BP, they were mainly involved in gene expression, 
cellular nitrogen compound metabolic process, mito-
chondrial gene expression, RNA processing, nitrogen 
compound metabolic process, RNA metabolic process, 
and mitochondrial translation. In CC, they were primar-
ily associated with intracellular organelle lumen, ribo-
nucleoprotein complex, mitochondrion, intracellular 
membrane-bounded organelle, large ribosomal subunit, 
mitochondrial matrix, and ribosomal subunit. In MF, 
they exhibited functionality related to RNA binding, het-
erocyclic compound binding, organic cyclic compound 
binding, nucleic acid binding, structural constituent of 
ribosome, snoRNA binding, and binding. Additionally, 
these proteins were significantly enriched in the KEGG 
pathway, such as spliceosome, aminoacyl-tRNA biosyn-
thesis, ribosome, ribosome biogenesis in eukaryotes, 
lysine degradation, and ubiquinone and other terpenoid-
quinone biosynthesis (Fig. 3F).

Screening of differential expression proteins and 
functional analysis in the brown module
Next, we analyzed the expression patterns of the brown 
module in BPH, PPCWOM, and PPCWM (Fig.  4A). 
Based on a p-value < 0.01 and log2FC ≥ 2, we selected 
2 differential expression proteins in PPCWOM/ BPH 
(Fig.  4B), as well as 110 differential expression proteins 
in BPH and PPCWM (Fig. 4C). Due to the limited num-
ber of differential expression proteins obtained through 
filtering, we conducted GSEA (Gene Set Enrichment 
Analysis) separately to analyze protein enrichment in 
PPCWOM/BPH and PPCWM/BPH. The results showed 
that the enriched pathways were mainly related to purine 
metabolism, ribosome, and spliceosome (Fig. 4D and E).

Protein expression temporal analysis in the brown and 
turquoise modules
We performed protein expression temporal analysis in 
the brown and turquoise modules to identify proteins 
with dynamic expression patterns from BPH to PPC-
WOM and eventually PPCWM (Fig.  5A). Five distinct 
expression trends were identified and categorized, with 
the C1 class showing a progressive increase in expression 
levels as the disease worsens (Fig. 5B). Furthermore, the 
KEGG pathway analysis for the C1 proteins revealed sig-
nificant enrichment in the splicesome pathway (Fig. 5C).

Ultrasound imaging features combined with proteomic 
analysis to predict prostate cancer prognosis and 
metastasis
We constructed protein-protein interaction networks 
from the splicesome pathway (Fig.  6A). Additionally, 
we performed a correlation analysis between these pro-
teins and 17 ultrasound phenotypic features. The results 
showed a high correlation between HNRNPC pro-
tein and ultrasound features (Fig.  6B). The scatterplot 
revealed that the correlation between the HNRNPC 
protein expression level and the comprehensive ultra-
sound features reached 0.78 (Supplementary Fig.  3). 
Among them, HNRNPC showed the highest correlation 
with lesion length, with a similarity coefficient of 0.78 
(Fig.  6C). The correlation of HNRNPC with the demar-
cation between the inner and outer glands, lesion state, 
blood flow, time to arrival compared to the normal region 
of the outer gland, and peak enhancement compared to 
the normal region of the outer gland also reached 0.72, 
0.73, 0.76, 0.72 and 0.72, respectively (Supplementary 
Fig.  4). Further analysis revealed a significant difference 
in the five-year survival rate of prostate cancer patients 
based on HNRNPC expression (p < 0.0053) (Fig. 6D).

Finally, 112 patients with PPCWOM and 150 patients 
with PPCWM were included in this study. The four 
features with the highest correlation with HNRNPC 
expression levels (feature 1, lesion length; feature 4, the 
demarcation between the inner and outer glands; fea-
ture 8, lesion state; feature 11, blood flow) were evalu-
ated using Receiver Operating Characteristics (ROC) 
curves to identify the diagnostic capabilities for meta-
static prostate cancer patients. The results showed that 
features 1, 4, 8, and 11 exhibited high diagnostic capabili-
ties. The Area Under the Curve (AUC) values for these 
features were 0.804, 0.745, 0.851, and 0.721, respectively 
(p < 0.0001) (Fig.  6E). Also, we showed these four ultra-
sound features representative images in PPCWOM and 
PPCWM patients (Fig.  6F and Supplementary Fig.  5). 
When these four ultrasound imaging features were com-
bined, the diagnostic ability was further enhanced, with 
an AUC of 0.904 (p < 0.0001) (Fig. 6G). The above results 
suggest that combining four ultrasound imaging features 
may improve the accuracy of diagnosing prostate cancer 
with metastasis.

Discussion
In this study, we utilized comprehensive and practical 
ultrasound image features integrated with proteomics to 
explore the biological functions performed by proteomics 
behind ultrasound images. We also demonstrated the 
temporal expression changes of proteins through the 
progression from benign prostatic hyperplasia to local-
ized prostate cancer to prostate cancer with metastasis. 
Proteins with temporal expression trends were correlated 
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with ultrasound image features to obtain protein markers 
contributing to the development of prostate cancer and 
ultrasound image features with diagnostic capability for 
primary prostate cancer with metastasis.

Current studies have utilized grayscale, color/power 
Doppler imaging, and quantitative ultrasonographic 
parameters to analyze echo and flow differences to assess 
the metastaticity of prostate tumors and non-quantitative 

ultrasound phenotypic features for prostate cancer risk 
stratification [7, 8]. These studies set the stage for our 
evaluation of prostate tumors with metastasis. Usually, 
qualitative characteristics are more accessible to mea-
sure and observe than quantitative parameters, and they 
are also suitable for generalization to primary hospitals. 
Therefore, the 17 ultrasound phenotypic features of pros-
tate cancer we selected were mainly qualitative.

Fig. 4  The protein expression and functional analysis of the brown module. (A) Heatmap depicting the expression of proteins in the brown module 
across samples of BPH, PPCWOM, and PPCWM (B) Differential expression proteins volcano plot between BPH and PPCWOM in the brown module. (C) 
Differential expression proteins volcano plot between BPH and PPCWM in the brown module. (D) Gene Set Enrichment Analysis (GSEA) for PPCWOM/
BPH. (E) Gene Set Enrichment Analysis (GSEA) for PPCWM/BPH. Set significance level p less than 0.05
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Fig. 5  Proteins exhibiting temporal expression trends in the brown and turquoise modules were screened according to disease progression from BPH 
to PPCWOM and ultimately PPCWM. (A) The protein expression temporal analysis categorized expression trends into five classes, namely C1-C5. (B) The 
trend change line graphs demonstrate the expression alterations in the five trend classes. (C) KEGG pathway analysis for proteins of C1
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Fig. 6 (See legend on next page.)
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Further combining proteomics and clinical data, we 
screened four ultrasound features with high diagnostic 
power for prostate cancer with metastasis. Currently, 
most medical images are analyzed through artificial intel-
ligence. However, the black box of artificial intelligence 
analysis remains a mystery to our understanding of medi-
cal images, and the resulting set of features is complex to 
interpret clinically [24]. Through our KEGG-based pro-
teomic analysis, we have observed a significant enrich-
ment of proteins associated with ultrasound features in 
the spliceosome and ribosome. Ribosomal abnormalities 
can culminate in aberrant or excessive protein expres-
sion, perturbing genes implicated in cell proliferation, 
metabolism, and angiogenesis [25]. Analogously, spliceo-
somal aberrations can disrupt the equilibrium or fidelity 
of mRNA isoforms, with attendant consequences for the 
coding or non-coding functionality of critical genes and 
the regulation of crucial signaling cascades and cellular 
processes [26, 27]. Notably, these alterations, especially 
those stemming from metastasis and angiogenesis, have 
the potential to be discerned via ultrasound imaging. The 
association of ultrasound phenotypic features with pro-
teomics makes it possible to identify the biological causes 
that drive changes in ultrasound images.

We screened and identified HNRNPC, a critical gene 
that promotes prostate cancer development, through 
ultrasound image features in combination with pro-
teomics. This gene showed the highest correlation with 
four ultrasound image features. HNRNPC, one of the 
earliest members of the HNRNP family, regulates alter-
native splicing and affects mRNA maturation, stability, 
translocation, and translation [28]. Analysis of the GEO 
dataset showed that HNRNPC was significantly upregu-
lated in prostate cancer samples compared to normal 
samples [29]. The expression of HNRNPC in primary 
prostate cancer with metastasis or castration-resistant 
prostate cancer samples was even higher than that in 
localized prostate cancer [29]. In addition, HNRNPC has 
been shown to promote the proliferation, migration, and 
invasion of prostate cancer cells [29]. The above results 
support that ultrasound image features combined with 
proteomic analysis can screen for proteins that drive 
prostate cancer progression.

This study also has some limitations. Firstly, the sample 
size incorporated in this research is inadequate, neces-
sitating a larger sample size to enhance the precision of 
the study. Secondly, recognizing ultrasound image fea-
tures relies on the expertise of medical professionals. 
Despite our physicians possessing over three years of 
clinical experience and adhering to standardized image 
acquisition protocols, certain features require further 
discernment. Moreover, this study simplifies the feature 
collection process, thereby minimizing the inclusion 
of quantitative features, leading to the inevitability of 
ambiguous features.

Conclusions
This study used comprehensive and practical ultrasound 
image features and proteomics for WGCNA analysis. We 
identified the relevant biomarkers and associated ultra-
sonic image features to promote prostate cancer with 
metastasis, providing a new understanding of the tumor 
biological function behind the ultrasound phenotype of 
prostate cancer.
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WGCNA	� Weighted gene co-expression network analysis
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ROC	� Receiver operating characteristic
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Fig. 6  Ultrasound imaging features and HNRNPC protein correlation analysis predict prostate cancer prognosis and metastasis. (A) Protein-protein in-
teraction (PPI) network of spliceosome pathway. (B) Heatmap of correlation between 17 ultrasound imaging features and proteins in the splicesome 
signaling pathway. (C) Scatterplot of correlation between HNRNPC expression level and lesion length. (D) Overall survival curve for HNRNPC protein. 
Differences were tested using the log-rank test. (E) ROC curves for ultrasound image features 1, 4, 8, and 11 in diagnosing prostate cancer metastasis. (F) 
Representative ultrasound images distinguish primary prostate cancer with metastasis and primary prostate cancer without metastasis by lesion length. 
(G) Combined diagnostic ROC curve for the four ultrasound image features (1, 4, 8, and 11). 1 to 17 represent different ultrasound features. 1: Lesion 
length, 2: Envelope integrity, 3: Bilateral morphological symmetry, 4: The demarcation between the inner and outer glands, 5: Lesion boundary, 6: Shape 
of the lesion, 7: Echo pattern, 8: Lesion state, 9: Lesion location, 10: Lesion distribution, 11: Blood flow, 12: Penetrating vessel, 13: The demarcation between 
inner and outer glands after contrast-enhanced ultrasound, 14: Time to arrival compared to the normal region of the outer gland, 15: Peak enhancement 
compared to the normal region of the outer gland, 16: Time to arrival compared to the inner gland, 17: Peak enhancement compared to the inner gland
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