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Abstract
Background  The low specificity of Thyroid Imaging Reporting and Data System (TI-RADS) for preoperative benign-
malignant diagnosis leads to a large number of unnecessary biopsies. This study developed and validated a predictive 
model based on MRI morphological features to improve the specificity.

Methods  A retrospective analysis was conducted on 825 thyroid nodules pathologically confirmed postoperatively. 
Univariate and multivariate logistic regression were used to obtain β coefficients, construct predictive models and 
nomogram incorporating MRI morphological features in the training cohort, and validated in the validation cohort. 
The discrimination, calibration, and decision curve analysis of the nomogram were performed. The diagnosis efficacy, 
area under the curve (AUC) and net reclassification index (NRI) were calculated and compared with TI-RADS.

Results  572 thyroid nodules were included (training cohort: n = 397, validation cohort: n = 175). Age, low signal 
intensity on T2WI, restricted diffusion, reversed halo sign in delay phase, cystic degeneration and wash-out pattern 
were independent predictors of malignancy. The nomogram demonstrated good discrimination and calibration both 
in the training cohort (AUC = 0.972) and the validation cohort (AUC = 0.968). The accuracy, sensitivity, specificity, PPV, 
NPV and AUC of MRI-based prediction were 94.4%, 96.0%, 93.4%, 89.9%, 96.5% and 0.947, respectively. The MRI-based 
prediction model exhibited enhanced accuracy (NRI>0) in comparison to TI-RADSs.

Conclusions  The prediction model for diagnosis of benign and malignant thyroid nodules demonstrated a more 
notable diagnostic efficacy than TI-RADS. Compared with the TI-RADSs, predictive model had better specificity along 
with a high sensitivity and can reduce overdiagnosis and unnecessary biopsies.

Key points
1.MRI morphological features were predictors of malignant thyroid nodules.
2.Prediction model achieved a high AUC, sensitivity, and specificity in predicting malignant thyroid nodules.
3.Prediction mode outperformed TI-RADSs in diagnosing malignant thyroid nodules.
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Introduction
Thyroid nodules are very common, and with the advances 
of high-resolution ultrasound, the detection rate in the 
general population ranges from 19 to 68%. The majority 
of thyroid nodules are benign, and only a small fraction is 
clinically significant [1–3]. The incidence of thyroid can-
cer continues to rise and is ranked as the fifth most com-
mon cancer among women in the United States currently 
[4]. The clinical management of thyroid nodules depends 
on the benignity or malignancy [5] and early qualitative 
diagnosis plays a crucial role in optimizing treatment and 
improving patient outcomes.

Various Ultrasonography risk stratification systems 
have been developed to effectively manage of thyroid 
nodules, including the American College of Radiology 
Thyroid Imaging Reporting and Data System (ACR- 
TIRADS) [6], Korean TIRADS (K-TIRADS) [7], Euro-
pean TIRADS (EU-TIRADS) [8], Kwak-TIRADS [9] 
and Chinese-TIRADS (C-TIRADS) [10]. While these 
TI-RADSs demonstrated high sensitivity (>90%) in 
identifying nodules, their specificity remains relatively 
unsatisfactory [11]. Additionally, differentiated thyroid 
cancer accounts for over 90% of cases, and has an excel-
lent prognosis, with a 5-year survival rate exceeding 98% 
[12]. The high sensitivity and relatively low specificity of 
TI-RADS systems have led to the diagnosis of numerous 
thyroid nodules that lack clinical significance, resulting 
in unnecessary fine-needle aspiration (FNA) and over-
treatment. FNA is considered the gold standard for the 
preoperative diagnosis of thyroid cancer. However, it is 
an invasive procedure, and approximately 20–30% of the 
puncture results are either nondiagnostic or of uncertain 
significance [13, 14].

Magnetic resonance imaging (MRI) has gained signifi-
cant popularity in the diagnosis of head and neck tumors 
due to its numerous advantages, including multi-param-
eter measurement, arbitrary planar imaging, low risk of 
contrast allergy, no ionizing radiation, and high soft tis-
sue contrast [15]. In recent years, there has been a grow-
ing trend in utilizing MRI for the preoperative evaluation 
of thyroid nodules [16–20]. However, few studies have 
explored the use of morphological features on multipa-
rametric MRI to assess the benignity or malignancy of 
thyroid nodules.

In this study, we investigated the value of MRI mor-
phological features in distinguishing between benign and 
malignant thyroid nodules. We also developed and vali-
dated a prediction model and compared its performance 
with the ultrasound-based TI-RADS system.

Materials and methods
Patients and study design
This study was a retrospective observational study con-
ducted in accordance with the Declaration of Helsinki. 

Informed consent requirements were waived due to the 
retrospective nature of the study by the Institutional 
Review Board of Fudan University Minhang Hospital 
(2020-008-01 K).

Consecutive patients who underwent surgical thyroid-
ectomy at our institution from January 2017 to Decem-
ber 2022 were retrospectively analyzed. Inclusion criteria 
were as follows: (1) patients underwent preoperative thy-
roid MRI; (2) nodules with postoperative pathological 
confirmation as either benign or malignant. Exclusion 
criteria were as follows: (1) diffuse bilateral lesions of 
different pathological types; (2) poor image quality with 
severe artefacts that cannot be used for diagnostic analy-
sis; (3) patients who underwent FNA or partial thyroidec-
tomy prior to MRI; (4) unclear postoperative pathological 
findings; (5) absence of nodules on MRI; (6) incomplete 
imaging data; and (7) lesions<5  mm. The surgical indi-
cations for thyroid nodules include those categorized as 
TI-RADS grade≥4, indicating a high suspicion of thyroid 
cancer, as well as symptomatic benign thyroid tumors 
resulting from compression, hyper-functioning thyroid 
adenomas, or concomitant hyperthyroidism.

MRI Acquisition
MRI examinations were performed on a GE Healthcare 
1.5T MRI scanner (Excite HD; GE Healthcare, Milwau-
kee, WI, USA) with an 8-channel phased-array thyroid 
coil (Shanghai Chenguang Medical Technologies, Shang-
hai, China).

The MRI protocols included: (1) coronal fat-suppressed 
T2WI; (2) axial T1-weighted imaging (T1WI); (3) axial 
fat-suppressed T2W; (4) diffusion weighted imaging 
(DWI), b value = 0 and 800  s/mm2; (5) multiphasic con-
trast-enhanced T1WI (MCE-T1WI). Contrast agent 
(Magen Vixen; Bayer Pharmaceuticals, Berlin, Germany) 
was injected at a dose of 0.2 ml/kg and rate of 3 ml/s, fol-
lowed by 15  ml saline flush. Six sequential MCE-T1WI 
scans were performed at 30  s, 60  s, 120  s, 180  s, 240  s, 
and 300 s after the contrast agent injection. Patients were 
instructed to hold their breath during the scan. The total 
scan duration was approximately 16  min. Table S1 lists 
the detailed MRI acquisition parameters.

MRI morphological analysis
Two radiologists, each with 5 and 9 years of experience 
in diagnostic thyroid MRI, independently evaluated the 
MRI images using the Advantage Workstation 4.5 work-
station (GE Healthcare, Waukesha, WI, USA) and Picture 
Archiving and Communication System (PACS). Both 
radiologists were unaware of the pathological results of 
lesions and consensus was reached in cases where there 
was a disagreement.

The following parameters were utilized to assess 
the lesion: (1) size of the lesion, measured by the 
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diameter of the largest dimension of the nodule, classified 
as 5-10 mm, 10-40 mm or ≥4 cm); (2) number of nodules, 
classified as unifocal or multifocal. The qualitative MRI 
morphological features are as follows: (1) non-enhanced 
features, including light pearl sign, black-white flower 
sign, restricted diffusion, cystic degeneration, flow-void 
signal, high signal intensity on T2WI, high signal inten-
sity on T1WI, and low signal intensity on T2WI; (2) con-
trast-enhanced features, including enhancement patterns 
like no enhancement, gap-filling enhancement, pseu-
docapsule, hyperintense on T2WI with enhancement, 
wash-out pattern, fissure-filling enhancement, reversed 
halo sign in delay phase, hyperenhancement in early 
phase and change of lesion size in multiphasic enhance-
ment. Detailed definitions and illustrations of the MRI 
morphological features are shown in Appendix S1.

TI-RADS
Two experienced US specialists with over 10 years of 
experience, who were unaware of the histopathologi-
cal findings, performed the retrospective analysis of the 
US feature of thyroid nodules and reached a consensus. 
The US features evaluated encompassed composition, 
echogenicity, margins, shape, and calcification. All thy-
roid nodules were then classified according to the ACR-
TIRADS, K-TIRADS, EU-TIRADS, Kwak-TIRADS, and 
C-TIRADS. In the cases of ACR-TIRADS, K-TIRADS, 
and EU-TIRADS, nodules categorized as ≥4 or 5 were 
considered to be malignant. For Kwak-TIRADS and 
C-TIRADS, nodules categorized as ≥4b and 4c, respec-
tively, were regarded as malignant. The diagnostic per-
formance of these five different TIRADS systems was 
subsequently calculated.

Nomogram construction and evaluation
Univariate and multivariate logistic stepwise regression 
analysis were employed to identify independent predic-
tors in the training cohort and then a nomogram was 
developed. The optimal model was selected based on the 
Akaike Information Criteria.The goodness-of-fit of the 
model was assessed using the Hosmer-Lemeshow test, 
with a significance level of P≥0.05 indicating a good fit. 
To evaluate the performance of the nomogram, receiver 
operating characteristic (ROC) analysis, calibration 
curve analysis, and decision curve analysis (DCAs) were 
conducted.

Construction and performance of the MRI-based 
prediction model
The risk score derived from the regression coefficients (β 
coefficients) of the independent predictors by multiples 
of the minimum β coefficient (multiples are rounded to 
the nearest whole number) was used to develop a risk 
scoring system (RSS). To establish an optimal cut-off 

value for the risk score, the Yorden-index is maximized. 
The MRI-based prediction model was constructed using 
the aforementioned RSS and specific morphological 
features. The diagnostic performance of the model was 
evaluated by assessing sensitivity, specificity, accuracy, 
positive predictive value (PPV), negative predictive value 
(NPV) and area under the ROC curve (AUC), and com-
pared it with five different US TI-RADS. The AUCs were 
compared using the Delong test. The Net reclassification 
index (NRI) was utilized to determine the enhancement 
in predictive accuracy of the model.

Statistical analysis
All statistical tests were carried out using SPSS statistical 
software 26.0, R software 4.2.0 (http://www.r-project.org, 
and Medcalc Software (version 20.100). Continuous vari-
ables were represented as mean±standard deviation (SD), 
while categorical variables were expressed as percent-
ages. The t-test was employed to compare continuous 
variables, whereas the chi-square test or Fisher’s exact 
test was used to compared categorical variables. Concor-
dance between two radiologists was assessed using the 
Kappa concordance test. The construction of the nomo-
gram was accomplished using the R software package 
“rms”. Statistical analyses were conducted with two-tailed 
p values and 95% confidence intervals (CI). A significance 
level of P<0.05 was deemed statistically significant.

Results
Clinicopathological characteristics
The flowchart illustrating the inclusion process is shown 
in Fig.  1. A total of 825 lesions from 491 patients were 
finally included in the study, comprising 508 benign and 
317 malignant lesions. We removed lesions with specific 
features that were not included in the modelling below. 
There were 572 lesions remaining (337 benign and 235 
malignant) finally. These lesions were randomly divided 
into the training cohort (397 thyroid nodules, including 
230 benign and 167 malignant nodules) and the valida-
tion cohort (175 thyroid nodules, 107 benign and 68 
malignant nodules) at a 7:3 ratio. The clinicalcopatholgi-
cal characteristics of 572 thyroid nodules are shown in 
Table 1. The pathological types of all thyroid nodules are 
shown in Table S2.

MRI morphological features
The statistical results of MRI-based specific morpho-
logical features are provided in Table S3. Significantly, 
nodules exhibiting no enhancement (n = 123) and the 
presence of the light pearl sign (n = 47) were exclusively 
observed in benign cases. Conversely, the black-and-
white flower sign (n = 49) and gap-filling enhancement 
(n = 38) were predominantly detected in malignant nod-
ules. The morphological features of thyroid nodules are 

http://www.r-project.org
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described in Table  2. There was no statistically signifi-
cant difference identified in the morphological features 
between the training and validation cohorts (P>0.05) 
excepting hypointense on T2WI. Kappa coefficients for 
different features ranged from 0.725 to 0.92.

Table  3 show the factors associated with malignant 
thyroid nodules. In the univariate and multivariate 
analysis, independent predictors of malignant thyroid 
nodules were age (OR=1.96, P<0.001), low signal inten-
sity on T2WI (OR = 3.92, P = 0.003), diffusion restriction 
(OR = 39.54, P < 0.001), reversed halo sign in delay phase 
(OR = 19.26, P < 0.001), cystic degeneration (OR = 4.44, 
P = 0.031) and wash-out pattern (OR = 3.04, P = 0.009).

TI-RADS
A total of 729 nodules were included in the final analy-
sis. Out of these, 452 nodules (62.0%) were determined 
to be benign, while 277 nodules (38.0%) were classified as 
malignant. Table S4 presents the distribution of TI-RADS 
classification. The malignancy rate exhibited a progres-
sive increase with higher grade classifications, and the 

differences between the classifications were found to be 
statistically significant (P<0.001).

Development and validation of the nomogram
The results of the multivariate logistic regression analy-
sis were used to construct the nomogram for predict-
ing malignant thyroid nodules, as depicted in Fig. 2. The 
AUCs of the nomogram in the training cohort and valida-
tion cohort were 0.972 (95% CI: 0.958–0.985) and 0.968 
(95% CI: 0.944–0.992), respectively (Fig.  3a and d). The 
calibration curve (Fig. 3b and e) and Hosmer-Lemeshow 
test statistic (P = 0.094 and 0.409) demonstrated excellent 
calibration. Furthermore, the DCA analysis (Fig.  3c and 
f ) indicated a larger overall net benefit for the nomogram.

MRI-based risk scoring system
The β coefficients corresponding for age, low signal 
intensity on T2WI, diffusion restriction, reversed halo 
sign in delay phase, cystic degeneration and wash-out 
pattern were 0.672, 1.367、3.677、2.958、1.490 and 
1.112, respectively, and were subsequently assigned point 
values of 2, 4, 11, 9, 4, and 3 to developed the RSS. The 

Fig. 1  Flowchart of the study inclusion process
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optimal threshold for the RSS was 12 points. The AUCs 
for distinguishing between benign and malignant nodules 
were 0.914 (95%CI = 0.882–0.945) in the training cohort 
and 0.911 (95%CI = 0.880–0.962) in the validation cohort 
(Figure S1). The performance of the RSS is further elab-
orated in Table S5. Figure  4 depicts representative MRI 
images of both benign and malignant thyroid nodules.

MRI-based prediction model
The construction of the MRI-based prediction model 
is depicted in Fig. 5. The diagnostic performance of the 
MRI-based prediction model and TI-RADSs is presented 
in Table  4. The MRI-based prediction model exhibited 
a larger AUC value of 0.947 (Delong test: P < 0.05), sur-
passing the AUC values of the other TI-RADSs (ranging 
from 0.747 to 0.858) as illustrated in Fig. 6. The sensitiv-
ity, specificity, accuracy, PPV, and NPV of the MRI-based 
prediction model were 96.0%, 93.4%, 94.4%, and 89.9%, 
respectively. The MRI-based prediction model demon-
strated relatively superior specificity and NPV compared 
to the other five TI-RADSs, as well as improved predic-
tive performance (NRI > 0, P < 0.05).

Table 5 presents a comprehensive analysis of the diag-
nostic accuracy of the MRI-based prediction model 
across different subgroups. The performance of the 
MRI-based prediction model was notably strong in both 
unifocal and multifocal nodules, with particularly high 
sensitivity (96.1%) and specificity (95.7%) observed in 
multifocal nodules. Furthermore, the sensitivity and 
specificity of the prediction model in the presence or 
absence of Hashimoto’s thyroiditis were 94.6% and 96.8%, 

and 94.7% and 92.6%, respectively. The MRI-based pre-
diction model demonstrated a sensitivity of 96.5%, 97.4%, 
and 60% for nodules measuring 0.5 to 1  cm, 1 to 4  cm, 
and larger than 4  cm, respectively, with corresponding 
specificities of 87.0%, 95.3%, and 95.1%. Notably, among 
nodules larger than 4 cm, a total of 8 malignant nodules 
were missed diagnosis, comprising seven follicular thy-
roid carcinomas and one papillary thyroid carcinoma.

Discussion
This study presented findings indicating that age, low 
signal intensity on T2WI, restricted diffusion, reversed 
halo sign in delay phase, cystic degeneration, and wash-
out pattern were independent predictors for malignant 
thyroid nodules. The MRI-based nomogram was devel-
oped using these predictors showed satisfactory predic-
tive ability and calibration in both training and validation 
cohorts. In addition, the MRI-based prediction model 
had superior specificity and NPV along with higher 
sensitivity compared to the other five TI-RADS, which 
improved the overall integrated prediction performance.

There have been a number of TI-RADSs that were 
developed as a result of previous studies using US to dif-
ferentiate benign and malignant thyroid nodules. Kim 
DH et al. [11] found that ACR-TIRADS, K-TIRADS, 
and EU-TIRADS 4 and 5 category thyroid nodules had 
a good sensitivity greater than 90% in the meta-analysis. 
Their specificity, however, remained relatively low, with 
K-TIRADS having the highest specificity at 61%, followed 
by ACR-TIRADS (49%) and EU-TIRADS (48%). The sub-
optimal accuracy of thyroid cancer diagnosis has resulted 

Table 1  Patient characteristics
Variable Training cohort (n = 397) Validation cohort (n = 175) p value

Benign Malignant p value Benign Malignant p value
Age, mean ± SD, years 53.49 ± 12.78 45.99 ± 14.63 <0.001* 53.59 ± 12.89 46.19 ± 14.15 <0.001* 0.764
Thyroid volume, cm3 22.70 ± 29.53 11.49 ± 15.37 <0.001* 20.58 ± 19.44 10.81 ± 13.55 <0.001* 0.569
Gender 0.083 0.773 0.842
  Male 45 (19.6) 45 (26.9) 26 (24.3) 15 (22.1)
  Female 185 (80.4) 122 (73.1) 81 (75.7) 53 (77.9)
Number <0.001* <0.001* 0.586
  Unifocal 47 (20.4) 80 (47.9) 22 (20.6) 33 (48.5)
  Multifocal 183 (79.6) 87 (52.1) 85 (79.4 ) 35 (51.5)
Location 0.278 0.074 0.269
  Left lobe 108 (47.0) 65 (38.9) 60 (56.1) 27 (39.7)
  Right lobe 113 (49.1) 95 (56.9) 41 (38.3) 38 (55.9)
  Isthmus 9 (3.9) 7 (4.2) 6 (5.6) 27 (39.7)
Size <0.001* <0.001* 0.387
  0.5-1 cm 65 (28.3) 89 (53.3) 23 (21.5) 38 (55.9)
  1-4 cm 128 (55.7) 67 (40.1) 63 (58.9) 23 (33.8)
  ≥4 cm 37 (16.1) 11 (6.6) 21 (19.6) 7 (10.3)
Hashimoto’s thyroiditis 0.089 0.041* 0.007*
  Absent 192 (83.5) 128 (76.6) 100 (93.5) 57 (83.8)
  Present 38 (16.5) 39 (23.4) 7 (6.5) 11 (16.2)
Data are expressed as the number of nodules, with percentages in parentheses. Abbreviation: SD,Standard deviation. *, P<0.05
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in an increase in unnecessary FNA, which are both 
invasive and yield nondiagnostic outcomes in approxi-
mately 25% of cases [21]. This research study evaluated 
the performance of C-TIRADS, using a cut-off value of 
4c category, and ACR-TIRADS, with a cut-off value of 5 
category, in terms of specificity. C-TIRADS exhibited a 
specificity of 94.7%, while ACR-TIRADS demonstrated a 
specificity of 97.3%. However, both approaches sacrificed 
a significant amount of sensitivity, with values of only 
51.3% and 64.6% respectively. In contrast, the MRI-based 

prediction model had the highest specificity of 93.4% 
while maintaining high sensitivity.

Risk stratification systems for thyroid nodules at ultra-
sound were frequently complicated and subject to low 
specificity and inadequate interobserver agreement. It is 
necessary to continuously improve these systems in order 
to minimize the unnecessary FNA. Wildman Tobriner et 
al. [22] showed that an artificial intelligence-optimized 
TI-RADS can moderately improve specificity and sen-
sitivity compared to TI-RADS. In recent years, there 

Table 2  MRI qualitative features of thyroid nodules in training and validation cohorts
Variables Training cohort (n = 397) Validation cohort (n = 175) Kappa p value

Benign Malignant p Benign Malignant p
High signal intensity on T2WI <0.001* <0.001* 0.879 0.123
  Absence 58 (25.2) 133 (79.6) 19 (17.8) 53 (77.9)
  Presence 172 (74.8) 34 (20.4) 88 (82.2) 15 (22.1)
High signal intensity on T1WI <0.001* <0.001* 0.884 0.867
  Absence 160 (69.6) 160 (95.8) 76 (71.0) 64 (94.1)
  Presence 70 (30.4) 7 (4.2) 31 (29.0) 4 (5.9)
Hypointense on T2WI <0.001* <0.001* 0.725 0.015*
  Absence 187 (81.3) 45 (26.9) 98 (91.6) 23 (33.8)
  Presence 43 (18.7) 122 (73.1) 9 (8.4) 45 (66.2)
Restricted diffusion <0.001* <0.001* 0.914 0.312
  Absence 211 (91.7) 23 (13.8) 100 (93.5) 11 (16.2)
  Presence 19 (8.3) 144 (86.2) 7 (6.5) 57 (83.8)
Cystic degeneration 0.002* 0.034* 0.92 0.924
  Absence 201 (87.4) 161 (96.4) 94 (87.9) 66 (97.1)
  Presence 29 (12.6) 6 (3.6) 13 (12.1) 2 (2.9)
Flow-void signal 0.316 0.907 0.831 0.111
  Absence 215 (93.5) 160 (95.8) 97 (90.7) 62 (91.2)
  Presence 15 (6.5) 7 (4.2) 10 (9.3) 6 (8.8)
Reversed halo sign in delay phase <0.001* <0.001* 0.818 0.255
  Absence 213 (92.6) 35 (21.0) 103 (96.3) 15 (22.1)
  Presence 17 (7.4) 132 (79.0) 4 (3.7) 53 (77.9)
Pseudocapsule <0.001* <0.001* 0.899 0.151
  Absence 109 (47.4) 154 (92.2) 44 (41.1) 61 (89.7)
  Presence 121 (52.6) 13 (7.8) 63 (58.9) 7 (10.3)
Fissure-filling enhancement 0.001* 0.005* 0.874 0.082
  Absence 195 (84.8) 161 (96.4) 84 (78.5) 64 (94.1)
  Presence 35 (15.2) 6 (3.6) 23 (21.5) 4 (5.9)
Hyperintense on T2WI with enhancement <0.001* 0.001* 0.893 0.676
  Absence 117 (50.9) 142 (85.0) 55 (51.4) 56 (82.4)
  Presence 113 (49.1) 25 (15.0) 52 (48.6) 12 (17.6)
Wash-out pattern <0.001* 0.002* 0.909 0.325
  Absence 142 (61.7) 49 (29.3) 66 (61.7) 26 (38.2)
  Presence 88 (38.3) 118 (70.7) 41 (38.3) 42 (61.8)
Hyperenhancement in early phase <0.001* 0.001* 0.900 0.399
  Absence 169 (73.5) 156 (93.4) 76 (71.0) 62 (91.2)
  Presence 61 (26.5) 11 (6.6) 31 (29.0) 6 (8.8)
Change of lesion size in multiphasic enhancement <0.001* <0.001* 0.743 0.239
  Absence 117 (50.9) 17 (10.2) 58 (54.2) 10 (14.7)
  Presence 113 (49.1) 150 (89.8) 49 (45.8) 58 (85.3 )
Data are expressed as the number of nodules, with percentages in parentheses

Abbreviation: OR,odds ratio;CI, confidence interval; T2WI, T2-weighted imaging; T1WI, T1-weighted imaging. *p< 0.05
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has been a gradual increase in the research of MRI for 
diagnosing both benign and malignant thyroid nodules 
[23–27] and predicting the preoperative aggressiveness 
of papillary thyroid carcinoma [28–34], demonstrating 
promising application prospects. The ongoing advance-
ments in MRI technology, as a functional medical imag-
ing modality, warrant continuous exploration of its 
potential in diagnosing and evaluating thyroid nodules, 
ultimately leading to the development of its clinical appli-
cation. Consequently, it becomes necessary to establish a 
prediction model for distinguishing between benign and 
malignant thyroid nodules based on MRI.

The predictive model developed in this study for distin-
guishing between benign and malignant thyroid nodules 
using MRI exhibited robust diagnostic efficacy. Integra-
tion of this model with the ultrasound TI-RADS grad-
ing system had the potential to improve diagnostic and 
treatment strategies for thyroid nodules. In clinical prac-
tice, patients categorized as TI-RADS category 4 or 5 
may receive follow-up if the MRI-based predictive model 
suggests a benign nature, thereby avoiding unnecessary 
FNA. Conversely, if the model indicates malignancy, 
FNA and surgical intervention are recommended. How-
ever, further research was necessary to validate the effec-
tiveness of the MRI-based prediction model in enhancing 
the ultrasound TI-RADS grading system. Subgroup 
analysis revealed a decreased sensitivity of the MRI-
based prediction model for thyroid nodules larger than 
4 cm, with missed diagnoses of 7 cases of thyroid follicu-
lar carcinoma and 1 case of thyroid papillary carcinoma. 
These findings indicated a limited diagnostic efficacy of 

the model for follicular thyroid neoplasms (FTNs) larger 
than 4 cm. Lin et al. [35] highlighted the ineffectiveness 
of various TIRADSs in managing FTNs, as evidenced by 
the high percentage (65.3 to 93.1%) of patients subjected 
to unnecessary FNA. This highlighted the importance 
of establishing a tailored stratification system for FTNs. 
Consequently, it was imperative to create MRI-based 
predictive models specifically designed for FTNs.

In this study, all nodules that exhibit non-enhancement 
and the light pearl sign were confirmed to be benign. It 
was observed that these two features were identified as 
specific characteristics indicated benignity. The presence 
of the black-white flower sign and gap-filling enhance-
ment were found to be specific features associated with 
malignant nodules. The black-white flower sign was 
defined as petaloid and cerebrospinal fluid-like high sig-
nal on T2WI with an irregular apparent low signal in the 
centre of the lesion. From a pathological perspective, this 
sign corresponds to the stromal appearance, where it 
segregated follicular cells into irregular petal-like struc-
tures that aggregate in the central area of the lesion. The 
stroma contains few fluid content, resulting in low signal 
intensity on T2WI, whereas the presence of numerous 
follicular cells with higher fluid content contributes to 
the high signal on T2WI. Gap-filling enhancement was 
defined as a lesion located in the perithyroid region with 
a progressive enhancement pattern, with disruption of 
the contour line in the early phases and an intact contour 
line in the delayed phases. In the early phases of enhance-
ment, interrupted thyroid contour was a sign of involve-
ment of the thyroid envelope by the stromal component 

Table 3  Univariate and multivariate analysis to identify factors associated with malignant thyroid nodule and a scoring system 
developed from β coefficient in training cohort
Variables Univariate analysis Multivariate analysis β coefficient Risk Score

Odds ratio (95% CI) p value Odds ratio (95% CI) p value
Gender (male, female) 1.52 (0.95-2.43) 0.084
Age (≤48y, >48y) 3.07 (2.02-4.66) <0.001* 1.96 (0.88-4.36) 0.101 0.672 2
Lesion number (unifocal, multifocal) 0.24 (0.15-0.37) <0.001*
Tumor size (<1 cm, 1-4 cm, ≥4 cm) 0.43 (0.31-0.60) <0.001*
High signal intensity on T2WI 0.09 (0.05-0.14) <0.001*
High signal intensity on T1WI 0.10 (0.04-0.22) <0.001*
Low signal intensity on T2WI 11.79 (7.32-18.98) <0.001* 3.92 (1.57-9.78) 0.003* 1.367 4
Restricted diffusion 69.53 (36.56-132.24) <0.001* 39.54 (16.30-95.89) <0.001* 3.677 11
Reversed halo sign in delay phase 47.25 (25.44-87.79) <0.001* 19.26 (7.53-49.25) <0.001* 2.958 9
Pseudocapsule 0.08 (0.04-0.14) <0.001*
Fissure-filling enhancement 0.21 (0.09-0.51) 0.001*
Cystic degeneration 0.26 (0.10-0.64) 0.003* 4.44 (1.15-17.12) 0.031* 1.490 4
Hyperintense on T2WI with enhancement 0.18 (0.11-0.30) <0.001*
Flow-void signal 0.63 (0.25-1.57) 0.320
Wash-out pattern 3.89 (2.54-5.95) <0.001* 3.04 (1.32-6.98) 0.009* 1.112 3
Hyperenhancement in early phase 0.20 (0.10-0.38) <0.001*
Change of lesion size in multiphasic 
enhancement

9.14 (5.20-16.07) <0.001*

Abbreviations: CI, confidence interval; T2WI, T2-weighted imaging; T1WI, T1-weighted imaging. *P<0.05
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of the lesion [36], whereas in the delayed phase this 
stromal enhancement leads to filling of the interrupted 
envelope.

In the RSS, restricted diffusion and reversed halo sign 
in delay phase were the two independent predictors with 
the highest scores of 11 and 9 points. DWI has been 
widely employed in the field of oncology for the purposes 
of diagnosing, monitoring, and prognosticating malig-
nancies [37]. The apparent diffusion coefficient (ADC) 
has been established as a valuable tool in the differentia-
tion of benign and malignant thyroid nodules [38–40]. 
Restricted diffusion was defined by the presence of a 
solid component within the lesion, which manifested as 
high signal intensity on DWI and low signal intensity on 
ADC. The assessment of restricted diffusion provided a 
direct and pragmatic approach in contrast to the utiliza-
tion of quantitative ADC values. The reversed halo sign 
in delay phase was defined by the wash-out pattern of 

the central portion of the lesion, continuous enhance-
ment in the peripheral area relative to the central part 
during the delay phase, and a blurred border. This find-
ing aligns with a previous study conducted by Wang et al. 
[41]. The interpretation implied that the central region of 
the tumor exhibits active proliferation of neoplastic cells, 
whereas the peripheral area primarily consisted of con-
nective tissue with a profusion of tomur stroma, leading 
to sustained enhancement in the delay phase.

This study exhibited several limitations. Firstly, it 
adopted a retrospective design, thereby introducing an 
inherent selection bias, as it exclusively includes cases 
that underwent surgery intervention for pathological 
examination. Consequently, the exclusion of nodules 
selected for follow-up after FNA or those deemed too 
small for FNA may have influenced the outcomes. Sec-
ondly, the study did not encompass nodules smaller than 
5  mm due to the limitation imposed by MRI imaging 

Fig. 2  Nomogram for preoperative estimation of malignant thyroid nodule. When using the nomogram, find the position of each feature on the axis, 
and identify the corresponding point vertically. On the bottom scale, the points of all features were added up and converted into the probability of a 
malignant thyroid nodule
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techniques. Thirdly, the qualitative parameters selected 
in this study possessed a certain degree of subjectiv-
ity. Although quantitative parameters were considered 
objective, their accuracy can be affected by various fac-
tors such as equipment, parameters, and measurement 
methods in clinical practice. In contrast, qualitative indi-
cators provided convenience in clinical settings. Lastly, 
this study was limited to a single-center, and incorporat-
ing multi-center cases would enhance the validation of 
the MRI-based prediction model.

In conclusion, the utilization of MRI morphological 
features in the prediction model for benign and malig-
nant thyroid nodules demonstrated a notable diagnostic 
efficacy, thereby establishing a reliable basis for clini-
cal diagnosis and treatment decision-making. More-
over, the incorporation of MRI morphological features 
holds promise in enhancing the diagnostic accuracy of 
TI-RADS.

Fig. 3  Predictive performance of the nomogram in the training and validation cohorts. (a) and (d) ROC curves of the nomogram in the training and 
validation cohorts; (b) and (e) Calibration curves of the nomogram in the training and validation cohorts. Nomogram-predicted probability of malignant 
thyroid nodules is on the X-axis; observed malignant thyroid nodules are shown on the Y-axis; and the grey solid line represents a perfect prediction. (c) 
and (f) Decision curves of the nomogram for predicting the probability of malignant thyroid nodules in the training and validation cohorts. The horizontal 
and vertical axes represent the threshold probability and net benefit, respectively. The blue line is the expected net beneft of per patient based on the 
predictive nomogram
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Fig. 4  A 35-year-old female with a 1.8 cm papillary thyroid carcinoma in the right lobe of the thyroid gland (a, b, c and d) and A 47-year-old female with 
a 2 cm nodular goiter in the right lobe of the thyroid gland (e, f, g and h). Axial T2-weighted imaging (a) shows a striped low signal area; Axial diffusion-
weighted imaging (DWI) (b) and apparent diffusion coefficient (ADC) map (c) show restricted diffusion of the lesion (high signal intensity on DWI, low 
signal intensity on ADC); The delayed phase contrast-enhanced T1-weighted imaging (d) reveals a greater enhancement in the peripheral area compared 
to the central area of the lesion, with a blurred border between them, which corresponds to the reversed halo sign in delay phase. The characteristics of 
the lesion (a, b, c, and d) including age < 48, low signal intensity on T2WI, restricted diffusion, and the presence of the reversed halo sign in delay phase, 
are consistent with an MRI risk scoring system score of 26 and indicate a determination of malignancy. Axial T2-weighted imaging (e) show a striped low 
signal area; Axial DWI (f) and ADC map (g) show high signal intensity of lesion; The delayed phase contrast-enhanced T1-weighted imaging (h) shows 
heterogeneous enhancement of lesion. The characteristics of the lesion (e, f, g and h) including age < 48 and low signal intensity on T2WI, are consistent 
with an MRI risk scoring system score of 6 and indicate a determination of benignity
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Table 4  Comparison of diagnostic performance of MRI-based prediction model and five ultrasonography-based risk stratification 
systems
Model (Cutoff score) Sensitivity Specificity Accuracy PPV NPV AUC P* NRI P#

MRI-based prediction model 96.0 93.4 94.4 89.9 97.5 0.947
ACR-TIRADS (≥ category 4) 96.8 56.9 72.1 57.9 96.6 0.768 <0.001 22.36 <0.001
ACR-TIRADS (≥ category 5) 64.6 94.7 83.3 88.2 81.4 0.797 <0.001 11.11 <0.001
K-TIRADS (≥ category 4) 95.3 58.4 72.4 58.4 95.3 0.769 <0.001 21.95 <0.001
K-TIRADS (≥ category 5) 79.1 91.6 86.8 85.2 87.7 0.853 <0.001 7.54 <0.001
EU-TIRADS (≥ category 4) 95.3 58.4 72.4 58.4 95.3 0.769 <0.001 21.95 <0.001
EU-TIRADS (≥ category 5) 81.9 88.1 85.7 80.8 88.8 0.850 <0.001 8.64 <0.001
Kwak-TIRADS (≥ category 4b) 95.3 59.5 73.1 59.1 95.4 0.774 <0.001 21.26 <0.001
Kwak-TIRADS (≥ category 4c) 79.8 91.2 86.8 84.7 88.0 0.855 <0.001 7.54 <0.001
C-TIRADS (≥ category 4b) 82.3 89.4 86.7 82.6 89.2 0.858 <0.001 7.68 <0.001
C-TIRADS (≥ category 4c) 51.3 97.3 79.9 92.2 76.5 0.743 <0.001 14.54 <0.001
Data are presented as percentages with the exception of the results for AUC. Abbreviation: PPV positive predictive value; NPV negative predictive value; AUC area 
under the curve; NRI Net reclassification index; TIRADS Thyroid Imaging Reporting and Data System; ACR American College of Radiology; *P values were assessed 
using Delong tests; #the P value for NRI

*P values were assessed using Delong tests; #the P value for NRI

Fig. 5  The MRI morphological features-based model for predicting benign and malignant thyroid nodules
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Table 5  Subgroup analysis of MRI-based prediction model
Subgroup N (%) Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%)
Number
  Unifocal nodules subgroup 252(30.5) 93.2 81.1 88.9 89.9 86.9
  Multifocal nodules subgroup 573(69.5) 96.1 95.7 95.8 89.2 98.5
Hashimoto′s thyroiditis
  Hashimoto′s thyroiditis subgroup 137(16.6) 94.6 96.8 95.6 97.2 93.8
  Non-Hashimoto′s thyroiditis subgroup 688(83.4) 94.7 92.6 93.3 87.5 96.9
Size
  Small nodules subgroup (0.5-1 cm) 272 (33.0) 96.5 87.0 91.9 88.9 95.8
  Medium nodules subgroup (1-4 cm) 452 (54.8) 97.4 95.3 96.0 91.6 98.6
  Large nodules subgroup (≥4 cm) 101 (12.2) 60.0 95.1 88.1 75.0 90.6
Abbreviation: N, number; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve

Fig. 6  The receiver operating characteristic (ROC) curves of the MRI-based prediction model and TI-RADSs at various cut-off values for distinguishing 
between benign and malignant thyroid nodules. Abbreviation: ACR-TIRADS, American College of Radiology Thyroid Imaging Reporting and Data System; 
K-TIRADS, Korean-TIRADS; EU-TIRADS, European-TIRADS; C-TIRADS, Chinese-TIRADS

 



Page 13 of 14Zheng et al. BMC Cancer          (2024) 24:256 

Abbreviations
US	� Ultrasonography
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