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Abstract
Purpose  Significant advancements in improving ovarian cancer (OC) outcomes have been limited over the past 
decade. To predict prognosis and improve outcomes of OC, we plan to develop and validate a robust prognosis 
signature based on blood features.

Methods  We screened age and 33 blood features from 331 OC patients. Using ten machine learning algorithms, 88 
combinations were generated, from which one was selected to construct a blood risk score (BRS) according to the 
highest C-index in the test dataset.

Results  Stepcox (both) and Enet (alpha = 0.7) performed the best in the test dataset with a C-index of 0.711. 
Meanwhile, the low RBS group possessed observably prolonged survival in this model. Compared to traditional 
prognostic-related features such as age, stage, grade, and CA125, our combined model had the highest AUC values at 
3, 5, and 7 years. According to the results of the model, BRS can provide accurate predictions of OC prognosis. BRS was 
also capable of identifying various prognostic stratifications in different stages and grades. Importantly, developing 
the nomogram may improve performance by combining BRS and stage.

Conclusion  This study provides a valuable combined machine-learning model that can be used for predicting the 
individualized prognosis of OC patients.
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Introduction
Ovarian cancer(OC), an aggressive gynecological cancer, 
has a 5-year survival rate of less than 50% and ranks the 
first in tumor-related deaths among gynecologic cancers 
in the United States [1]. 75% of epithelial ovarian cancer 
(EOC) patients are already in advanced stages at the time 
of detection due to the sneaky clinical symptoms and the 
lack of early screening tools [2]. Traditional FIGO stage, 
grade, CA-125, and tumor residuals provide a relatively 
reliable reference for patient treatment selection and pre-
dicting prognosis [3–7]. Still, the high degree of hetero-
geneity in EOC, even among patients at the same stage, 
can lead to a wide range of outcomes [8].

In recent years, treatment for ovarian cancer is no lon-
ger a ‘one-size-fits-all’ fixed treatment proposition [9, 
10]. Multiple clinical trials have categorized patients into 
high- and low-risk cohorts [11]. In many cases, the treat-
ment decision with PARP inhibitors or bevacizumab may 
be influenced by the risk stratification predicted based 
on these clinical and genetic factors [11]. Therefore, the 
construction of predictive models for EOC prognosis is 
essential.

Through bioinformatics research, numerous prognostic 
models for gene signatures have been developed. These 
prognostic models, while generally achieving good pre-
dictive results, lacked integrated biological signatures 
because they were based on gene expression files for spe-
cific biological pathways such as immune [12], metabo-
lism [13], m6A [14], and autophagy [15]. As a result, there 
is a need to take into account more usable and effective 
clinical biomarkers for prediction. Previous research suc-
cessfully predicted prognosis using various preoperative 
blood indicators [16, 17]. According to certain research, 
blood indicators may represent the tumor microenvi-
ronment. However, screening using a few blood indi-
cators resulted in the loss of key information and was 
inadequate for exploring the characteristic landscapes 
and survival prognosis of OC patients. Machine learning 
(ML) has shown enormous application value in evaluat-
ing prognosis and making clinical diagnoses. Besides, ML 
can adequately utilize large datasets for training, which 
avoids loss of data. Previous studies have demonstrated 
the superiority of machine learning algorithms over non-
machine learning algorithms [18–25]. Using a decision 
tree algorithm, Feng et al. [25] constructed a prediction 
model for EOC based on preoperative blood markers and 
clinicopathologic parameters, but the prediction still has 
greater potential for improvement. Using multiple types 
of machine learning algorithms, the integrated program 
could provide a model with consensus output for OC 
prognosis. And the combination of algorithms can fur-
ther reduce the dimensionality of the variables, making 
the model more simplified and increasing accuracy. Pre-
viously, Hansen et al. identified and quantified circRNAs 

expression by combining two (or more) algorithms and 
found that algorithm combinations could improve algo-
rithm complementarity and resolve algorithm-specific 
false positives [26].

Here, we utilized 88 machine learning algorithm com-
binations to explore prognostic stratification based on 
blood features to guide individualized management of 
EOC patients.

Methods
Study population
Figure 1 depicted the research design process schemati-
cally. Retrospective screening was performed on 443 
EOC patients from Jan.2010 to Dec.2020. Exclusion crite-
ria were as described in previous articles [27]. In addition 
to this, patients with no follow-up records were excluded 
(n = 88). Finally, a total of 331 EOC patients were 
matched. The original dataset (n = 331) was randomly 
divided into training dataset (n = 231) and test dataset 
(n = 100) using a 7:3 ratio. The analysis has been approved 
by the Ethics Committee of Renji Hospital Affiliated to 
Shanghai Jiao Tong University School of Medicine.

HRD status assessments
Combining the homologous recombination deficiency 
(HRD) score and the status of BRCA1/2 mutations is 
necessary to determine the HRD status. The HRD score 
was calculated as the sum of the loss of heterozygosity 
(LOH) , telomeric allelic imbalance (TAI), and large-scale 
state transitions (LST) scores. HRD score was tested by 
BGI Genomics Co., Ltd., and HRD status was consid-
ered positive if the HRD score was greater than 42 or 
BRCA1/2 mutations.

Prognostic signature selection and development
Based on our previous study [27], a total of 33 blood fea-
tures were selected from the cohort. Next, to develop the 
blood risk score (BRS), we incorporated these blood fea-
tures and age into our program. The preoperative blood 
features contained Sodium (Na), Potassium (K), Chlorine 
(Cl), White blood cell (WBC), Neutrophil (Neu), Lym-
phocyte (Lym), Hematocrit (Hct), and Platelet (PLT), Red 
blood cell (RBC), Hemoglobin (Hb), Monocyte (Mono), 
Eosinophil (Eo), Basophil (Baso), Carcinoembryonic 
antigen (CEA), Alpha-fetoprotein (AFP), Carbohydrate 
antigen 19 − 9 (CA19-9), and Carbohydrate antigen 125 
(CA-125), Blood urea nitrogen (BUN), Creatinine (Cr), 
Uric acid (UA), Alanine aminotransferase (ALT), Aspar-
tate aminotransferase (AST), Alkaline phosphatase 
(ALP), Total protein (TP), Albumin (Alb), Prealbumin 
(PA), globulin (GLOB), glutamyl transpeptidase (GGT), 
Lactate dehydrogenase (LDH), Thrombin time (TT), Pro-
thrombin time (PT), Fibrinogen (Fb) and Activated par-
tial thromboplastin time (APTT).
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To enhance the accuracy and robustness of compre-
hensive and systematic approaches, we integrated 10 ML 
algorithms and generated 88 algorithm combinations. We 
used the preceding procedure to create a reliable prog-
nosis model for ovarian cancer [28, 29]. In this study, we 
combined 10 classical algorithms: random forest (RSF), 
survival support vector machine (Survival-SVM), least 
absolute shrinkage and selection operator (LASSO), elas-
tic network (Enet), gradient boosting machine (GBM), 
supervised principal components (SuperPC), ridge 
regression, partial least squares regression for Cox (plsR-
cox), CoxBoost, and Stepwise Cox (StepCox). Variable 
screening was provided by RSF, LASSO, CoxBoost, and 
Stepwise Cox. We constructed 88 model combinations 
using the framework of LOOCV based on the approach 
of Liu et al. [30]. Next, we constructed prognostic signa-
tures in the training dataset using a combination of 88 
models. To train and tune the models, and reduce over-
fitting, the original training dataset was divided into a 

sub-training set and a validation set through LOOCV. 
Specifically, in each LOOCV trial, N-1 samples were 
used as the sub-training set to train the models, and the 
remaining single sample was used as a validation set to 
validate the models and optimize model parameters. This 
process was repeated N times until each sample was used 
as a validation set once. When the models were obtained, 
we evaluated the models using the test dataset. We used 
prognostic models to predict the overall survival of 
patients. The BRS was finally estimated using the signa-
tures gathered from the training and test cohorts. More 
details were shown in the Supplementary Material.

Evaluating the clinical significance of BRS
The concordance index (C-index) and the integrated 
Brier score (IBS), two widely used assessment metrics, 
were employed in the prior papers to assess the efficacy 
of the survival prediction model [31]. C-index is defined 
as the proportion of patient pairs in which the predicted 

Fig. 1  Study design process
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and observed survival outcomes were concordant [32]. A 
C-index of 0.5 indicates no predictive discrimination, and 
a C-index of 1 indicates perfect predictive accuracy. The 
IBS, which represents the mean squared discrepancies 
between observed survival status and anticipated survival 
probability at a specific time point, is used to assess the 
error of survival prediction. An IBS value of 0 suggests 
perfect prediction, whereas 1 shows completely wrong 
prediction. By taking into account the highest C-index of 
the test cohort, we were able to determine the best prog-
nostic model for OC. In addition, the Mean Square Error 
(MSE) of the training dataset was calculated based on the 
predicted results generated by each iteration of LOOCV. 
The MSE of the test dataset was calculated based on the 
final model. The smaller the MSE value, the more accu-
rate the predicted results.

Between high- and low-risk groups, clinical param-
eters such as age, FIGO stage, and grade were compared. 
A Kaplan-Meier (KM) analysis in clinical subgroups was 
also conducted. To evaluate the BRS’s predictive power, 
receiver-operator characteristic (ROC) curves were cre-
ated for the test dataset. We conducted time-dependent 
ROC curves and areas under the curve (AUCs) analyses 
of the model predictive power at 3, 5 and 7 years using 
the R package timeROC. We used SHAP to interpret 
the output of the optimal machine learning combination 
[33].

Construction of nomogram
Multivariate and univariate analyses were carried out 
using Cox’s hazards regression model. Hazard ratios (HR) 
were determined from Cox proportional hazards regres-
sion models. And the prognostic risk factor is indicated 
by an HR more than 1, whereas the protective impact is 
shown by an HR less than 1. The “rms” package of the R 
software was used to create the nomogram. To assess the 

discrimination of the nomogram model, time-ROC and 
calibration curves were used.

Statistical analysis
The R software (v.4.1.3) was used for all statistical analy-
sis. Categorical variables were analyzed using the chi-
squared or Fisher exact tests, while continuous variables 
were studied using the Wilcoxon rank-sum or T tests. 
The ROC analysis was performed using the R package 
“survivalROC”, and the optimal cut-off value of BRS for 
predicting overall survival (OS) was determined. There 
was statistical significance at P < 0.05.

Results
Clinical characteristics
Table  1 listed the general clinical characteristics of the 
EOC patients. The mean age of datasets was 57.61 ± 10.39 
years old. A total of 137 (41.4%) and 194 (58.6%) patients 
were in early (FIGO I or II) or late (FIGO III or IV) stages 
of the OC. Histology-proven serous subtypes were pres-
ent in 229 (70.2%) of patients. A heat map was obtained 
to express the results of Pearson correlation analysis of 
selected features (Fig. 2).

Univariate and multivariate Cox analysis
We conducted univariate and multivariate Cox regres-
sion analysis in all patients to further ascertain whether 
these chosen features acted as an independent risk 
factor for the survival outcome of ovarian cancer 
patients (Table  2). The UA (HR = 1.0031, P = 0.0279), TP 
(HR = 0.9568, P = 0.0018), Alb (HR = 0.9159, P = 0.0000), 
AST (HR = 1.0212, P = 0.0146), PA (HR = 0.9955, 
P = 0.0062), LDH (HR = 1.0015, P = 0.0112), Lym 
(HR = 0.6378, P = 0.0435), Hct (HR = 0.0036, P = 0.0344), 
TT (HR = 0.8264, P = 0.0001), Fb (HR = 1.0908, P = 0.0347), 
and CA-125 (HR = 1.0002, P = 0.0006) were determined 
as significantly prognostic factors for OS through the 

Table 1  The baseline characteristics of the EOC patients
Overall(n = 331) Training(n = 231) Test(n = 100) P value

Age (mean ± SD) 57.61 ± 10.39 57.89 ± 10.06 56.98 ± 11.14 0.466
Stage (%) 0.214
Early 137 (41.4) 90 (39.0) 47 (47.0)
Late 194 (58.6) 141 (61.0) 53 (53.0)
Histologic types (%) 0.058
Serous 229 (69.2) 158 (68.4) 71 (71.0)
Endometrioid 48 (14.5) 36 (15.6) 12 (12.0)
Mucinous 43 (13.0) 33 (14.3) 10 (10.0)
Clear cell 11 (3.3) 4 (1.7) 7 (7.0)
Grade (%) 0.823
G1 13 (3.9) 8 (3.5) 5 (5.0)
G2 44 (13.3) 31 (13.4) 13 (13.0)
G3 261 (78.9) 184 (79.7) 77 (77.0)
NA 13 (3.9) 8 (3.5) 5 (5.0)
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univariate analysis (Table  2). We used multivariate cox 
regression analysis to adjust for any potential confound-
ing factors that may have existed in univariate cox’s 
regression. Finally, UA (HR = 1.0044, P = 0.013), Alb 
(HR = 0.7742, P = 0.0117), TT (HR = 0.7805, P = 0.0000), 
and CA-125 (HR = 1.0002, P = 0.01) were independent 
factors for survival according to multivariate cox regres-
sion analysis.

Integrated development of ovarian cancer prognosis 
model
ML with preoperative blood metrics as input was trained 
to export a risk score for survival, which was used to 
measure the level of risk for an individual. For our train-
ing cohort, we implemented 88 algorithm combinations 
to acquire prediction models, then, for our test cohort, 
we calculated the C-index and IBS of each algorithm. 

Considering there were fewer independent predictors 
and the model had a filtering function, we did not use 
the above independent risk factors to train models but 
instead used all the characteristics.

As shown in Fig.  3A and Table S1, the combination 
of Stepcox (both) and Enet (alpha = 0.7) with the most 
prominent C-index (0.711) and the low IBS (0.169) was 
chosen as the final model. The mean MSE in the training 
dataset was 0.188, and the test dataset was 0.192. Follow-
ing final model evaluation, we calculated BRS for every 
sample in the test cohort. The characteristics used by 
each model were shown in Fig. 3B. The features selected 
for the optimal model were TP, Alb, and TT. In Figure S1, 
we presented the SHAP values of features for the optimal 
model. BRS was categorized based on its cut-off value 
(0.007) into high and low groups to evaluate its prog-
nostic performance. A KM curve for OS and RFS shows 

Fig. 2  The correlation heat map. The correlation between the biomarkers was depicted in the heatmap
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that the high BRS group had significantly shorter survival 
times in the test cohort (p = 0.0015 for OS and p = 0.035 
for RFS, Fig. 3C and D). To measure the discrimination 
of BRS, we conducted the analysis of time-ROC. In the 
test group, the 3-, 5-, and 7-year OS of BRS had respec-
tive AUCs of 0.738, 0.781, and 0.752. which was higher 
than other common prognostic predictors, such as FIGO 
stage, HRD status, grade, age, and CA-125 (Fig. 3E).

Predictive performance in different clinical features
In order to better understand BRS, we grouped patients 
of the test dataset based on several clinical traits, includ-
ing stage, grade and pathology type. At the same time, 
subgroup analysis reduced the presence of heterogene-
ity and allowed for more reliable prediction results. With 
the later FIGO stage, we discovered that the BRS signifi-
cantly increased (p = 0.022), but there were no significant 

differences in grade and pathology type (Fig.  4A-C). 
Interestingly, BRS also significantly improved the capac-
ity to distinguish overall survival in several clinical sub-
groups, such as stage (early and late) and G3 group, 
although no differentiation was demonstrated for the 
RFS (Fig.  4D-G). In these subgroups, high BRS repre-
sented poorer overall survival.

Nomogram based on BRS and clinical features
Using univariate Cox regression analysis, we identi-
fied BRS (HR = 4.808, P = 0.04) and stage (HR = 3.621, 
P = 0.006) as risk factors for OS (Fig.  5A). Furthermore, 
through multivariate cox regression, we found that BRS 
(HR = 4.475, P = 0.007) and stage (HR = 3.08, P = 0.021) 
were independent risk factors (Fig.  5B). Given the pro-
spective therapeutic applicability of BRS, a predictive 
nomogram incorporating two independent predictors 

Table 2  Univariate and multivariate cox regression analysis
Characteristic Univariate analysis Multivariate analysis

HR CI5 CI95 P HR CI5 CI95 P
Age 1.0185 0.9961 1.0414 0.1067 1.003 0.976 1.0307 0.8312
Na 0.9589 0.904 1.0172 0.1633 0.9752 0.8964 1.061 0.5591
K 0.8446 0.456 1.5642 0.5912 0.7335 0.3617 1.4877 0.3903
Cl 0.9739 0.9221 1.0286 0.3429 0.997 0.923 1.0769 0.9386
BUN 1.0067 0.9379 1.0805 0.8543 0.9542 0.8397 1.0842 0.4718
Cr 1.005 0.9933 1.0169 0.403 1.0103 0.9896 1.0314 0.3323
UA 1.0031 1.0003 1.0059 0.0279 1.0044 1.0009 1.0079 0.013
GGT 1.0051 0.9996 1.0107 0.0699 1.0141 1.0043 1.024 0.0048
TP 0.9568 0.9306 0.9838 0.0018 1.1998 0.9893 1.4551 0.0642
Alb 0.9159 0.8818 0.9512 0 0.7742 0.6346 0.9446 0.0117
ALT 1.0016 0.9875 1.0158 0.8278 0.9981 0.9737 1.0231 0.8799
AST 1.0212 1.0041 1.0386 0.0146 0.9825 0.9463 1.02 0.3545
ALP 0.9965 0.9885 1.0045 0.3889 0.9896 0.981 0.9983 0.0195
PA 0.9955 0.9923 0.9987 0.0062 0.9961 0.9912 1.001 0.1215
GLOB 0.9841 0.942 1.0281 0.4728 0.8155 0.6683 0.9951 0.0447
LDH 1.0015 1.0004 1.0027 0.0112 1.0009 0.9987 1.003 0.4265
WBC 0.987 0.9004 1.082 0.7806 0.1228 0.0034 4.4342 0.2518
NEU 1.0093 0.92 1.1073 0.8451 8.435 0.2317 307.0629 0.245
Lym 0.6378 0.4122 0.9869 0.0435 7.6662 0.2157 272.4187 0.2635
Mono 1.2825 0.374 4.3978 0.6923 7.557 0.1072 532.9701 0.3517
Eo 0.1132 0.0047 2.751 0.1808 0.3733 0.0032 43.7731 0.6852
Baso 0 0 1.5958 0.0573 0.0421 0 2413175.62 0.7282
RBC 0.7635 0.5509 1.0581 0.1051 1.0206 0.7806 1.3344 0.8814
Hb 0.9871 0.9732 1.0011 0.0716 1.0303 0.9668 1.0981 0.3576
Hct 0.0036 0 0.6605 0.0344 0 0 78971.0957 0.3161
PLT 1.0006 0.9984 1.0029 0.5785 0.9984 0.9953 1.0014 0.295
TT 0.8264 0.7499 0.9107 0.0001 0.7805 0.6947 0.8769 0
PT 1.0013 0.9765 1.0266 0.92 0.9648 0.8858 1.0509 0.411
Fb 1.0908 1.0062 1.1824 0.0347 0.9144 0.7729 1.0817 0.2964
APTT 0.984 0.9576 1.0112 0.2455 0.9459 0.892 1.0031 0.0633
AFP 0.9648 0.8779 1.0603 0.4568 1.0154 0.9012 1.144 0.802
CEA 1.0114 0.9888 1.0346 0.3255 1.0462 1.0074 1.0865 0.0193
CA19-9 0.9999 0.9995 1.0003 0.4992 0.9994 0.9988 1.0001 0.1087
CA-125 1.0002 1.0001 1.0003 0.0006 1.0002 1 1.0003 0.01
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Fig. 3  Construction and testing of the combination machine learning model-based blood features for prognosis of OC patients. A. The C-index values for 
88 ML algorithms were calculated in the test dataset. B. Selection of blood features for developing machine-learning models. C, D. KM survival analysis for 
overall survival (C) and recurrence free survival (D) between the high and low BRS groups in the test dataset. E. Common clinical characteristics at 3,5,7 
years in the test dataset were contrasted with the predict performance of BRS.
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of mortality (BRS and stage) was constructed (Fig.  5C). 
Meanwhile, personalized patient scores were computed 
to predict the OS at three, five, and seven years. Accord-
ing to the calibration plot, our nomogram performed 
good in predicting OC patients’ prognoses (Fig. 5D). At 
3-, 5-, 7-year, the nomogram’s AUCs were 0.773, 0.821, 
and 0.887 (Fig. 5E), which indicated its accuracy and sta-
bility. In addition, the nomogram model had an IBS of 
0.153 (Table S2). whereas the BRS has an IBS of 0.169. 
Thus, the excellent predictive performance of nomogram 
model for long-term survival was validated.

Discussion
Conventional features have considerable limitations in 
prognostic management and hazard rate estimation when 
taken into account in the context of tumor heterogeneity 
and the varied clinical outcomes of patients at the same 
stage. Since many patients were not analyzed genomi-
cally, many prognosis markers or predictive models could 
not be directly used for clinical application. To ascertain 
the prognosis of OC, it may be beneficial to investigate 

the classification and risk stratification of tumors by mak-
ing adequate use of clinically available blood tests.

A growing amount of research has shown that periph-
eral blood test was essential for determining the prog-
nosis of ovarian cancer [34–36] and other malignant 
cancers [37–39]. Preoperative blood markers can be 
quickly identified using standard blood testing, which is 
more convenient and affordable. However, preoperative 
peripheral blood assessment systems of ovarian cancer 
are not yet complete. Since 2000, there has been a tre-
mendous improvement in the accuracy of employing ML 
models to predict patient survival and diagnosis [40]. 
Our previous article established supervised diagnostic 
models and unsupervised prognosis models based on age 
and pre-operative blood indicators. To further increase 
the predictive power of the model, we constructed 
prognostic characteristics of OC patients by combin-
ing machine learning algorithms using age and 33 blood 
metrics. In order to prevent unsuitable model approaches 
owing to personal preferences, we combined 10 machine 
learning algorithms into 88 combinations and chose the 

Fig. 4  Performance of BRS in different subgroups. A, B, C. The distribution of BRS in stage (A), grade (B), and histologic types (C). D, E. The KM analysis of 
overall survival and recurrence free survival in different stage subgroups. F, G. The KM analysis of overall survival and recurrence free survival in different 
grade subgroups
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Fig. 5  The development of nomogram. A, B. Univariate (A) and multivariate (B) cox regression analysis. C. The nomogram integrated BRS and stage 
was constructed. D. Calibration curves used to compare the predicted and actual 3, 5,7 years survival probabilities. E. Time-dependent receiver-operator 
characteristic (ROC) analysis for predicting 3-, 5-, and 7-year OS.
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best model. This combined ML model approach has been 
used to predict the prognosis of bladder cancer [41], 
muscle-invasive urothelial cancer [42], pancreatic can-
cer [29], and endometrial cancer [43], as well as validated 
in multiple datasets with good robust and AUC values. 
Importantly, the optimal model demonstrated strong and 
stable prediction performance by evaluating the C-index, 
IBS, and mean MSE. Three, five-, and seven-year OS 
in the test cohort had AUCs of 0.738, 0.781, and 0.752, 
respectively. This predictive efficacy was superior to our 
risk model based on unsupervised machine learning [27]. 
Surprisingly, the predictive efficacy of BRS exceeded 
that of models integrating multi-scale clinical imaging 
and genomic data [44]. Some traditional clinical charac-
teristics have been shown to be useful in the prognostic 
assessment of OC patients. Therefore, we contrasted the 
effectiveness of BRS with these clinical characteristics. 
Apparently, the predictive efficacy of our model was 
preferable to these traditional predictors, including age, 
pathological grade, stage, HRD status, and CA-125. We 
compared BRS with currently recognized prognostic bio-
markers in clinical practice and guidelines, which also 
increased the trust of physicians in our model.

The features identified by our optimal model included 
TP, Alb, TT. Zhong et al. found that thrombin could 
induce epithelial-mesenchymal transition and promote 
the invasion of ovarian cancer cells [45]. A recent study 
has revealed the connections between OC growth and 
coagulation [46]. Our study emphasized the importance 
of TT for the prognosis of OC, which may provide new 
insights into the biological mechanisms of coagulation in 
ovarian cancer. Serum Alb level is a crucial indicator for 
patients’ systemic inflammatory response and nutritional 
condition. The relationship between Alb level and the 
prognosis of patients has been found in many cancers, 
including ovarian, colorectal, and lung cancer [47]. The 
effect of albumin on ovarian cancer is complex, and addi-
tional approaches are needed to explore the mechanisms.

Importantly, the stage between the high- and low-risk 
groups varied significantly. We discovered that as FIGO 
stage was raised, risk scores considerably rose. Besides, 
BRS significantly improved the capacity to identify dif-
ferent clinical subgroups’ survival statuses. Our model 
exhibited independent predictive performance after 
adjusting for stage and grade. The nomogram was further 
modified to increase the clinical utility of BRS. It showed 
higher AUC values compared to BRS alone, and exceed-
ing the predictive power of a nomogram also based on 
peripheral blood features constructed by Bai et al. [48], 
implying a higher predictive value for prognostic pre-
diction in OC patients, which suggested that it may be a 
promising alternative metric for assessing prognostic risk 
in clinical OC.

However, BRS still has some limitations. First, all of 
the samples used in our investigation were retrospective, 
thus prospective samples should be used in the future for 
BRS corroboration. Second, we accept that our work will 
need external validation because it was only evaluated on 
a dataset from one institution. Finally, the lack of investi-
gation into therapy efficacy needs more confirmation in 
the future, and exploring integrated genomes and imag-
ing models with BRS could improve risk stratification’s 
ability to predict outcomes.

In summary, we combined various ML methods to pre-
dict risk stratification for EOC patients, and we found 
that the integrated algorithms increased the efficacy of 
the test dataset beyond common clinical factors. Our 
findings promoted clinical prognostic research by mul-
tiple combination machine learning.
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