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Abstract 

Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety 
of genetic and environmental causes. The conventional treatments for this disease have limitations, making it 
difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted 
over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response 
through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to inter-
mittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its 
immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associ-
ated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 
expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, prolifera-
tion, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be 
the B7-H3 checkpoint.

In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function 
within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC 
and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened 
new therapeutic opportunities in BC.
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Introduction
BC is the leading cause of disability and death among 
women globally [1]. The World Health Organization 
reports that approximately 2.26 million women are given 
a BC diagnosis every year [1]. Mosaic populations of 
tumor cells, immune cells, and stromal cells that have dif-
ferent genetic, epigenetic, and phenotypic traits make up 
breast malignancies. Four molecular subtypes of BC were 
categorized by gene expression sequence analysis; these 

include Luminal A, if estrogen receptor alpha-positive 
(ER) + and/or progesterone-receptor (PR) + , human epi-
dermal growth factor receptor 2 (HER2) − , Ki67 < 14%), 
Luminal B (if ER + and/or PR + , HER2 overexpressed 
or Ki67 ≥ 14%), triple-negative breast cancer (TNBC) 
(if ER − , PR − , HER2 −), and HER2-enriched (if ER − , 
PR − and HER2 +) [2]. The specific receptors that can-
cer cells express (or do not express) act as biomarkers for 
therapy. Anti-estrogens and aromatase inhibitors, both of 
which disrupt ER activity, are effective against ER-α posi-
tive cancers [3]. Therapeutic agents directed at HER2, 
such as trastuzumab—an anti-HER2 antibody—demon-
strate anticancer efficacy specifically in HER2-positive 
malignancies [4]. Hormone-responsive BC has been 
successfully treated with endocrine treatment. Regret-
fully, disease recurrence and relapse are caused by the 
emergence of drug resistance [5], TNBC has the poorest 
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prognosis because of the high intra-tumor heterogene-
ity and absence of specific receptors [6]. Therefore, the 
outlook for women with BC remains grim. The immune 
and stromal cell subsets that compose the breast tumor 
ecosystem are extremely complicated, and their makeup, 
spatial arrangement, and functional orientation all signif-
icantly impact how the illness develops and how patients 
fare. Consequently, it is crucial to establish effective BC 
treatment techniques and identify new therapeutic tar-
gets. Cancer treatment has undergone a paradigm shift 
as a result of recent developments in immune checkpoint 
inhibitor (ICI) medicines [7].

Particular focus has been placed on the B7 family 
proteins due to its potential use as an ICI to cure can-
cer. Members of the B7 family closely regulate immu-
nological responses [8] and tumor progression [9]. The 
10 members of the B7 family that are now recognized 
include B7-1/CD80, B7-2/CD86, B7-H1/PD-L1, B7-DC/
PD-L2, B7-H2/CD275, B7-H3/CD276, B7-H4/VTCN1, 
B7-H5/Vista, B7-H6/NCR3LG1, and B7-H7/HHLA2 
[10]. It has been demonstrated that B7-H1/PD-L1 and 
B7-DC/PD-L2 interact with PD-1 (programmed death 
1) and stimulate the growth of T cells via secreting IL-10 
and interferon-γ [11]. In contrast, the T-cell response is 
inhibited and immune evasion is facilitated when PD-L1 
is expressed on cancer-associated cells [12]. PD-1/
PD-L1 pathway proteins have been targeted by anti-
bodies to treat a variety of malignancies [13]. However, 
certain tumors that exhibit high PD-L1 proteins were 
found to respond to PD-L1 treatment with a low objec-
tive response rate (ORR), likely because the TME signifi-
cantly affects how well the immune system responds to 
these inhibitors [14–16]. Just 40% of patients have clini-
cally reacted to PD-1/PD-L1 blocking [17]. Thus, it is 
crucial for therapeutic purposes to find new biomarkers 
in patients who respond to ICIs.

Among B7 family members, B7-H3 has recently 
received attention because it is significantly expressed 
in several malignancies and predict a dismal progno-
sis [18–22]. The expression of B7-H3 on the surfaces of 
tumor cells stimulates the growth of tumors by allow-
ing these cells to evade immunosurveillance [23]; Com-
pared to normal tissues, tumor tissues have an excessive 
expression of B7-H3 [24, 25]. The American Joint Com-
mittee on Cancer evaluated B7-H3 expression in stage 
I to III primary breast cancer and normal breast speci-
mens, results showed that 39% of initial breast cancers 
had B7-H3 mRNA expression, whereas normal breast 
tissues did not [26]. Moreover, B7-H3 was substantially 
linked with tumor formation and lymph node metasta-
sis in primary breast cancers [26]. Elevated expression 
of B7-H3 was tied to a worse prognosis in a five-year 
examination of BC patients’ survival rates [27] and bad 

clinicopathological BC parameters [28]. According to 
another research, individuals with BC who have high 
levels of B7-H3 expression in their circulating epithelial 
tumor cells are more likely to develop metastases [29]. 
Hence, we propose that the B7-H3 immune checkpoint 
may be a promising target in BC immunotherapy.

B7‑H3’s structure and physiological implications
B7-H3 is a dual-acting immunological checkpoint protein 
that is expressed on cancer cells and antigen-presenting 
cells (APCs) including dendritic cells and macrophages. 
It is effective in both soluble and membrane-associated 
forms [30]. The soluble form can be produced by selective 
splicing [31] or, more commonly, by cleavage of B7-H3 
present on the surfaces of monocytes, DCs, and T cells 
by membrane metalloproteinases [32]. The membrane-
associated form has an extracellular Ig-like structural 
domain, a transmembrane part, and a shorter intracel-
lular region [33]. The number of extracellular Ig-like 
domains that each of the two membrane-bound B7-H3 
isoforms, 2IgB7-H3, and 4IgB7-H3, contains serves to 
distinguish them from one another; the former contains 
a single IgV (variable) domain and a single IgC (con-
stant) domain, due to exon duplication, the latter has tan-
demly duplicated IgV and IgC domains [34]. B7-H3 has 
both stimulatory and inhibitory properties to increase or 
decrease the activity of T cells, possibly due to its inter-
action with various receptors that have different func-
tions in specific contexts. However, the B7-H3 receptor’s 
identification is up for debate. Certain putative receptors, 
including phospholipase A2 receptor 1, interleukin-20 
receptor subunit α, and the trigger receptor expressed on 
myeloid cells-like transcript 2, have not been conclusively 
verified [35]. The unknown nature of the B7-H3 receptor 
has been a major obstacle to understanding the biology 
of B7-H3. Although considerable efforts have been made 
to solve this problem, the available data on the B7-H3 
receptor remain contradictory and limited. In addition to 
its immunological activity, B7-H3 is known to be essen-
tial for maintaining the balance between osteoclast and 
osteoblast growth [36, 37]. Moreover, B7-H3 knockout 
mice often have alterations in oxidative phosphorylation 
and poor fat storage, leading to spontaneous obesity [38].

Regulation of B7‑H3
Nonregulatory expression of B7-H3 in a spectrum of 
malignant cancers has been observed and correlates 
with a poor prognosis [39–42]. Protein-level expres-
sion profile of B7-H3 indicates that posttranscriptional 
and posttranslational regulations are essential for its 
expression, and the effect of modulating B7-H3 expres-
sion on BC is progressively being investigated. Through 
interacting with the 3’-untranslated region of B7-H3, 
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miR-29c tightly controlled B7-H3 to lower its expres-
sion in BC tumors [43]. Alternative splicing is a crucial 
process for regulating gene expression and producing 
proteome diversity [44]. Both 4IgB7-H3 and sB7-H3 
are produced by alternative splicing. Scientists have 
investigated the employing of sB7-H3 in the diagno-
sis of BC by evaluating serum sB7-H3 levels by ELISA, 
using healthy subjects and benign breast disease (BBD) 
patients as controls. Individuals with BC reported sig-
nificantly higher sB7-H3 levels than controls; thus, sB7-
H3 may be a potential biomarker that can be applied 
to distinguish individuals with BC from healthy indi-
viduals and those with BBD [45]. Glycosylation, a post-
translational alteration that regulates the solubility, 
structure, and function of proteins, is crucial for bio-
logical function [46]. In TNBC patients, the fucosyl-
transferase FUT8 stabilizes and encourages high B7-H3 
production via regulating B7-H3 core fucosylation, the 
B7-H3 protein’s glycosylation may serve as a poor pre-
dictive indicator of survival [47].

B7‑H3’s potential contribution to breast cancer
It has been demonstrated that B7-H3 is involved in sev-
eral tumor-related activities. The relationship between 
B7-H3 and tumorigenesis, as well as the signaling path-
ways through which it operates, will be detailed below 
(Fig. 1).

B7‑H3 and breast cancer proliferation
BC is believed to be a stem cell disease because it con-
tains cancer cells that resemble stem cells and have 
tumor-causing capacity [48]. These cells are in charge of 
the formation and metastasis of malignancies. Research-
ers have recently found that BC stem cells can be created 
from nonstem cells, cancer stem cells (CSCs) and cancer 
cells undergo a biological transition that keeps the cell 
population in balance [49]. CSCs are a tiny subpopulation 
of cancer cells that control resistance, metastasis, recur-
rence, and invasiveness in tumors. Cancer can develop 
when a self-replicating stem or progenitor cell undergoes 
a malignant change [50, 51]. Al-Hajj et al. were the first 
to note the existence of CSCs in BC; they successfully 
induced xenograft tumors to grow in immune-deficient 
mice [52]. Small quantities of breast cancer stem cells 
(BCSCs) can generate tumors, and they are resistant to 
chemotherapy and radiation [53, 54]. Similar to stem 
cells, BCSCs regulate self-renewal and differentiation in 
a sensitive way to preserve tumor homeostasis [55]. On 
the one side, they transform into various cancer cells 
that combine to form the tumor mass. On the other side, 
when cancer spreads, they continue to replenish the stem 
cell pool [56]. Several attempts have been taken to elimi-
nate BCSCs because of their significant contribution to 
cancer growth.

One investigation found that B7-H3 expands the num-
ber of BCSCs by activating MEK through MVP [57]. 

Fig. 1  An overview of the molecular pathways behind B7-H3’s tumor-causing activities. When B7-H3 is expressed on the cell membrane, it initiates 
multiple signaling cascades, activating downstream molecules and facilitating the malignant tendencies of cancer cells
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MEK activation is required to maintain the viability of 
cancer stem cells [58]. Additional evidence for this view 
is antibodies against B7-H3 eliminated cancer stem 
cells and prevented tumor development in a way that 
was CD8 + T-cell reliant [23]. Our knowledge of BCSC 
biology and normal stem cell biology is expanding, and 
B7-H3 might be employed as a target to prevent the 
growth of tumors and BCSCs.

B7‑H3 and breast cancer metastasis
BC patients who do not develop metastases have a 5-year 
overall survival rate of more than 80% [59], and dis-
tant metastasis may result in a sharp decline in 5-year 
overall survival to just around 25% [60]. For HER2 + or 
ER + subtypes of metastatic BC, the median overall sur-
vival is around 5 years; for triple-negative subtypes, it is 
1  year. Presently, almost all patients with metastatic BC 
still have no chance of recovery [61]. Breast cancer fre-
quently spreads to several organs, including the bone, 
lung, liver, and brain; metastatic heterogeneity refers to 
this phenomenon, which causes individuals to respond 
to therapy differently and has diverse prognoses. Among 
all metastatic lesions, bone metastases comprise around 
75% [62], and patients with bone metastases had a 5-year 
overall survival rate of 22.8% [63]. The second most typi-
cal location for the spread of BC is the lung, and patients 
who experience such metastases have a 16.8% five-year 
overall survival rate [64]. While liver metastases are less 
common than lung metastases, their expected 5-year 
overall survival rate of 8.5% is lower than that of individ-
uals with lung cancer, local–regional cancer, or bone can-
cer [65]. Brain metastases occur in 10–30% of individuals 
with metastatic BC; given the extremely short survival 
time, these metastases represent a significant quality and 
length of life limitation for many patients [66, 67]. There 
are still many unknowns about the multiphase metastatic 
process, despite decades of study on metastasis giving 
us tremendous understanding. Therefore, a systematic 
and in-depth survey into the mechanisms of BC metas-
tasis and the exploration of effective metastasis-targeting 
drugs is necessary.

Strong evidence linking B7-H3 expression dysregu-
lation to cancer metastasis has been found [40, 68, 69]. 
B7-H3 was found to mediate tumor metastasis through 
several signaling pathways. JAK/STAT signaling and the 
downstream effectors of this pathway: SLUG, MMP-2, 
and MMP-9, have been associated with B7-H3-mediated 
metastasis [70]. By downregulating metastasis-related 
proteins such as MMP-2, STAT3, and IL-8, B7-H3 pro-
motes the motility and invasiveness of tumor cells [70, 
71] and through the JAK2/STAT3/MMP-9 signaling 
pathway [72]. In addition, it was discovered in one study 
that B7-H3 activates the PI3K/AKT pathway to increase 

the expression of SIRT1 and that it further promotes 
E-cadherin expression and epithelial-mesenchymal tran-
sition (EMT) [73]. A crucial stage in the spread of cancer 
is the EMT. In another study, by triggering the PI3K/AKT 
and p38/ERK MAPK signaling pathways, B7-H3 has 
been reported to support the EMT process [74]. Finally, 
B7-H3 increases the production of IL-8 and VEGF and 
activates the TLR4/NF-κB signaling pathway to promote 
metastasis [75]. Although the mechanisms they reveal 
are diverse, tumor invasiveness and metastasis have been 
demonstrated to be impacted by B7-H3. Investigation of 
the mechanisms through which B7-H3-promoted metas-
tasis occurs makes it possible to target the pathways 
involved and thereby attenuate BC metastasis via inter-
fering with signals mediated by B7-H3.

B7‑H3 and breast cancer metabolism
Regardless of the abundant availability of oxygen, tumor 
cells preferentially use glycolysis to produce energy and 
therefore exhibit a higher rate of glycolysis than other 
cells. Aerobic glycolysis was first described by the Ger-
man biochemist Otto Warburg and is known as the 
Warburg effect [76]. Aerobic glycolysis is a scientifi-
cally recognized feature of cancer cell metabolism, and 
the Warburg effect has been shown to occur in BC [77]. 
Several studies have shown that exploring ways to sup-
press the Warburg effect could be instrumental in the 
fight against BC, including refractory phenotypes TNBC 
[78–82]. There is evidence that B7-H3 promotes glucose 
absorption and tumor development in BC [83]. B7-H3 
increases reactive oxygen species (ROS) to support HIF-
1a stability by suppressing the activities of the transcrip-
tion factor NRF2 and NRF2 antioxidant targets SOD1, 
SOD2, and PRX3, thus boosting expression of the glyc-
olytic enzymes LDHA and PDK1; this inhibits pyruvate 
transit through the TCA cycle while promoting the trans-
formation of pyruvate into lactate [83]. Decreased B7-H3 
expression in TNBC cells showed a reduced rate of glyco-
lysis and better sensitivity to AKT/mTOR inhibitors [84]. 
Blockade of B7-H3 probably affects glucose metabolism 
through cellular ROS signaling and shifts the cell’s meta-
bolic process from glycolysis to oxidative phosphoryla-
tion [85]. These results provide strong evidence for the 
role of B7-H3 in carcinogenesis and the deregulation of 
cancer cell metabolism.

B7‑H3 and breast cancer drug resistance
Several BC patients demonstrate inherent drug resist-
ance, while others are initially drug-sensitive but develop 
resistance to anticancer treatments and commonly dis-
play multidrug resistance, which may cause recurrence 
and/or metastasis even though the prognosis for BC 
patients has significantly improved [86–88]. Nowadays, 
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medication resistance is a significant factor in poor prog-
nosis, lowering BC patients’ survival rates [89]. Hence, 
enhancing BC’s chemosensitivity would be a crucial stage 
toward better treatment of this condition.

Some preliminary evidence indicates that B7-H3 influ-
ences DNA repair processes or cancer cell stemness and 
thereby affects chemoresistance [57, 90]. It has been 
shown to encourage resistance to traditional cancer treat-
ments in certain disease types [91–95]. Many currently 
undefined mechanisms may be involved, and a deeper 
understanding of how B7-H3 increases medication 
resistance might result in the creation of more potent 
treatments. Liu et al. found that B7-H3 is crucial for con-
trolling the Jak2/Stat3 signaling pathway; this pathway 
at least partially induces paclitaxel resistance in breast 
cancer cells [96]. When B7-H3 is silenced, Jak2 and Stat3 
are less phosphorylated, which reduces the production of 
anti-apoptotic proteins Mcl-1 and survivin [96]. B7-H3 is 
also involved in the MAPK Raf/MEK/ERK pathway [40]. 
The MAPK pathways drive various cellular processes; 
four primary pathways are involved, each of which is 
defined by its MAPK effectors: ERK1/2, ERK5, JNKs, 
and p38 MAPK [97]. Chemotherapy resistance may arise 
due to the phosphorylation of numerous transcription 
factors activated by the p38 MAPK pathway [98]. The 
MAP kinase phosphatase DUSP10 is recognized for its 
role in negatively regulating and dephosphorylating p38 
MAPK [99]. According to one research, the p38 MAPK 
pathway serves as a significant mediator of B7-H3-in-
duced drug resistance, and they also discovered a novel 
B7-H3-associated regulation of p38 MAPK activation. 
This regulation appears to be partially facilitated by the 
downregulation of DUSP10 [100]. The research results 
substantiate the existence of a B7-H3-DUSP10-p38 axis. 
In this regard, it has been shown that inhibiting p38 
MAPK makes BC cells more sensitive to taxanes [101]. 
In conducting drug screening with human TNBC cell 
lines, researchers discovered that under circumstances of 
reduced B7-H3 expression, the cellular response to API-2 
(triciribidine) and everolimus (RAD-001), two inhibi-
tors that target proteins in the AKT/mTOR pathway, was 
boosted [84]. These results suggest that B7-H3 lessens the 
susceptibility of tumor cells to various chemotherapeutic 
medications; therefore, it is a valuable target for boosting 
the effectiveness of conventional cancer therapy.

B7‑H3 in the tumor microenvironment
Cancerous development occurs in a complex tissue 
environment that supports it. The TME contains stro-
mal cell types that are genetically stable, as opposed 
to tumor cells. Many cell types, including immune 
cells, fibroblasts, and endothelial cells, comprise the 
tumor microenvironment [102]. The TME establishes 

a tumor-promoting “macroenvironment” that severely 
constraints cancer immunotherapy’s effectiveness [103]; 
therefore, specific disruption of the protumorigenic TME 
is an appealing therapeutic target, lowering the likelihood 
of tumor recurrence and resistance. To achieve this goal, 
a thorough comprehension of B7-H3 signaling becomes 
indispensable. Such understanding holds the key to the 
development of successful BC therapies by unraveling the 
intricate interactions among different components within 
the tumor (Fig. 2).

MDSCs
Evasion and inhibition of the host immune system is 
a crucial stage in malignant tumorigenesis [104]. One 
of patients’ most common immune evasion mecha-
nisms is suppression by Myeloid-derived suppressor 
cells (MDSCs). MDSCs are immunosuppressive, imma-
ture myeloid cells according to their functional defini-
tion [105]. Increased numbers of MDSCs in peripheral 
blood are observed in cancer [106]. MDSCs recruit T 
regulatory cells to boost immunosuppression further, 
while MDSCs directly repress natural killer (NK) and T 
cells [107]. During cancer development, MDSCs inhibit 
innate and adaptive immunity, lowering immune surveil-
lance and preventing the immune system from destroy-
ing newly altered cells [108]. Moreover, they promote 
angiogenic activity, which aids in tumor invasion and 
spread [109]. Numerous cytokines are released by BC 
cells, including granulocyte–macrophage colony-stim-
ulating factor, one of the main soluble BC-derived mol-
ecules that regulate the development of MDSCs from 
monocyte/granulocyte progenitors [110, 111]. The prev-
alence of circulating MDSCs in the peripheral blood of 
BC patients is increased at all phases of the illness. It 
positively correlates with the clinical stage and the bur-
den of metastatic tumors [112]. MDSCs may inhibit the 
antitumor immune response by altering the expression of 
indoleamine-pyrrole2,3-dioxygenase (IDO), an enzyme 
in BC patients whose expression is correlated with lymph 
node metastasis [113]. In patients with TNBC, MDSCs 
were found to be critical negative modulators of antitu-
mor immunity [114]. Targeting MDSCs may be a viable 
tactic for enhancing the efficacy of immunotherapy treat-
ments since they pose a significant barrier to many can-
cer immunotherapies.

Zhang et  al. discovered a unique subpopulation of 
B7-H3 + MDSCs that supports the development of 
tumors. To further characterize B7-H3 + MDSCs, the 
investigators examined the profile of cytokines pro-
duced by B7-H3 + MDSCs; The findings revealed that 
B7-H3 + MDSCs emit considerably more IL-10 and TNF- 
α than do other cells. Furthermore, B7-H3 + MDSCs 
were observed to cause amplification of Tregs, another 
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possible mechanism through which tumor proliferation 
occurs [115]. Several studies of pulmonary fibrosis have 
shown that sB7-H3 causes MDSCs accumulation in the 
bone marrow and is associated with elevated inflam-
matory cytokine expression [116, 117]. The quantity of 
CD11b + Gr1 + MDSCs in murine lymphomas and sub-
cutaneous melanoma tumors was significantly decreased 
by silencing of B7-H3 [118]. We hypothesize that MDSCs 
are a collection of immune cells that suppress the body’s 
defenses; in cancer, B7-H3 strengthens these cells’ inhibi-
tory capabilities.

TAMs
The most common immune cells inside the TME are 
tumor-associated macrophages (TAMs). Although mac-
rophages are classically considered the critical effector 
cells of the immune defense, many studies have shown 
that TAMs assist the development of tumors in various 
ways [119]. A TAM signature for BC has been found that 
is considerably enriched in aggressive BC subtypes and is 

connected to a reduced disease-dependent survival rate 
[120]. In addition, TAMs pre-treated with IL-6 increased 
the growth and metastasis of TNBC cells and decreased 
their susceptibility to the chemotherapy drug cispl-
atin [121]. By paracrine signaling loops involving CSF-1 
from the tumor and EGF from macrophages, TAMs may 
encourage tumor cell invasion [122–124]. Thus, regen-
erating TME-resident macrophages may have advanta-
geous anticancer properties.

The different functions performed by macrophages 
in normal tissue homeostasis and cancer may be partly 
explained by their phenotype. Since they have functional 
plasticity, macrophages may alter their polarity to adapt 
to physiological circumstances. At the furthest points of 
their phenotypic spectrum [125], Macrophages polar-
ize from the M1 state to the M2 state. Traditionally acti-
vated M1 macrophages produce type I proinflammatory 
cytokines, which have anticancer effects and are engaged 
in antigen expression. In contrast, Type II cytokines are 
produced by “alternatively activated” M2 macrophages, 

Fig. 2  B7-H3’s function in the TME in conjunction with immune cells. B7-H3 modulates cytokine secretion in various types of cells within the TME, 
including T cells, macrophages, MDSCs, Treg, and CAFs. This contributes to the remodeling of the TME
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which contribute to the anti-inflammatory response 
and have a proliferative function in tumors. B7-H3 trig-
gers the transition of TAMs from the M1 phenotype to 
the M2 phenotype [126]. B7-H3 was found to strongly 
regulate CCL-2 production through the STAT3 pathway 
and the CCR inhibitors partially abolish the impact of 
B7-H3 deletion on M2 macrophages, suggesting that the 
B7-H3-CCL2-CCR2 axis regulates TAM function [127]. 
It was shown that TAMs from patients with triple-nega-
tive BC had significant levels of B7-H3 expression. These 
B7-H3-highly expressing TAMs contribute significantly 
to metastasis and immunosuppression through inherent 
extracellular matrix (ECM) remodeling and tumor angi-
ogenesis, changes that ultimately reduce T-cell invasion 
of the TME [128]. Investigating the signaling pathway 
through which these effects occur showed that upregula-
tion of B7-H3 expression by lncRNA NEAT1 encourages 
M2 macrophage polarization through the JAK2-STAT3 
pathway [129]. Using B7-H3 to change the behavior of 
TAMs provides a possible target for BC therapy.

TILs
Type 1  T cells are related to a positive outlook in indi-
viduals with BC. By releasing cytokines and stimulating 
APCs, CD4 + T-helper 1 (Th1) cells support antigen pres-
entation [130]. Forkhead Box P3 (FOXP3) CD4 + regula-
tory T cells are a subset of type 2 CD4 + T-helper cells 
(Th2) that suppress CTL activity, boost B-lymphocyte 
proliferation and may instigate an anti-inflammatory, 
immune response that encourages tumor progression 
[131]. CD8 + cytotoxic T cells (CTL) are vital for the 
elimination of tumors [130]. Immune cell infiltration of 
tumors has been proven to enhance prognosis in individ-
uals with cancers [132–134]. Especially in BC, data sug-
gests that the presence of tumor-infiltrating lymphocytes 
(TILs) prior to therapy predicts treatment response and 
is linked to a better prognosis [135, 136]. Different BC 
subtypes have diverse TIL ratios. For instance, the TIL 
percentage is higher in HER2 + and TNBC patients than 
it is in individuals with hormone receptor positivity [137], 
patients with high TIL ratios have improved prognoses, 
respond better to chemotherapy, and show decreased 
mortality and recidivism rates [138]. One research of 256 
triple negative (TN) tumors found that the probability of 
recurrence decreased by 17% for every 10% increase in 
the number of TILs and a 27% reduction in the risk of 
mortality. Similarly, in 112 HER2 + BC patients, there was 
an 18% increase in overall survival (OS) for every 10% 
increase in the number of stromal TILs [139].

NFAT, NF-κB, and AP-1, three transcription fac-
tors with significant functions in T cells, are inhibited 
by B7-H3-Ig [140, 141]. In a mouse model, deletion 
of B7-H3 led to a significant reduction in the levels of 

other cosuppressor molecules, such as PD-1, and an 
increase in the production of the CD8 + T-cell prolif-
eration markers Ki-67, IFN-γ, TNF-α, and granzyme 
B, indicating that B7-H3 is involved in the depletion 
of CD8 + T-cells [15]. NanoString data for tumor sam-
ples from triple-negative BC showed that in samples 
from the group with low TIL, B7-H3 was overexpressed 
[142]. One study evaluated the association between 
the percentage of TILs present and the expression of 
800 genes associated with BC. The findings revealed 
that B7-H3 expression and the number of TILs were 
negatively associated [143]. In addition, our study also 
revealed that B7-H3 was negatively correlated with TIL 
levels in TNBC [144].

Tregs
The regulation of inflammation is greatly influenced by 
T-regulatory (Treg) cells, which are crucial for immu-
nological tolerance and homeostasis [145]. Given typi-
cal physiological circumstances, Treg cells are crucial 
in controlling the proliferation and activation of T 
and B cells and maintaining innate cytotoxic lympho-
cyte homeostasis [146]. Current research reveals that 
Treg-mediated immunosuppression is one of the pri-
mary ways that cancers subvert the immune system 
and a significant barrier to the effectiveness of tumor 
immunotherapy [147]. Treg cells suppress antitumor 
immunity via diverse mechanisms, including suppres-
sion of immune cells through direct contact and the 
production of regulatory cytokines [148]. Consistent 
with these observations, Treg cell depletion also evokes 
effective cancer immunity in tumor-bearing animals 
[149, 150]. The presence of Treg is associated with a 
more invasive BC phenotype and affects BC metastasis 
and prognosis [151].

The degree of B7-H3 expression and the presence of 
Tregs are positively correlated. In a B7-H3 deficiency 
model, the absolute number and proportion of Treg cells 
decreased [15]. Tumor cells may boost B7-H3 expres-
sion and encourage T cells to differentiate into Tregs. 
TNF-α and TGF-β1 production is thus elevated, which 
could promote immune evasion and the growth of tumor 
cells [152]. Moreover, the effect of Tregs in suppressing 
immune responses appears to be highly dependent on 
the expression of the transcription factor FOXP3, which 
regulates the expression of several genes that generate 
proteins that mediate Treg suppression, including CD25, 
GITR and CTLA-4 [153, 154]. FOXP3 is crucial for Treg 
function [155–157]. Treg cells that express FOXP3 are 
thus effective peripheral immunological tolerance media-
tors. B7-H3 expression and the quantity of FOXP3 + Treg 
cells have a strong positive connection [158], indicating 
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that the recruitment of Treg cells may be a partial media-
tor of the immunosuppressive action of B7-H3.

CAFs
Many stromal variables either repress or encourage 
genetic epithelial alterations to impact the complex eco-
systems that makeup tumors. While normal fibroblasts 
suppress tumor formation [159], Cancer-associated 
fibroblasts (CAFs) promote tumor characteristics such as 
ECM remodeling, inflammation, and cancer cell prolif-
eration and invasiveness [160–162]. It has been reported 
that different CAF populations produce various cytokine 
patterns in malignancies [163, 164]. CAFs produce alpha-
smooth muscle actin (α-SMA) [165]. The development 
of several malignant tumors is strongly correlated with 
α-SMA expression [166, 167]. Increased stromal myofi-
broblasts in human BC are linked to aggressive adeno-
carcinomas and foretell disease recurrence [168]. Some 
tumor subtypes have also been linked to CAF subtypes, 
and CAFs that are positive for these CAF-associated 
markers have been predominantly found in HER2 and 
TNBC [169]. As mentioned earlier, BC often metasta-
sizes to bone. It has been shown that CAFs play a cru-
cial role in developing characteristics that enable cells in 
the original TME to metastasize to bone [170]. One study 
showed that primary tumor stroma enriched in CAFs 
could imitate the CXCL12-rich bone metastatic niche 
and promote the preselection of cancer cells that possess 
the potential to metastasize to bone [171].

Using an orthotopic xenograft tumor model they 
established in nude mice, Zhang et  al. confirmed that 
B7-H3 + CAFs play a significant role in tumor growth and 
metastatic progression [172]. Another research revealed 
that the lack of B7-H3 reduced the release of cytokines, 
including interleukin (IL)-6 and vascular endothelial 
growth factor (VEGF), as well as the capacity of CAFs to 
migrate and invade [173]. In a subgroup of breast can-
cers, high B7-H3 expression on CAFs was shown to alter 
T-cell activity toward more regulatory activities [174]. 
Hence, more research is required into the role of B7-H3 
expression in immune cell-connected fibroblasts.

The above observations, considered together, reiter-
ate how crucial the immunological environment is for 
influencing clinical outcomes. Developing more effective 
treatment plans for BC will undoubtedly need combina-
tion therapy that targets both tumor cells and TME.

B7‑H3 as an attractive immunotherapy target
The ability to target B7-H3 via diverse effector pathways 
has recently been made available by developments in 
molecular biology and antibody design. Most of these 
tactics have been examined in mice and in vitro, and the 

testing has yielded safety and/or antitumor data, laying 
the foundation for clinical trials targeting B7-H3. It is 
regrettable that, as of now, no targeted drug has received 
FDA approval. Table 1 lists the current therapeutic stud-
ies being conducted to treat B7-H3.

Targeting B7‑H3 with monoclonal antibodies
Strong justification exists for using B7-H3-specific 
inhibitory monoclonal antibodies (mAbs) in the man-
agement of solid tumors due to the substantial altera-
tions in cancer cells brought about by silencing of B7-H3 
and the remarkable therapeutic outcomes of mAbs that 
block checkpoint molecules. It has been shown that 
using mAbs to block B7-H3 activity increases CD8 + T 
and NK cell tumor infiltration, prevents tumor growth, 
and/or lengthens life [176]. A mouse IgG1 mAb target-
ing B7-H3, 8H9, was shown to effectively against pri-
mary brain cancers [177]. 8H9 is currently being tested 
in phase 1 clinical studies to treat advanced CNS malig-
nancies and desmoplastic small round cell tumors [178]. 
When the Fc part of an antibody interacts with immune 
cells to assault targets, the process is known as antibody-
dependent cellular cytotoxicity (ADCC) [179]. Enoblitu-
zumab (MGA271), a monoclonal antibody targeting the 
Fc region of B7-H3 with the potential to activate killer 
T cells through FcR binding, has demonstrated potent 
Antibody-Dependent Cellular Cytotoxicity (ADCC) 
against various xenograft tumors. It is currently under-
going clinical trials for the treatment of resistant malig-
nancies (NCT02982941, NCT02923180, NCT02381314, 
NCT04630769, NCT02475213 and NCT01391143) 
[180].

Targeting B7‑H3 with bispecific antibodies
Nisonoff and his colleagues originally introduced the 
idea of a bispecific antibody (bsAb), a synthetic antibody-
based molecule with two distinct antigen-binding sites, 
more than 60  years ago [181]. The ensuing conceptual 
and technical developments in the production of bsAbs 
evolved in tandem with groundbreaking developments in 
antibody design and physiology disciplines [182]. BsAbs’ 
ability to allow dual-targeting ideas holds significant ther-
apeutic potential. For example, the anti-CD3 mAb scFv 
was combined with the anti-B7-H3 mAb scFv to create 
obrindatamab [183]. Obrindatamab instructs T lympho-
cytes to attack B7-H3 + tumor cells by attaching simulta-
neously to CD3 and B7-H3. Obrindatamab demonstrated 
an enhancement in T-cell cytotoxicity by stimulating the 
production of IL-2, TNF-α, and IFN-γ. This resulted in 
a substantial reduction in tumor development, leading 
to increased survival in immunodeficient animals [183]. 
The B7-H3-targeting bispecific antibody now undergo-
ing clinical review, is being investigated for its potential 
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Table 1  A list of the medications chosen for clinical trials against B7-H3 [175]

Trial ID Drugs Cancer types Trial stage Start date Completion date Recruitment status

Targeting B7-H3 with monoclonal antibodies
  NCT01391143 MGA271 Refractory cancer, 

melanoma, prostate, 
solid tumors

Phase l July 2011 April 18, 2019 Completed

  NCT02982941 MGA271 Pediatric patients 
with relapsed or refrac-
tory solid tumors

Phase l December 2016 May 22, 2019 Completed

  NCT02923180 MGA271 Prostate Cancer Phase II February 14, 2017 August 11, 2020 Active, not recruiting

  NCT02381314 MGA271 Melanoma
Non Small Cell Lung 
Cancer

Phase l March 26, 2015 September 26, 2018 Completed

Targeting B7-H3 with bispecific antibodies
  NCT03406949 MGD009/MGA012 Relapsed/Refractory 

Cancer
Phase I February 27, 2018 April 27, 2022 Completed

  NCT02628535 MGD009 Mesothelioma and 11 
other cancers

Phase I September 2015 November 25, 2019 Terminated

Targeting B7-H3 through ADC therapies
  NCT03729596 MGC018 advanced solid tumors Phase I/II November 21, 2018 May 2023 Active, not recruiting

  NCT02475213 MGA271 with pem-
brolizumab

Melanoma
Head and Neck Cancer
Non Small Cell Lung 
Cancer
Urethelial Carcinoma

Phase I July 2015 August 18, 2021 Completed

  NCT04145622 DS-7300a Advanced Solid Tumor, 
Malignant Solid Tumor

Phase I/II November 3, 2019 December 1, 2023 Recruiting

  NCT05280470 DS-7300a Extensive-stage Small-
cell Lung Cancer

Phase II June 17, 2022 November 14, 2024 Recruiting

Targeting B7-H3 with CAR T cells
  NCT04185038 SCRI-CARB7H3 Ependymoma

Germ Cell Tumor
Diffuse Midline Glioma

Phase I December 11, 2019 May 2041 Recruiting

  NCT04077866 B7-H3
CAR-T

Recurrent Glioblas-
toma, Refractory 
Glioblastoma

Phase I/II June 1, 2023 August 1, 2025 Recruiting

  NCT04385173 B7-H3
CAR-T

Recurrent Glioblas-
toma, Refractory 
Glioblastoma

Phase I December 1, 2022 May 1, 2024 Recruiting

  NCT04483778 4-1BBζ B7H3-EGFRt-
DHFR

Pediatric Solid Tumor, 
Germ Cell Tumor, 
Retinoblastoma

Phase I July 13, 2020 December 2040 Recruiting

  NCT04432649 4SCAR-276 Solid Tumor Phase I/II June 1, 2020 May 31, 2024 Recruiting

  NCT05143151 CD276 CAR-T cells Advanced Pancreatic 
Carcinoma

Phase I/II July 1, 2021 July 2024 Recruiting

  NCT05190185 TAA06 Malignant Melanoma, 
Lung Cancer, or Colo-
rectal Cancer

Phase I June 1, 2021 December 1, 2023 Recruiting

  NCT04692948 TAA06 CAR​
Acute Myeloid Leu-
kemia

Not Applicable December 9, 2019 December 2023 Recruiting

  NCT04637503 Combined 4SCAR-276 Neuroblastoma Phase I/II November 18, 2020 December 31, 2023 Recruiting

  NCT04432649 4SCAR-276 Solid Tumor Phase I/II June 1, 2020 May 31, 2024 Recruiting

Targeting B7-H3 with CAR NK cells
  NCT03056339 AP1903 B-Lymphoid Malignan-

cies
Phase I/II June 21, 2017 June 30, 2024 Active, not recruiting

  NCT04630769 MGA271/ FT516 
and IL2

Ovarian cancer Phase I April 2, 2021 January 1, 2022 Recruiting
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synergy with anti-PD-1 treatment, although no results 
have been made public as of yet. Recently, Huang et  al. 
created a BiTE-based mRNA therapy by encasing the 
mRNA that codes for B7-H3CD3 BiTE inside brand-
new ionizable lipid nanoparticles (LNPs). These findings 
imply that treatment approaches based on B7-H3 × CD3 
BiTE mRNA expression may be beneficial and have good 
clinical application possibilities [184].

Targeting B7‑H3 through ADC therapies
Antibody–drug conjugates (ADCs), hybrid molecules 
designed for targeted therapy, have demonstrated con-
siderable promise in facilitating a paradigm change 
in cancer therapy through antibody-antigen interac-
tions [185]. ADCs comprise a potent cytotoxic payload, 
a humanized antibody that targets tumors, and a linker 
that connects them [186]. Antibody–drug conjugation 
systems are sophisticated, cutting-edge strategies that 
can deliver the best outcomes in BC therapy. MGC018 is 
a DNA-alkylating anti-B7-H3 ADC that has been studied 
in phase 1 dose-expansion trials and has been shown to 
have robust anticancer efficacy in various cancer models 
(NCT03729596) [187]. In a more recent clinical study, 
DS-7300a, an ADC that combines a humanized anti-
B7-H3 antibody that contains an inhibitor of DNA topoi-
somerase I, has shown to be secure and reliable in the 
treatment [188]; the published interim results show good 
tolerability in patients with advanced tumors. Scientists 

have been immensely enthused by the DS-7300a’s early 
achievements, and a fresh trial testing DS-7300a’s effi-
ciency has started (NCT05280470).

Targeting B7‑H3 with CAR T cells and CAR NK cells
Two types of immune cells, CD8 + cytotoxic T and NK 
cells, destroy their target cells through similar cyto-
toxic processes. While HLA class I antigen expression is 
not required to detect tumor cells by Chimeric Antigen 
Receptor (CAR) T cells, the CAR T cells detect tumor 
cells quickly and with solid cytotoxicity [189]. B7-H3 
CAR T cells with different B7-H3-specific scFvs exhibit 
potent in  vitro antitumor efficacy against several tumor 
types [190–193]. In the case of reports, B7-H3-targeted 
CAR-T cells exhibited excellent tolerance in patients 
with relapsed basal cell carcinoma, glioblastoma, and 
recurrent anaplastic meningioma [194]. Combinatorial 
approaches that increase CAR-T cell antitumor efficacy 
and the vulnerability of tumor cells to the effector mech-
anism are being studied. Regarding cost-effectiveness, 
while CAR-T therapy has shown remarkable clinical out-
comes, its economic implications, including manufactur-
ing costs, accessibility, and long-term sustainability, need 
careful consideration.

As a crucial component of the innate immune response 
against malignancy, NK cells are capable of directly 
destroying tumors [195]. Nonetheless, it has been dem-
onstrated that the cytotoxicity of NK cells is functionally 

Table 1  (continued)

Trial ID Drugs Cancer types Trial stage Start date Completion date Recruitment status

Radioimmunotherapy
  NCT01502917 124I-omburtamab Brain cancer

Brain Stem Glioma
Phase I December 2011 January 2022 Completed

  NCT01099644 131I-omburtamab Peritoneal Cancer Phase I April 2010 September 2022 Active, not recruiting

  NCT00089245 131I-omburtamab Brain and Central Nerv-
ous System Tumors
Neuroblastoma
Sarcoma

Phase I July 2004 July 1, 2025 Active, not recruiting

  NCT03275402 131I-omburtamab Neuroblastoma
CNS Metastases
Leptomeningeal 
Metastases

Phase II/III December 11, 2018 December 2026 Recruiting

  NCT05063357 131I-Omburtamab DIPG Phase I March 2023 January 31, 2027 Not yet recruiting

  NCT04022213 131I-Omburtamab Desmoplastic Small 
Round Cell Tumor
Peritoneal Cancer
Peritoneal Carcinoma

Phase II July 15, 2019 July 2024 Recruiting

  NCT04743661 131I-omburtamab Recurrent Medulloblas-
toma
Recurrent Epend-
ymoma

Phase II April 4, 2022 October 30, 2029 Active, not recruiting

  NCT04167618 177Lu-DTPA-ombur-
tamab

Medulloblastoma, 
Childhood

Phase I/II September 30, 2021 August 11, 2022 Terminated
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compromised by the immunosuppressive characteristics 
of B7-H3 in several cancers [196]. It is possible to obtain 
CAR with distinct specificity for cancer immunotherapy 
and use it to enhance NK cell function in malignancy. 
Several clinical scenarios have demonstrated the supe-
rior safety of CAR-NK cell immunotherapy and shown 
that it has a lower risk of causing neurotoxicity and 
cytokine release syndrome [197, 198]. Findings from the 
first large-scale study using CAR-NK cells in individuals 
with CD19 + chronic lymphocytic leukemia and B-cell 
lymphoma demonstrated safety and showed encouraging 
clinical efficacy [199]. Tumor heterogeneity, the disap-
pearance of the targeted antigen, and antagonistic TME 
are the insurmountable difficulties that CAR-NK cell 
therapy now confronts. Several strategies should be taken 
into consideration in the future to optimize the efficacy 
of CAR-based NK cell treatment.

Radiotherapy
Radioimmunotherapy slows tumor growth by attach-
ing radionucleotides to tumor-targeting antibodies, 
producing radiation-induced cytotoxicity [199]. The car-
rier most often utilized in radioimmunoconjugates is 
omburtamab. In phase I trials, intrathecal omburtamab 
was well tolerated by patients treated for metastatic cen-
tral nervous system neuroblastoma and intraperitoneal 
131I-mAb 8H9 in desmoplastic small round cell tumors 
(NCT04022213) [200]. Delivering 124I-mAb 8H9 to 
diffuse pontine glioma through convection-enhanced 
brainstem caused low systemic exposure and no harm 
(NCT01502917) [175]. Control of radiotoxicity remains 
a significant obstacle that must be overcome when 
attempting to treat other solid tumors using radioimmu-
notherapy against B7-H3.

B7‑H3 small‑molecule inhibitors
By combining computational modeling with an in silico 
technique, synthetic chemical libraries can be screened 
to identify compounds with apparent inhibitory effects 
on B7-H3. These compounds provide various observable 
advantages; their small size and solubility allow them to 
readily cross membrane barriers such as the blood–brain 
barrier, allowing precise penetration into different tis-
sues, including TMEs. This makes them particularly 
helpful for the treatment of central nervous system can-
cers. Compared to antibody-based or CAR therapy, the 
cost of producing small-molecule inhibitors is minimal, 
and the conditions required for their storage are less rig-
orous [201]. Thus, targeting B7-H3 with small-molecule 
inhibitors might be an appealing alternative or supple-
mentary treatment approach.

Application of B7‑H3 in tumor imaging
B7-H3 has shown promise for therapeutic use in tumor 
imaging in addition to being a prognostic marker and 
an immunotherapy target. The first line of defense in BC 
screening programs is mammography. The median size of 
lesions identified with mammography screening is 1.5 cm; 
however, the median size identified through clinical detec-
tion is 2.6  cm [202], and digital mammogram analysis 
greatly boosts screening sensitivity [203]. Unfortunately, 
mammograms frequently lead to overdiagnosis and point-
less biopsies, and half of the women who receive multiple 
screenings report experiencing false-positive results [204].

It has been established that B7-H3 is a target for BC 
molecular ultrasound imaging. As molecular targeting con-
trast agents, microbubbles functionalized with B7-H3-tar-
geted affibodies [205] or antibodies [206] have shown 
excellent promise. While nontargeted microbubbles pro-
duced lower imaging signals in normal mammary tissues 
and malignancies that block B7-H3, Strong imaging signals 
were obtained in tumors expressing hB7-H3 by microbub-
bles conjugated to the B7-H3-targeted affibody (MBABY-
B7-H3) [205], proving the B7-H3’s diagnostic utility in BC 
imaging. Spectroscopic photoacoustic imaging is a new 
focused approach [207]. Using an affibody or antibody that 
is specific for B7-H3 and conjugated to indocyanine green, 
researchers can detect BC [208], assess the tumor’s grade 
[209], and direct the resection during surgery.

Conclusion
BC is the primary cancer-related killer of women world-
wide and is regarded as a lethal malignant tumor in most 
countries. The threat of BC lies not only in its widespread 
incidence but also in its cunning ability to relapse and 
metastasize. The BC patient’s treatment journey is often 
accompanied by multiple treatment modes such as sur-
gery, radiotherapy, chemotherapy. Given the strain on the 
patient’s body and the fact that conventional procedures 
may not always appear sufficient, new effective and gentle 
therapeutic approaches are especially required.

Within this context, the stable high expression of B7-H3 
in a variety of cancers is of great interest to researchers, 
especially in BC. The close correlation between elevated 
expression levels of B7-H3 and an unfavorable prognosis 
provides compelling evidence for its potential as a prom-
ising therapeutic target. Furthermore, preclinical stud-
ies and early trials have also shown the value of B7-H3 
as a serum marker for use in BC diagnosis and progno-
sis. Its integration into breast ultrasound imaging further 
underscores its potential as a non-invasive tool for early 
disease detection and monitoring.

Overall, while B7-H3 shows promise in BC treatment 
and may serve as a therapeutic target, continued research 
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is needed to fully understand its complex receptor inter-
actions and overcome barriers to developing potent 
B7-H3 inhibitors. By overcoming these challenges, new 
therapeutic approaches may be developed, instilling 
renewed hope in BC patients worldwide.
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