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Abstract
Background Previous studies have observed a link between immunophenotypes and lung cancer, both of which are 
closely associated with genetic factors. However, the causal relationship between them remains unclear.

Methods Bidirectional Mendelian randomization (MR) was performed on publicly available genome-wide 
association study (GWAS) summary statistics to analyze the causal relationships between 731 immunophenotypes 
and lung cancer. Sensitivity analyses were conducted to verify the robustness, heterogeneity, and potential horizontal 
pleiotropy of our findings.

Results Following Bonferroni adjustment, CD14− CD16+ monocyte (OR = 0.930, 95%CI 0.900–0.960, P = 8.648 × 10− 6, 
PBonferroni = 0.006) and CD27 on CD24+ CD27+ B cells (OR = 1.036, 95%CI 1.020–1.053, P = 1.595 × 10 − 5, PBonferroni = 
0.012) were identified as having a causal role in lung cancer via the inverse variance weighted (IVW) method. At a 
more relaxed threshold, CD27 on IgD+ CD24+ B cell (OR = 1.035, 95%CI 1.017–1.053, P = 8.666 × 10− 5, PBonferroni = 0.063) 
and CD27 on switched memory B cell (OR = 1.037, 95%CI 1.018–1.056, P = 1.154 × 10− 4, PBonferroni = 0.084) were further 
identified. No statistically significant effects of lung cancer on immunophenotypes were found.

Conclusions The elevated level of CD14− CD16+ monocytes was a protective factor against lung cancer. Conversely, 
CD27 on CD24+ CD27+ B cell was a risk factor. CD27 on class-switched memory B cells and IgD+ CD24+ B cells were 
potential risk factors for lung cancer. This research enhanced our comprehension of the interplay between immune 
responses and lung cancer risk. Additionally, these findings offer valuable perspectives for the development of 
immunologically oriented therapeutic strategies.
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Background
Lung cancer represents a significant global health issue. It 
ranks as one of the most common types of cancer and is a 
major cause of cancer-related death, which is responsible 
for approximately 2  million new cases and 1.76  million 
deaths, annually [1]. This disease is primarily divided into 
two categories: small-cell lung cancer (SCLC) and non-
small-cell lung cancer (NSCLC), the latter encompass-
ing subtypes such as lung squamous cell cancer (LUSC) 
and lung adenocarcinoma (LUAD) [2, 3]. The occurrence 
of lung cancer is on the rise, particularly in developing 
countries. This increase is attributed to factors like wider 
availability of tobacco products and the environmental 
effects of industrialization [4]. Smoking remains the pri-
mary risk factor, responsible for a significant percentage 
of lung cancer cases in both males and females [5]. Addi-
tionally, exposure to ambient particulate matter pollu-
tion significantly contributes to lung cancer deaths [6, 7]. 
Beyond environmental causes, genetic mutations are also 
key in the development of lung cancer [8]. Genome-wide 
association studies (GWAS) have been vital in identifying 
genetic factors that increase lung cancer risk, especially 
those linked to smoking habits and DNA repair processes 
[9].

The interplay between immune cells and lung cancer, 
especially NSCLC, represents a complex and dynamic 
field of research. Within the tumor microenvironment 
of NSCLC, immune responses are intricately influ-
enced by genomic aberrations, alterations in chromatin 
architecture, and the activity of non-coding RNAs [10, 
11]. These elements are pivotal in tumor initiation, pro-
gression, and determining the immunogenic profile of 
the cancer [12, 13]. Chronic inflammation is an impor-
tant risk factor in cancer progression, which promote 
the tumor growth [14–16]. The existence of persistent 
inflammation promotes tumor progression through vari-
ous mechanisms such as immune system evasion, angio-
genesis, and the facilitation of metastatic spread [17–19]. 
Recent studies have focused on the complex interactions 
between immune cells and lung cancer cells [20–23]. This 
complexity is evident by the formation of heterotypic 

cell-in-cell structures (CICs), highlighting the interplay in 
the tumor environment [17, 24].

The response of both innate and adaptive immune cells 
to different anti-cancer therapies, including chemother-
apy, targeted therapy, and immune checkpoint blockade 
(ICB), are still not fully understood [25]. In lung cancer, a 
pro-tumorigenic immune response is often identified by 
enhanced immune checkpoint activity and the prevalence 
of immunosuppressive cells, combined with a concur-
rent reduction in anti-tumor immune mechanisms [26]. 
This immunological balance is associated with tumor 
progression and poor clinical outcomes [27]. Monocytes 
have complicated functions in the lung cancer microen-
vironment: they can promote or inhibit tumor growth, 
primarily differentiating into macrophages [28]. Notably, 
classical and intermediate monocytes are more prevalent 
in lung cancer patients, indicating their potential role 
in the pro-cancer immune response [29]. However, the 
exact causal relationship between immune cells and lung 
cancer remained unclear.

Advances in large-scale GWAS and Mendelian ran-
domization (MR) methods have made it possible to assess 
causal associations between immune profiles and disease 
outcomes [30, 31]. Numerous studies have demonstrated 
the effectiveness of MR studies in exploring causal asso-
ciations in lung cancer by avoiding confounders and 
reverse causal associations [32–34]. Therefore, our study 
used MR analysis to explore bidirectional causal associa-
tions between 731 immunophenotypes and lung cancer 
risk. The workflow of our study is shown in Fig. 1.

Methods
Study design
Our study was based on MR, which employs genetic 
variation as an instrumental variable (IV) to establish 
causality between exposure and outcome, mitigating 
bias arising from the confounding reverse causality issue. 
Selection of IVs follows three key rules in MR analysis: 
(1) direct association of genetic variation with exposure; 
(2) absence of association between genetic variation and 
potential confounders between exposure and outcome; 

Fig. 1 Workflow of the entire research

 



Page 3 of 9Xu et al. BMC Cancer          (2024) 24:270 

and (3) genetic variation has no influence on outcome 
through pathways other than exposure.

A bi-directional two-sample MR analysis was con-
ducted to evaluate the casual relationship between 731 
immune phenotypes (7 immune panels) and lung cancer, 
based on summary-level datasets of large-scale GWAS 
studies. All GWAS studies included in this paper were 
ethically approved by their institutions.

GWAS data sources
GWAS data for immune phenotypes were extracted from 
GWAS Catalog (accession numbers from GCST0001391 
to GCST0002121) [30]. The study encompassed 731 
immunophenotypes, including 118 absolute cell counts 
(AC), 389 median fluorescence intensities (MFI), 32 mor-
phological parameters (MP), and 192 relative cell counts 
(RC). With data from 3,757 European individuals, the 
investigation identified 122 significant independent asso-
ciation signals at 70 loci, revealing 53 novel loci and clari-
fied the regulatory mechanisms of 459 cellular signatures. 
Genotyping employed four Illumina arrays and approxi-
mately 22  million SNPs, with imputation based on a 
Sardinian sequence-based reference panel. Covariate-
adjusted association analyses were performed, consider-
ing sex, age, and age2.

GWAS summary statistics for lung cancer were down-
load from a large-scale GWAS Meta-analysis (accession 
number GCST004748) of European ancestry (Ncase = 
29,266, Ncontrol = 56,450), with approximately 10.4 million 
SNPs analyzed after quality control and imputation [35]. 
This study identified 18 susceptibility loci under the level 
of genome-wide significance (P < 5 × 10− 8), 10 of which 
were novelly discovered.

Selection of instrumental variables (IVs)
In this study, we extracted independent and significant 
SNPs for each immune trait with a significance threshold 
of 1 × 10− 5. This threshold is less stringent than the com-
monly used 5 × 10− 8, as suggested by previous studies that 
smaller sample size in immunophenotypes do not require 
such stringent p-value correction thresholds [30, 36–38]. 
Linkage disequilibrium (LD) analysis was performed with 
a r2 threshold < 0.1 within a 500 kb distance. For lung can-
cer, the significance level was adjusted to 5 × 10− 8, and 
LD analysis was performed with a r2 threshold < 0.001 
within a 10,000 kb distance. When possible, instrumental 
Single-Nucleotide Polymorphisms (SNPs) for the expo-
sure absent in the outcome datasets were proxied using 
SNPs in high linkage disequilibrium (r2 > 0.8). All SNPs 
were harmonized between the exposure and the outcome 
by alleles to ensure the alignment of effect. The F-statis-
tic were calculated for each IV through this formula to 
avoid weak instrumental bias: F = R2×(N − 2)/(1 − R2); 
R2 = 2×EAF×(1 − EAF)×β2 [39]. In this formula, R2 refers 

to the cumulative explained variance of the selected IVs, 
and EAF refers to the effect allele frequency, β refers to 
the estimated effect of SNP, and N refers to the sample 
size of the GWAS. SNPs with F-statistic values greater 
than 10 were considered strong instrumental variables 
and were retained in subsequent analyses. Confounders 
were detected using Phenoscanner V2, SNPs associated 
with both exposure and outcomes were removed from 
the study [40]. The GWAS data on exposures and out-
comes used in this paper are from different studies, so 
there is no population overlap.

Statistical analysis
Multiple MR methods were employed to assess the 
causal relationship between 731 immunophenotypes 
and lung cancer, including inverse variance weight-
ing (IVW), weighted median, MR-Egger, simple mode, 
and weighted mode. The IVW method is employed as 
our primary MR analysis, and it applies a meta-analysis 
method to integrate the Wald ratio of individual SNPs, 
which is assumed that instrumental variables (IVs) exclu-
sively influence outcomes through specified exposure, 
rendering unbiased causal estimates in the absence of 
horizontal pleiotropy [41]. Therefore, the IVW method 
provides the most accurate assessment at the absence of 
horizontal pleiotropy [42]. To complement our analysis 
and identify potential biases arising from ineffective IVs 
and horizontal pleiotropy, we integrated the weighted 
median method and MR-Egger method [43]. However, 
these results might be inaccurate, as they may be suscep-
tible to the impact of outlier genetic variants, especially 
MR-Egger method [44]. The weighted median method, 
while exhibiting a relatively small bias, is characterized by 
lower precision, particularly in cases where the percent-
age of IVs with horizontal pleiotropy is less than 50% [45].

Sensitivity analysis is done to assess potential heteroge-
neity and horizontal pleiotropy. Cochran’s Q test evalu-
ated the heterogeneity of effect sizes for selected genetic 
IVs. Additionally, we applied the MR-Pleiotropy Residual 
Sum and Outlier (MR-PRESSO) method to identify and 
exclude outliers and moderate horizontal pleiotropy. The 
intercept derived from MR-Egger regression served to 
evaluate vertical pleiotropy [46]. Leave-one-out analysis 
was conducted to examine the impact of removing indi-
vidual selected SNPs on the overall results [47]. Scatter 
plots were used to confirm the absence of outlier influ-
ence on the results. Additionally, funnel plots were 
employed to assess the robustness of correlation and the 
absence of heterogeneity. To address multiple testing, all 
p-values for MR analysis were corrected using the Bon-
ferroni method. We employed 2 Bonferroni-corrected 
p-value thresholds set at 0.05 and 0.1. PBonferroni below 
0.05 were considered statistically significant, whereas 
those between 0.05 and 0.1 categorized as potentially 
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statistically significant. P-values for sensitivity analysis 
were uncorrected to avoid increasing the false-negative 
rate.

All analyses were performed in R 4.3.1 software (http://
www.Rproject.org). Main MR analysis was performed 
using the “TwoSampleMR” package (version 0.5.7). 
MR-PRESSO was performed using the ‘MR-PRESSO’ 
package. Confounders were removed by calling “phe-
noscanner V2” (http://www.phenoscanner.medschl.cam.
ac.uk/) in the ‘Mendelian Randomization’ package.

Results
Genetic instrumental variant selection
In this study, we identified a median count of 27 (range 
2–1217) independent IVs associated with 731 immuno-
phenotypes. These identified IVs accounted for an aver-
age of 0.178% of the phenotypic variance, with the range 
from 0.005 to 5.199% (Table S1 for details). While most 
SNPs are associated with only one immunophenotype, 
there are also SNPs that correlate with multiple immu-
nophenotypes (detailed in Table S6). Moreover, all com-
puted F-statistics were above 19.53. For lung cancer, 15 
IVs (3 removed for correlating with immunophenotypes, 
2 for association with smoking) were identified for fur-
ther reverse-directional analytical investigations (Table 
S5).

The causal role of immunophenotypes on lung cancer
Prior to adjustment, a total of 63 immune phenotypes 
were identified as having a causal role. This includes the 

elevation of 40 immune cell types and the reduction of 
23, which are implicated in the induction of lung cancer 
(Table S2A). The distribution of these 63 immune cell 
types spans several categories: B cells (34 types), mono-
cytes (7 types), regulatory T cells (Tregs, 7 types), con-
ventional dendritic cells (cDCs, 5 types), maturation 
stages of T cells (4 types), T, B, natural killer (TBNK) 
cells (4 types), and myeloid cells (2 types), as visualized 
in Fig. 2A.

After Bonferroni adjustment (PBonferroni < 0.05), only 
two results retained statistical significance. For the 
monocyte panel, the odds ratio (OR) of CD14− CD16+ 
monocyte was estimated to be 0.930 (95%CI 0.900–
0.960, P = 8.648 × 10− 6, PBonferroni = 0.006) using IVW 
method. Additional analytical methods yielded the fol-
lowing results: MR-Egger (OR = 0.917, 95% CI 0.864–
0.973, P = 0.008), weighted Median (OR = 0.932, 95% CI 
0.888–0.978, P = 0.004), simple mode (OR = 0.966, 95% CI 
0.884–1.055, P = 0.447), weighted mode (OR = 0.932, 95% 
CI 0.888–0.978, P = 0.004), MR-PRESSO (OR = 0.930, 95% 
CI 0.903–0.957 P = 3.176 × 10− 5, global P = 0.765). In the B 
cells panel, CD27 on CD24+ CD27+ B cells held the OR 
of 1.036 (95%CI 1.020–1.053, P = 1.595 × 10− 5, PBonferroni = 
0.012) by IVW method. Results from other methods are 
listed as follows: MR-Egger (OR = 1.051, 95% CI 1.018–
1.085, P = 0.003), weighted Median (OR = 1.041, 95% CI 
1.014–1.068, P = 0.003), simple mode (OR = 1.030, 95% CI 
0.979–1.084, P = 0.250), weighted mode (OR = 1.029, 95% 
CI 0.998–1.061, P = 0.072), MR-PRESSO (OR = 1.036, 95% 
CI 1.021–1.052 P = 1.385 × 10− 5, global P = 0.810).

Fig. 2 The distribution of immune cells exhibiting significance at a nominal significance level varies across distinct trait categories and diverse analytical 
panels. (A) The causal effects of immune cell profiles on the risk of lung cancer. (B) The causal role of lung cancer on immune cells
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Upon relaxing the significance threshold to PBonferroni 
< 0.1, two additional significant findings were found 
within the B cells panel. The OR of CD27 on IgD+ CD24+ 
B cell was estimated to be 1.035 (95%CI 1.017–1.053, 
P = 8.666 × 10− 5, PBonferroni = 0.063) by IVW method. 
Results from other methods are listed as follows: MR-
Egger (OR = 1.067, 95% CI 1.024–1.112, P = 0.003), 
weighted Median (OR = 1.041, 95% CI 1.011–1.072, 
P = 0.008), simple mode (OR = 1.054, 95% CI 0.998–
1.114, P = 0.069), weighted mode (OR = 1.040, 95% CI 
1.002–1.080, P = 0.044), MR-PRESSO (OR = 1.035, 95% 
CI 1.020–1.051 P = 2.831 × 10− 5, global P = 0.929). Simi-
larly, CD27 on switched memory B cell presented an OR 
of 1.037 (95%CI 1.018–1.056, P = 1.154 × 10− 4, PBonferroni 
= 0.084) by IVW method. Other methods indicated the 
following: MR-Egger (OR = 1.032, 95% CI 0.998–1.068, 
P = 0.073), weighted Median (OR = 1.035, 95% CI 1.004–
1.066, P = 0.025), simple mode (OR = 1.022, 95% CI 
0.964–1.082, P = 0.466), weighted mode (OR = 1.034, 95% 

CI 0.993–1.076, P = 0.109), MR-PRESSO (OR = 1.037, 95% 
CI 1.019–1.055 P = 1.470 × 10− 4, global P = 0.681). The 
aforementioned results were visualized in Fig. 3 (Table S3 
for detail).

The intercept analysis conducted through MR-Egger, 
alongside the global test implemented via MR-PRESSO, 
conclusively eliminated horizontal pleiotropy as a poten-
tial confounder in our findings (Table S4). Further vali-
dation was provided by the stability observed in the 
scatter plots, funnel plots and leave-one-out analysis, 
which proved the robustness of the results (Fig S1-3).

Exploration of the causal effect of lung cancer on 
immunophenotypes
Before adjustment, lung cancer was observed to induce 
increase in 6 immunophenotypes (Table S2B). These 
immunophenotypic changes included: TBNK cells 
(4 types) and Tregs (2 types), as presented in Fig.  2B. 

Fig. 3 Causal associations between four identified immune phenotypes and the risk of lung cancer incidence with different MR methods
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However, after Bonferroni adjustment, none of these p 
values remained statistically significant.

Discussion
Our research combines individual-level data from GWAS 
to explore how immune cells genetically contribute to the 
development and progression of lung cancer. This study 
presents evidence suggesting that immune cells may 
affect lung cancer risk through a comprehensive genetic 
analysis. SNPs were employed as instrumental variables 
in a bidirectional two-sample MR analysis. Our findings 
indicate a protective effect of CD14− CD16+ monocytes 
against lung cancer. Moreover, we observed an asso-
ciation between CD27 on CD24+ CD27+ B cells and 
increased lung cancer risk. Additionally, the increase of 
CD27 on switched memory B cells and CD27 on IgD+ 
CD24+ B cells may be linked to lung cancer development.

We revealed that the elevated levels of CD14− CD16+ 
monocytes, known as nonclassical monocytes or patrol-
ling monocytes (PMo), have a protective role in lung 
cancer development. Monocytes is an important compo-
sition the innate immune system, which regulate cellular 
homeostasis and are classified into classical, interme-
diate, and nonclassical subtypes [48]. Unlike classical 
monocytes, which are implicated in tumorigenesis and 
cancer metastasis, nonclassical monocytes exhibit unique 
tumor interactions, particularly in the lung [49]. These 
monocytes are enriched in the lung’s microvasculature, 
where they reduce tumor metastasis, as evidenced in var-
ious mouse metastatic tumor models [50]. For instance, 
Nr4a1-deficient mice, which lack PMo, show increased 
lung metastasis. In contrast, transferring Nr4a1-profi-
cient PMo into these mice impedes tumor invasion in the 
lung [51]. This subset of monocytes plays a crucial role in 
early interactions with metastasizing tumor cells, clean-
ing tumor material from the lung blood vessels, and assist 
in the recruitment and activation of natural killer cells. 
This activity is crucial for cancer immunosurveillance, 
and highlights their potential as targets for cancer immu-
notherapy [48]. Additional complexity with monocyte 
subsets is observed with Slan+ monocytes, identified by 
the 6-sulfo LacNAc (slan) antigen. These cells are a subset 
of non-classical monocytes in the human bloodstream 
with a significant role in cancer defense [52]. An explor-
atory study on SCLC patients treated with chemotherapy 
and immune checkpoint inhibitors indicated that low lev-
els of slan+ non-classical monocytes correlate with poor 
survival across different histological types of lung cancer. 
This finding suggests that slan+ monocyte levels could 
help in predicting patient outcomes in lung cancer  [53]. 
Additionally, Slan+ monocytes in lymphoma demonstrate 
potential roles in cancer immunity. They induced anti-
body-dependent cellular cytotoxicity (ADCC), particu-
larly when interacting with therapeutic antibodies like 

Rituximab. This interaction leads to necrotic cell death 
through TNFα  [54]. Slan+ monocytes also show remark-
able plasticity, they can differentiate into distinct subsets 
of dendritic cells (DCs) and macrophages, especially in 
cancer tissues. These cells can acquire macrophage-like 
phenotypes and become efficient in rituximab-mediated 
antibody-dependent cellular phagocytosis (ADCP), and 
activate different FcγRs than those used by macrophages 
derived from CD14+ monocytes [55]. Furthermore, slan+ 
monocytes contribute to immune surveillance by pro-
ducing pro-inflammatory cytokines and engaging in 
cross-talk with T cells and NK cells, amplifying immune 
responses against tumor cells [52]. However, the exact 
mechanisms and pathways involved in these processes in 
lung cancer remain not fully understood.

CD27 on CD24+ CD27+ B cell was identified to 
increase the risk of lung cancer in our research. CD24hi 
CD27+ B cells are a subset of regulatory B cells (Bregs), 
which play a key role in immune regulation. A study 
examining the phenotypes of circulating Tregs and 
Bregs revealed a decreased frequency of Tregs and an 
increased frequency of Bregs (including CD24hi CD27+ 
B cells) in patients with lung cancer. This finding suggest 
that lung cancer cells might directly interact with these 
cell types, so they may play a significant role in tumor 
development [56]. Bregs are notable for their high pro-
duction of interleukin-10 (IL-10), a cytokine involved in 
immune response moderation. These cells are also effi-
cient in suppressing CD4+ T cell proliferation and IFN-γ/
IL-17 expression [57]. CD4+ T cells were essential in 
both innate and antigen-specific immune responses [58, 
59], and play a crucial role in mobilizing the immune 
system against cancer cells  [60]. The efficacy of CD4+ T 
cells in the peripheral blood of lung cancer patients has 
been correlated with improved anti-tumor responses. In 
fact, patients with better responses to treatments exhibit 
significantly higher percentages of specific CD4+ T cell 
types [61]. IFN-γ is essential in activating cellular immu-
nity and triggering anti-tumor responses. It plays a sig-
nificant role in lung cancer immunotherapy due to its 
ability to halt cell growth, promote cell death, and inhibit 
cell proliferation. IFN-γ also helps to slow down tumor 
growth by blocking blood vessel formation in tumors, 
promoting the death of regulatory T-cells, and boosting 
the activity of proinflammatory M1 macrophages [62]. 
High-dose IFN-γ treatment has even been observed to 
induce tumor regression [63]. It’s suggested that CD24hi 
CD27+ B cells might promote lung cancer development 
by suppressing these anti-cancer factors.

Our analysis identified the expression of CD27 on 
class-switched memory B cells and IgD+ CD24+ B cells 
as potential risk factors for lung cancer, using a Bonfer-
roni-adjusted significance threshold of PBonferroni < 0.1. 
However, little research was done to explore the potential 
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function of these two immunophenotypes. CD27+ and 
IgD− class-switched memory B cells (Bmems) constitute 
a greater proportion of the B cell population in pulmo-
nary tissues compared to peripheral blood. Thus, how 
the accumulation of this immune phenotype in the lungs 
is associated with lung cancer development is currently 
unclear [64]. Additionally, the IgD+ CD27+ B cell pheno-
type is a subtype of unswitched memory B cells. CD24 is 
a molecule known for its roles in cell adhesion and sig-
naling [65]. However, there is also a notable gap in the 
research concerning the direct impact of CD27 expres-
sion on IgD+ CD24+ B cells in the context of lung cancer 
development.

Interestingly, we found that while most SNPs are asso-
ciated with only one immunophenotype, there are indeed 
SNPs that correlate with multiple immunophenotypes. 
Such overlap seems logical and may be explained by 
shared regulatory elements such as promoters or enhanc-
ers, or involvement in post-transcriptional modifica-
tion processes among different immunophenotypes. The 
immunophenotypes we identified to have causal relation-
ship on lung cancer have undergone rigorous sensitivity 
analyses, which significantly reduces concerns regarding 
horizontal pleiotropy.

Taken altogether, our study contributes to the under-
standing of lung cancer by highlighting the causal role 
of immune cells in its development. This finding is cru-
cial for clinical decisions regarding disease prognosis 
and treatment. However, the pathogenesis of lung can-
cer involves complex interactions among various types 
of immune cells, and a single treatment approach is 
often insufficient. This highlights the need for further 
research into the interactions between innate and adap-
tive immune cells in lung cancer.

Our study did have limitations. The primary constraint 
is the reliance on GWAS summary datasets for immune 
traits and lung cancer, although they were the largest 
available. However, the differences in sample size, qual-
ity control methods, and ethnic composition may cause 
potential errors. Secondly, though rigorous sensitivity 
analyses reduce the concern for pleiotropy, a multivari-
able mendelian randomization (MVMR) analysis would 
be conducted to further explore the complex relation-
ships between immunophenotypes and lung cancer 
ideally. However, due to the complexities (including 
computational demands, statistical power, the effective-
ness of instrumental variables, and the challenges of 
clinically interpreting these complex results) from the 
731 exposures in our study, using MVMR is currently 
not feasible. We hope that advances in methodology will 
enhance our understanding in this area in the future. 
Moreover, as these datasets were drawn from different 
studies, it is essential to interpret our findings with cau-
tion, despite our rigorous selection of IVs and extensive 

sensitivity analyses to mitigate potential confounding 
factors. Another limitation is the use of summary-level 
datasets, which precluded individual-level analysis and 
consequently, the inability to conduct population strati-
fication studies based on variables like sex and age. Fur-
thermore, while we applied the Bonferroni correction 
for multiple testing, which is the most stringent method, 
the selection of SNPs under a relatively relaxed threshold 
(1 × 10− 5) due to limited sample sizes may lead to some 
false positives.

In conclusion, our research offers new perspectives on 
the immunology of lung cancer onset. However, further 
experimental studies are needed to further understand 
the mechanisms linking immune traits with lung cancer. 
This could lead to more effective treatment strategies.

Conclusions
The elevated level of CD14− CD16+ monocytes was a 
protective factor against lung cancer. Conversely, CD27 
on CD24+ CD27+ B cell was a risk factor. CD27 on class-
switched memory B cells and IgD+ CD24+ B cells were 
potential risk factors for lung cancer.

Our study explored the causal influence of the immune 
response on lung cancer progression. This research 
enhanced our comprehension of the interplay between 
immune responses and lung cancer risk. Additionally, 
these findings offer valuable perspectives for the develop-
ment of immunologically oriented therapeutic strategies.
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NSCLC  Non-Small-Cell Lung Cancer
PMo  Patrolling Monocytes
RC  Relative Cell Counts
SCLC  Small-Cell Lung Cancer
slan  6-sulfo LacNAc
SNPs  Single-Nucleotide Polymorphisms
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