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Abstract
Background  The existing staging system cannot meet the needs of accurate survival prediction. Accurate survival 
prediction for locally advanced cervical cancer (LACC) patients who have undergone concurrent radiochemotherapy 
(CCRT) can improve their treatment management. Thus, this present study aimed to develop and validate radiomics 
models based on pretreatment 18Fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)-
computed tomography (CT) images to accurately predict the prognosis in patients.

Methods  The data from 190 consecutive patients with LACC who underwent pretreatment 18F-FDG PET-CT and 
CCRT at two cancer hospitals were retrospectively analyzed; 176 patients from the same hospital were randomly 
divided into training (n = 117) and internal validation (n = 50) cohorts. Clinical features were selected from the training 
cohort using univariate and multivariate Cox proportional hazards models; radiomic features were extracted from 
PET and CT images and filtered using least absolute shrinkage and selection operator and Cox proportional hazard 
regression. Three prediction models and a nomogram were then constructed using the previously selected clinical, CT 
and PET radiomics features. The external validation cohort that was used to validate the models included 23 patients 
with LACC from another cancer hospital. The predictive performance of the constructed models was evaluated using 
receiver operator characteristic curves, Kaplan Meier curves, and a nomogram.
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Introduction
Cervical cancer is the fourth most frequent cause of 
cancer-related morbidity and mortality in women world-
wide, especially in developing countries and low/mid-
dle-income areas [1]. In contrast to the global trends of 
decrease in cervical cancer incidence, young women in 
China are showing a substantial increase [2]. Approxi-
mately 40 to 50% of patients are initially diagnosed with 
locally advanced cervical cancer (LACC) and approxi-
mately 6% are found to have primary metastatic disease, 
which is the principal cause of death [3]. In this context, 
the International Federation of Obstetrics and Gynecol-
ogy (FIGO) system has included lymph node status in 
the staging classification in 2018; LACC includes stages 
IB to IVA tumors [4]. International treatment guidelines 
recommend platinum-based concurrent chemoradio-
therapy (CCRT) as the standard treatment for LACC [5, 
6]. Notably, the 5-year overall survival (OS) for locally 
advanced and metastatic cervical cancer is estimated to 
be approximately 65% and 17%, respectively [7]. In addi-
tion, approximately 35% of patients with LACC experi-
ence relapse and the prognosis is poor, as median survival 
after recurrence extends to approximately 10–12 months 
[8]. It is therefore essential to accurately identify patients 
who are at high risk of progression and develop better 
treatment regimens for LACC.

Current clinically relevant and evidence-based guide-
lines mainly suggest use of the FIGO staging system for 
selection of the treatment regimen and prediction of 
prognosis [9]. This system has been revised periodically 
based on clinical risk factors to improve staging and dif-
ferentiation of prognostic outcomes [10]. In this context, 
conventional medical images only provide information 
related to the tumor structure and facilitate diagnosis; 
however, they cannot help predict therapeutic responses 
and future prognosis [11]. As patients with cervical can-
cer having the same FIGO stage have different clinical 
outcomes, this staging system does not fully meet the 

needs for prediction of clinical prognosis [12]. There is 
therefore an urgent need to find novel non-invasive bio-
markers that can provide better pre-treatment informa-
tion regarding tumor heterogeneity; this may in turn help 
clinicians personalize treatment schedules.

Radiomics extracts quantitative data from medical 
images to generate imaging biomarkers, which demon-
strate tumor spatial and temporal heterogeneity; this 
provides a support tool for decision-making in clini-
cal practice [13]. Magnetic resonance imaging-based 
radiomics has been reported to be useful in distinguish-
ing clinico-pathological characteristics and predict-
ing prognosis in cervical cancer [14, 15]. In addition, 
18Fluorine-fluorodeoxyglucose positron emission tomog-
raphy (18F-FDG PET)-based radiomics has been used to 
predict the tumor stage and treatment outcomes in these 
patients [16, 17]. However, few studies using PET/com-
puted tomography (CT)-based radiomics have aimed to 
predict prognosis in cervical cancer [18, 19]; none have 
employed independent validation in the clinical setting.

Therefore, we aimed to develop prediction models and 
a visually quantitative nomogram (which incorporated 
clinical features, PET metabolic parameters, and PET 
and CT radiomics features) in order to predict 3-year 
and 5-year progression-free survival (PFS) in patients 
with LACC who received CCRT. The potential benefits of 
individualized prediction performance were further vali-
dated in an independent dataset.

Materials and methods
Study design and workflow
The study design and workflow have been illustrated in 
Fig.  1. Patients who had been pathologically diagnosed 
with LACC and received CCRT were recruited in the 
present study and their PET/CT images were obtained 
for radiomics analysis. The radiomic features were 
extracted and selected based on their clinical effective-
ness in predicting 3- and 5-year PFS.

Results  In total, one clinical, one PET radiomics, and three CT radiomics features were significantly associated with 
progression-free survival in the training cohort. Across all three cohorts, the combined model displayed better efficacy 
and clinical utility than any of these parameters alone in predicting 3-year progression-free survival (area under 
curve: 0.661, 0.718, and 0.775; C-index: 0.698, 0.724, and 0.705, respectively) and 5-year progression-free survival (area 
under curve: 0.661, 0.711, and 0.767; C-index, 0.698, 0.722, and 0.676, respectively). On subsequent construction of 
a nomogram, the calibration curve demonstrated good agreement between actually observed and nomogram-
predicted values.

Conclusions  In this study, a clinico-radiomics prediction model was developed and successfully validated using 
an independent external validation cohort. The nomogram incorporating radiomics and clinical features could be a 
useful clinical tool for the early and accurate assessment of long-term prognosis in patients with LACC patients who 
undergo concurrent chemoradiotherapy.

Keywords  Locally advanced cervical cancer, 18F-FDG PET/CT, Radiomics, Prediction model, Machine learning, 
Progression free survival
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Patients
This multicenter retrospective study received ethical 
approval from the Xinjiang Medical University Affiliated 
Cancer Hospital and Shandong First Medical University 
Affiliated Cancer Hospital. The study was performed in 
accordance with the principles of the Declaration of Hel-
sinki (as revised in 2013); the need for informed consent 
was waived.

This study included 190 consecutive patients who were 
pathologically diagnosed with LACC and had received 
CCRT at two tumor hospitals (Shandong First Medi-
cal University Affiliated Cancer Hospital and Xinjiang 
Medical University Affiliated Cancer Hospital) between 
September 2015 and October 2021. Patients fulfilling 
the following criteria were included: (1) having patho-
logically diagnosed primary cervical cancer, (2) having 
a tumor of stage IB3-IVA (after restaging by a gyneco-
logical oncologist with 10 years of experience according 
to the 2018 FIGO staging criteria), (3) having complete 
clinical data that could be retrieved from the electronic 
medical records, and (4) having pretreatment standard 
routine whole-body 18F-FDG PET/CT scan. The follow-
ing patients were excluded: (1) those having pathological 
types other than squamous cell carcinoma and adenocar-
cinoma, (2) those having a previous history of another 
malignant tumor or anticancer treatment prior to the 
PET/CT scan, (3) those having incomplete clinical data 

or non-adherence to follow-up, and (4) those in whom 
the raw data from the 18F-FDG PET/CT images could not 
be processed. The patient recruitment process has been 
shown in Fig. 2.

Finally, a total of 167 eligible patients from the Shan-
dong First Medical University Affiliated Cancer Hos-
pital were enrolled and randomly divided into training 
(n = 117) and internal validation (n = 50) cohorts in a 7:3 
ratio. A total of 23 patients treated at the Xinjiang Medi-
cal University Affiliated Cancer Hospital were consid-
ered eligible and were included in the external validation 
cohort. The baseline clinical data including age; FIGO 
stage; pathological type; history of abortion; menopausal 
status; the maximum tumor diameter (MTD); presence 
of lymph node metastasis (LNM); treatment regimens; 
total external beam radiotherapy dose; chemotherapy 
regimen; and lymphocyte, monocyte, neutrophil, and 
platelet counts were obtained from the electronic medi-
cal records. The distribution of clinical characteristics 
and PET metabolic parameters between the training and 
internal validation cohorts was found to be balanced 
(Table 1).

Treatment and follow-up
All patients received platinum-based chemotherapy 
in combination with image-guided external beam 

Fig. 1  The study design and workflow
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radiotherapy and brachytherapy up to a total dose of 
85–90  Gy. External beam radiotherapy was delivered at 
a dose of 1.8-2.0 Gy/fraction, up to a dose of 45–50 Gy. 
Positive pelvic lymph nodes were simultaneously boosted 
with an additional dose of 10–20 Gy. The platinum-based 
chemotherapy regimen included cisplatin, carboplatin, 
and nedaplatin in 5, 65, and 47 patients, respectively. 
Patients were followed-up regularly every 3–6 months 
during the first two years after CCRT, twice a year dur-
ing years 3–5, and once a year thereafter. The clinical out-
come events included first local recurrence, lymph node 
metastasis, distant metastasis, and death. In the present 
study, PFS was defined by the interval between the end 
of CCRT and first occurrence of the endpoint event or 
October 30, 2022. Disease progression was confirmed by 
gynecological examination, imaging, or biopsy.

PET-CT image acquisition
Baseline PET/CT examination was performed within 2 
weeks before biopsy and CCRT. During the study, PET/
CT images was acquired using two whole-body PET/

CT scanners; the Philips Gemini TF (Phillips Medi-
cal Systems, Holland) was used at the Shandong First 
Medical University Affiliated Cancer Hospital and Phil-
ips ingenuity TF (Phillips Medical Systems, Holland) 
was used at the Xinjiang Medical University Affiliated 
Cancer Hospital. The patients fasted for more than 6 h, 
and their blood glucose levels were measured to ensure 
a level of < 140  mg/dL. The patients received 18F-FDG 
intravenously at a dose of 4.4 MBq/kg; whole-body PET 
and CT scans were performed one hour later. Spiral CT 
scans (dose modulation with a quality reference of 150 
mAs, 130  kV, a 512 × 512 matrix, and 3-mm slice thick-
ness) were performed immediately prior to the PET 
scans (1 min in each bed; 144 × 144 matrix); images were 
acquired from the distal femur to the top of the skull. 
The PET images were attenuated, corrected, and recon-
structed using an iterative ordered subset expectation 
maximization method. The PET images were then fused 
with CT images to obtain whole-body transverse, coro-
nal, and sagittal images. All images were acquired using 
the respiratory gating technique.

Fig. 2  Flowchart showing the patient selection and exclusion in this study
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Table 1  Patient characteristics and PET metabolic parameters in the training, internal validation and external validation cohort
Training cohort
(n = 117)

Internal
Validation cohort
(n = 50)

P values External
Validation cohort
(n = 23)

Age (years) 53.93 ± 10.11 53.40 ± 9.90 0.753 50.65 ± 9.34

Age 0.672

  <55 years 59 (50.43%) 27 (54.00%) 16 (69.56%)

  ≥55 years 58 (49.57%) 23 (46.00%) 7 (30.43%)

Abortion 0.426

  No 65 (55.56%) 25 (50.00%) 10 (43.48%)

  Yes 52 (44.44%) 25 (50.00%) 13 (56.52%)

Menstruation status 0.746

  Premenopause 46 (39.32%) 21 (42.00%) 14 (60.87%)

  Menopause 71 (60.68%) 29 (58.00%) 9 (39.13%)

Pathology 0.997

  SCC 110 (94.02%) 47 (94.00%) 19 (82.61%)

  ADC 7 (5.98%) 3 (6.00%) 4 (17.39%)

FIGO stage 0.169

  IB3 5 (4.27%) 1 (2.00%) 0 (0%)

  IIA - IIB 18 (15.39%) 8 (16.00%) 8 (34.78%)

  IIIA - IIIC 90 (76.92%) 35 (70.00%) 11 (47.83%)

  IVA 4 (3.42%) 6 (12.00%) 4 (17.39%)

MTD (cm) 0.208

  <4.25 37 (31.62%) 11 (22.00%) 9 (39.13%)

  ≥4.25 80 (68.38%) 39 (78.00%) 14 (60.87%)

LNM 0.527

  N 0 41 (35.04%) 15 (30.00%) 9 (39.13%)

  N + 76 (64.96%) 35 (70.00%) 14 (60.87%)

EBRT total dose (Gy) 0.890

  <50.4 34 (29.06%) 14 (28.00%) 4 (17.39%)

  ≥50.4 83 (70.94%) 36 (72.00%) 19 (82.61%)

Chemotherapy regimen 0.709

  Cisplatin 5 (4.27%) 3 (6.00%) 16 (69.56%)

  Carboplatin 65 (55.56%) 30 (60.00%) 1 (4.35%)

  Nedaplatin 47 (40.17%) 17 (34.00%) 6 (26.09%)

Chemotherapy cycle 0.673

  3 39 (33.33%) 15 (30.00%) 1 (4.35%)

  >3 78 (66.67%) 35 (70.00%) 22 (95.65%)

LMR 0.734

  <3.25 43 (36.75%) 17 (34.00%) 5 (21.74%)

  ≥3.25 74 (63.25%) 33 (66.00%) 18 (78.26%)

NLR 0.645

  <3 70 (59.83%) 28 (56.00%) 22 (95.65%)

  ≥3 47 (40.17%) 22 (44.00%) 1 (4.35%)

PLR 0.491

  <150 38 (32.48%) 19 (38.00%) 16 (69.57%)

  ≥150 79 (67.52%) 31 (62.00%) 7 (30.43%)

MTV 31.68 (15.10,52.36) 35.65 (18.92,70.44) 0.270 11.01 (6.56,26.34)

TLG 286.18 (130.08,576.00) 330.40 (150.08,706.63) 0.392 101.02 (57.04,180.98)

SUVmax 15.00 (11.69,21.36) 14.37 (11.87,18.35) 0.316 14.11 (9.75,17.54)

SUVmean 8.91 (6.91,12.08) 8.39 (7.13,10.92) 0.475 8.55 (5.54,11.00)

SUVmin 2.75 (2.32,3.44) 2.59 (1.71,3.04) 0.065 3.54 (2.60,4.53)
SCC: squamous cell carcinoma; ADC: adenocarcinoma; FIGO: International Federation of Gynecology and Obstetrics; EBRT: external beam radiotherapy; MTD: the 
maximum tumor diameter; LNM: lymph nodes metastasis; LMR: lymphocyte-to-monocyte ratio; NLR: neutrophil-to-lymphocyte ratio; PLR: platelet-to-lymphocyte 
ratio; MTV: metabolic tumor volume; TLG: total lesion glycolysis; SUVmax: maximum standardized uptake value; SUVmean: mean standard uptake value; SUVmin: 
minimum standardized uptake value
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Tumor segmentation
The regions of interest (ROIs) were delineated using the 
MIM Maestro version 7.1.7 (MIM Software Inc., Cleve-
land, OH, USA) package. An experienced nuclear medi-
cine physician delineated the margins in axial, coronal, 
and sagittal PET scans to adequately include the pri-
mary tumor. An experienced oncologist then used a 
fixed threshold value of 42% of the maximum standard-
ized uptake value (SUVmax) to automatically segment 
the ROIs [20]; regions within the bladder were manually 
excluded from the segmentation results. The metabolic 
active tumor volume (MTV), mean standardized uptake 
value (SUVmean), total lesion glycolysis (TLG), and 
SUVmax for the obtained ROIs were automatically calcu-
lated and derived by the MIM Software package. Another 
experienced oncologist checked and modified the con-
toured ROIs, slice-by-slice, and separately transferred 
them onto PET and CT images using rigid registration. 
Figure 3 illustrates tumor segmentation in a patient using 
a fixed percentage threshold-based algorithm.

Feature extraction
Pre-treatment PET and CT images and the correspond-
ing ROIs were loaded onto AccuContour software 
version 3.2 (Manteia Medical Technologies Co. Ltd., 

Xiamen, China), which allows for standardized pre-
processing of medical imaging data [20]. This software 
package was developed using the open-source Python 
package, Pyradiomics version 3.0.1, which codes with 
a graphical user interface that allows extraction of most 
features defined by the Image Biomarker Standardization 
Initiative [21]. The original PET and CT images were fil-
tered using wavelet, Laplacian-of-Gaussian (sigma = 1.0), 
square, square root, logarithm, exponential, and gradi-
ent filters to generate processed images. The original and 
processed images were then uploaded onto AccuContour 
software to extract the radiomics features. The absolute 
intensity quantization was used and the high bounds was 
25. The number of discretization levels were set as 64. 
The PET radiomics features and CT radiomics features 
were fused into classification model by late fusion. The 
extracted features have been listed in Table S2.

Feature selection and development of prediction models
Effective prognostic radiomics features were selected 
using a least absolute shrinkage and selection operator 
Cox model with 10-fold cross-validation; clinical fea-
tures were selected using univariate and multivariate Cox 
proportional hazards models (P < 0.05) in the training 
cohort. Radiomics, clinical, and combined models with 

Fig. 3  Representative example of the regions of interest (ROI) segmentation on axial, coronal, and sagittal PET/CT
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good prediction performance were then developed sepa-
rately to predict 3- and 5-year PFS in the training, inter-
nal validation, and external validation cohorts.

Prediction performance and clinical utility of prediction 
models
Patients in the training cohort were divided into high- 
and low-risk subgroups using the Kaplan Meier method, 
and the log-rank test was used to test differences in sur-
vival between these subgroups (P < 0.05). Prediction per-
formance for the survival rate was evaluated based on 
the receiver operating characteristics (ROC) curve and 
C-index. Decision curve analysis (DCA) was used to eval-
uate the clinical applicability of the prediction models.

Establishment and validation of the nomogram
An individualized visual nomogram was finally con-
structed for predicting 3- and 5-year PFS in LACC using 
the previously selected clinical and PET/CT radiomics 
features from the training cohort [22]. The concordance 
between nomogram-predicted and actual PFS was evalu-
ated in all three cohorts using calibration curves.

Statistical analysis
Radiomic feature extraction was performed using Accu-
Contour software, version 3.2 (Manteia Medical Tech-
nologies Co. Ltd., Xiamen, China). All statistical analyses 
were performed using R software, version 3.4.0 (R Foun-
dation for Statistical Computing, Vienna, Austria) and 
SPSS, version 25.0 (IBM, Armonk, NY). The optimum 
cut-off value for the clinical features was defined based 
on the Youden index obtained from the ROC curve of the 
training cohort. Comparisons between groups were per-
formed using the t or Mann-Whitney U tests and differ-
ences between rates were evaluated using χ2 or Fisher’s 
exact tests, as appropriate. All statistical tests were two-
sided and P values less than 0.05 were considered statisti-
cally significant.

Results
Patient characteristics ant PET metabolic parameters
A total of 190 patients with LACC were enrolled in 
this retrospective study. Among them, 167 consecutive 
patients (157 with squamous cell carcinoma and 10 with 
adenocarcinoma) were treated at the Shandong First 
Medical University Affiliated Cancer Hospital. They were 
divided into training and internal validation cohorts, 
which included 117 and 50 patients, respectively. The 23 
patients from the Xinjiang Medical University Affiliated 
Cancer Hospital (comprising 19 and 4 patients with squa-
mous cell carcinoma and adenocarcinoma, respectively) 
served as the external validation cohort. The patient 
characteristics and PET metabolic parameters from 
the training, internal validation, and external validation 

cohorts are summarized and compared in Table 1. There 
were no significant differences between the training 
and internal validation cohorts in terms of the variables 
assessed (P > 0.05).

Feature selection and development of prediction models
A total of 1409 radiomic features were automatically 
calculated and extracted from each ROI in the PET and 
CT images; among them, 107, 744, and 93 features were 
computed from the original, wavelet, and each of the 
other processed images, respectively. Three CT (Figure 
S1A, C) and one PET (Figure S1B, D) radiomics fea-
tures were filtered using the least absolute shrinkage and 
selection operator (LASSO) Cox model. Table S2 shows 
the selected PET and CT radiomics features. Radiomics 
models were then constructed using the selected 
radiomics features to predict 3- and 5-year PFS. Table 2 
shows the results from univariate and multivariate Cox 
proportional hazards analysis for the clinical factors asso-
ciated with 3-year and 5-year PFS in the training cohort. 
The results demonstrated pathological type to be the only 
independent prognostic predictor for PFS (P < 0.05). The 
combined models for predicting 3- and 5-year PFS were 
finally developed using the selected radiomics features 
and pathological type.

Prediction performance and clinical utility of prediction 
models
As shown in the Kaplan-Meier curves for 3-year PFS 
(Fig.  4A, C, E), the selected radiomics and clinical fea-
tures effectively distinguished between the high- and 
low-risk groups. The ROC curves demonstrated the per-
formance of the 3 prediction models in predicting 3-year 
PFS (Fig.  4B, D, F). In terms of 3-year PFS prediction, 
the combined model demonstrated optimal discrimina-
tion in the training (area under the curve [AUC] = 0.661, 
C-index = 0.698), internal validation (AUC = 0.718, 
C-index = 0.724), and external validation (AUC = 0.775, 
C-index = 0.705) cohorts (Table S5).

The Kaplan-Meier curves for 5-year PFS (Figure S2A, 
C, E) also demonstrated similar results. The ROC curves 
demonstrated the performance of the 3 prediction mod-
els in predicting 5-year PFS (Figure S2B, D, F). Among 
the three models, the combined model demonstrated 
optimal discrimination and the best values for sensitiv-
ity, specificity, and accuracy of prediction in the train-
ing (AUC = 0.661, C-index = 0.698), internal validation 
(AUC = 0.711, C-index = 0.722), and external validation 
(AUC = 0.767, C-index = 0.676) cohorts; the results are 
summarized in Table 3.

Establishment and validation of the nomogram
The nomogram for predicting 3- and 5-year PFS was 
established by integrating selected one clinical, three CT 
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radiomics, and one PET radiomics features (Fig. 5A and 
Figure S3A). As seen in Fig. 5B-D and Figure S3B-D, the 
calibration curves of the nomograms for 3- and 5-year 
PFS showed good agreement between predicted and 
actual PFS probabilities across all 3 cohorts.

DCA was performed to determine the clinical utility of 
the nomogram (Fig.  6 and Figure S4). The findings also 
showed that the combined model outperformed the oth-
ers in terms of accuracy and efficacy.

Discussion
In this study, we successfully developed a combined 
risk stratification model that incorporated clinical, PET 
radiomic, and CT radiomic features for individual pre-
diction of 3- and 5-year PFS probability in patients with 
LACC who received definitive CCRT. The findings were 
further validated in an external validation cohort, and 
an easy-to-use nomogram was developed to aid clinical 
decision-making.

Several studies have demonstrated that combining 
radiomics and clinical features may enhance predic-
tive performance for prognosis and therapeutic effects 
in cervical cancer [23, 24]; these findings are supported 
by the results of our study. A previous study using 
radiomics found older age, as defined by an age of 55 
years or more, to be an adverse prognostic factor [25]. 
Our data demonstrated no significant correlation with 
age; this is in agreement with the findings from another 
study [26]. Clinical studies have found the pre-treatment 

neutrophil-to-lymphocyte, platelet-to-lymphocyte, and 
lymphocyte-to-monocyte ratios to be prognostic indica-
tors [27–29]. However, these studies did not demonstrate 
any statistically significant association between these 
ratios and PFS on univariate Cox regression. It is there-
fore necessary to define more optimal thresholds using an 
appreciable sample size. Clinical prognosis is most com-
monly predicted using FIGO staging. In this context, Wei 
et al. [30] used the FIGO stage and radiomic features to 
assess survival in patients with LACC. Mu et al. [31] and 
Jiang et al. [32] incorporated pelvic lymph nodes metas-
tasis status and other clinical factors into radiomics mod-
els to improve the predictive value. However, we did not 
include two recognized prognostic factors (namely, FIGO 
stage and pelvic lymph nodes metastasis) for model con-
struction, as these variables did not demonstrate signifi-
cant correlation with PFS on multivariate Cox regression; 
this could be attributed to the relatively small number of 
patients. In the present study, pathological type was the 
only clinically significant feature predictive of PFS. Addi-
tion of this feature to the radiomics model enhanced 
predictive power; this is consistent with findings from 
previous research [33].

Notably, 18F-FDG PET metabolic parameters including 
SUVmax, SUVmean, MTV, and TLG have unclear prognos-
tic value in cervical cancer. In this context, the pre-thera-
peutic SUVmax of the primary tumor has been reported to 
correlate significantly with OS and event-free survival in 
patients with LACC who receive CCRT; it may therefore 

Table 2  The clinical factors and PET metabolic parameters analysis in the training cohort
Univariate Cox
P-values

Multivariate Cox
P-values

HR

Age 0.439

Abortion 0.956

Menstruation status 0.449

Pathology 0.002 0.006 2.862 
(0.911–8.987)

FIGO stage 0.014 0.405

MTD 0.015 0.429

LNM 0.010 0.452

EBRT total dose 0.710

Chemotherapy model 0.089

Chemotherapy cycle 0.006 0.091

LMR 0.785

NLR 0.343

PLR 0.993

MTV 0.004 0.072

TLG 0.043 0.321

SUVmax 0.906

SUVmean 0.846

SUVmin 0.327
PFS: progress free survival; FIGO: International Federation of Gynecology and Obstetrics; MTD: the maximum tumor diameter; LNM: lymph nodes metastasis; EBRT: 
external beam radiotherapy; LMR: lymphocyte to monocyte ratio; NLR: neutrophil to lymphocyte ratio; PLR: platelet to lymphocyte ratio; MTV: metabolic tumor 
volume; TLG: total lesion glycolysis; SUVmax: maximum standardized uptake value; SUVmean: mean standard uptake value; SUVmin: minimum standardized uptake 
value
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Fig. 4  The KM curve in training cohort (A), internal validation cohort (C) and external validation cohort (E). The ROC curve of 3-year PFS prediction model 
in training cohort (B), internal validation cohort (D) and external validation cohort (F). PFS, progression free survival; KM, Kaplan-Meier; ROC, receiver 
operator characteristic
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serve as a key prognostic predictor [34]. In their study, 
Calles-Sastre et al. [35] found the pre-treatment TLG and 
MTV to be independent prognostic factors for OS and 
recurrence-free survival in patients with advanced cer-
vical cancer patients who underwent definitive CCRT; 
these variables were better than the widely-used param-
eter, SUVmax. The performance of the radiomics model in 
predicting PFS could be improved by incorporating MTV 
or TLG, as selected using univariate and multivariate 
Cox analysis [36, 37]. However, none of the parameters, 
including SUVmax, SUVmean, MTV, and TLG have been 
used for clinical decision-making in primary cervical 
tumors [38]. Although univariate analysis indicated TLG 
and MTV to have predictive value for PFS in this study, 
this was not found on multivariate analysis. In addition, 
neither the SUVmax nor SUVmean showed prognostic 
value; this may be attributed to central necrosis of tumor 
tissue and interference by the inflammatory response. 
Our results were similar to those observed by Chen et al. 
[33], in that the 18F-FDG PET metabolic parameters did 
not demonstrate independent prognostic value.

In a study where PET/CT-based radiomics was used 
to construct prediction models, 5 CT radiomic, 1 PET 
radiomic, and 6 clinical features were filtered. The 
radiomics model achieved better predictive performance 
in the training and internal validation datasets than in the 
clinical model [38]; this is in agreement with our results. 
We successfully extracted 4 radiomic features to pre-
dict PFS; these included 3 features derived from CT and 
1 feature extracted from PET. The number of selected 
radiomic features derived from PET images was less than 
that obtained from CT images. This may indicate that CT 
images contain more prognostic information than PET 
images, or that PET radiomic features are more likely 
to be affected by scanning protocols and reconstruction 
parameters than CT radiomic features [39]. Notably, the 
maximum 2D diameter (row), as a shape feature, was 

included in the CT-derived features; this feature charac-
terized the longest distance between tumor surface mesh 
vertices in the sagittal plane. Nevertheless, the tumor 
diameter showed no statistically significant association 
on univariate Cox regression in our study. This shows 
that radiomics is more precise than manual character-
ization. In addition, the 4 extracted radiomics features 
included one wavelet, one logarithm, and two original 
features. The wavelet and logarithm features could reflect 
tumor spatial heterogeneity in multiple scales; this sug-
gests that more prognostic information may be mined via 
filter transformation of the original images. This further 
reflects the advantages of using radiomics; it offers valu-
able mined high-dimensional data that are difficult to 
sense manually. The gray-level non-uniformity (GLNU) 
feature represents the variability of gray-level intensity 
values in the image; higher values indicate greater het-
erogeneity in intensity values. This is in agreement with 
the findings from a previous study that suggested GLNU 
to be a poor prognostic marker for cervical cancer [40]. 
In our previous study using CT radiomics, we extracted 
maximum 2D diameter (row) and gray level size zone 
matrix derived from GLNU values to predict PFS in 
patients with esophageal squamous cell carcinoma [41]. 
In their study, Lucia et al. [42] found GLNU derived from 
gray-level run length matrix to be the only PET feature 
predictive of disease-free survival. The studies differed in 
that the GLNU was derived from gray-level run length 
matrix in their study, whereas we derived it from gray 
level size zone matrix. The radiomic features or models 
selected and developed in other studies were not fully 
transposable to our study cohort. Among the 4 features, 
3 were textural; this may have helped to exhibit intratu-
moral heterogeneity and provided additional indepen-
dent prognostic information [43].

Our models were evaluated in an independent dataset, 
in which the ROC curve displayed good performance, 
calibration curves showed good agreement, and DCA 
confirmed clinical utility; this is one of the strengths of 
our study. Our study is of clinical value, as is provides 
a visually quantitative nomogram to aid clinicians in 
their routine practice. The nomogram combined PET 
radiomic, CT radiomic, and pathological features, and 
achieved higher AUC values and better calibration than 
the radiomics or clinical models alone. In addition, the 
present study followed the TRIPOD guidelines [44]; this 
has been outlined in the Table S3.

Despite the favorable results observed using PET/CT-
based radiomics, this study has certain limitations. First, 
it had a retrospective design and offers preliminary find-
ings; in addition, some patients were followed-up for a 
relatively short duration. Longer follow-up is needed to 
further evaluate the long-term prognostic value of the 
established model and nomogram. Second, correlation 

Table 3  Performance of prediction models for predicting 3-year 
and 5-year PFS in LACC

3-year PFS 5-year PFS
AUC C-index AUC C-index

Training Cohort

Radiomics model 0.656 0.689 0.656 0.689

Clinical model 0.551 0.556 0.551 0.556

Combined model 0.661 0.698 0.661 0.698

Internal Validation Cohort

Radiomics model 0.629 0.631 0.632 0.630

Clinical model 0.559 0.557 0.553 0.556

Combined model 0.718 0.724 0.711 0.722

External Validation Cohort

Radiomics model 0.642 0.619 0.642 0.618

Clinical model 0.658 0.619 0.654 0.608

Combined model 0.775 0.705 0.767 0.676
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between human papilloma virus infection and PFS 
could not be evaluated owing to the absence of com-
plete records pertaining to HPV status in some patients. 
In addition, some patients lacked data pertaining to the 
degree of cellular differentiation and expression of serum 
tumor markers.

In this study, the predictive performance of the clini-
cal model in the external validation cohort exceeded that 
in the training cohort, which affected the performance 
of the combined model across different datasets. Our 
study was conducted at two centers, located in Shandong 
Province and the Xinjiang Uygur Autonomous Region 
of China. Shandong is situated along the eastern coastal 
region, while Xinjiang is located on the northwestern 

border, close to West Asia. The latest data on cervical 
cancer in China shows that the incidence rate and mor-
tality rate in the eastern region are higher than those in 
the western region [45]. Furthermore, the positive HPV 
infection rates differed between the Uygur and Han in 
Xinjiang, China, and the genotype distribution of infec-
tion was different [46]. The aforementioned limitations 
may be the key factor in solving this result. Future pro-
spective studies including more clinical parameters and 
several clinical endpoints need to be performed to fur-
ther validate and enhance the predictive performance.

Fig. 5  Developed the prediction nomogram based on selected radiomics and clinical features predicting 3-year PFS in training cohort (A). The probabil-
ity of each predictor could be converted into scores according to the first scale “Points” at the top of the nomogram. After adding up the corresponding 
prediction probability at the bottom of the nomogram was the 3-year PFS. Calibration curves of nomogram in training (B), internal validation cohort (C) 
and external validation cohort (D), respectively. The X-axis represented the predicted probability estimated by nomogram, whereas the Y-axis represented 
the actual observed rates. The gray dashed line represented a perfect prediction by an ideal model, and the pink solid line represented the apparent 
prediction of nomogram. Calibration curves showed the actual probability corresponded closely to the prediction of nomogram. OSM: original, shape, 
Maximum2DDiameterRow; ONB: original, ngtdm, Busyness; WLGG: wavelet-LLL, glszm, GrayLevelNonUniformity; LGC: logarithm, glcm, Contrast
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Conclusion
In conclusion, in this multicenter study, we developed 
and independently validated an effective combined model 
based on pretreatment PET/CT radiomics and clinical 
features. The noninvasive nomogram based on the results 
of the combined model can individually predict PFS in 
patients with LACC who receive CCRT, and may further 
provide clinicians with a reference for decision-making.

Abbreviations
18F-FDG	� 18Fluorine-fluorodeoxyglucose
PET	� positron emission tomography
CT	� computed tomography
LACC	� locally advanced cervical cancer
CCRT	� concurrent radiochemotherapy
OS	� overall survival
FIGO	� the International Federation of Obstetrics and Gynecology
PFS	� progression-free survival
MTD	� maximum tumor diameter
LNM	� lymph node metastasis
ROI	� region of interest
SUVmax	� maximum standardized uptake value
SUVmean	� mean standardized uptake value
SUVmin	� minimum standardized uptake value
MTV	� metabolic active tumor volume
TLG	� total lesion glycolysis
ROC	� the receiver operating characteristics
DCA	� decision curve analysis
LASSO	� the least absolute shrinkage and selection operator
GLNU	� gray-level non-uniformity

EBRT	� external beam radiotherapy
LMR	� lymphocyte to monocyte ratio
PLR	� platelet to lymphocyte ratio
NLR	� neutrophil to lymphocyte ratio

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12885-024-11917-3 .

Supplementary Material 1: Supplementary figures and tables

Acknowledgements
Not applicable.

Author contributions
Huiling Liu: Conceptualization, Methodology, Formal analysis, Writing-original 
draft; Yongbin Cui: Methodology, Software, Validation, Formal analysis; Cheng 
Chang: Resources, Data curation; Zichun Zhou: Formal analysis; Yalin Zhang: 
Data curation; CM: Investigation; YY: Conceptualization, Funding acquisition, 
Project administration, Writing-review and editing; RW: Conceptualization, 
Supervision, Funding acquisition, Project administration, Writing-review and 
editing. All authors have read and agreed to the published version of the 
manuscript.

Funding
This work was supported by the Special Funds Project of Central Guidance 
on Local Science and Technology Development (ZYYD2022B18), the State 
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence 
Diseases in Central Asian Fund (SKL-HIDCA-2020-GJ4) and the Key Research 
and Development Program of Xinjiang Uygur Autonomous Region of China 
(2022B03019-5).

Fig. 6  The decision curve analysis (DCA) of prediction models predicting 3-year PFS in training cohort. The X-axis represented the threshold probability 
that was where the expected benefit of treatment was equal to the expected benefit of avoiding treatment. The Y-axis represented the net benefit. The 
gray line represents the assumption that all LACC patients gained substantial benefit after CCRT. The horizontal black line represents the assumption that 
no LACC patients gained substantial benefit after CCRT

 

https://doi.org/10.1186/s12885-024-11917-3
https://doi.org/10.1186/s12885-024-11917-3


Page 13 of 14Liu et al. BMC Cancer          (2024) 24:150 

Data availability
The data are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
This study protocol was approved by the Ethics Committee of the Affiliated 
Cancer Hospital of Shandong First Medical University (Approval No. 
SDTHEC2022009034) and the Ethics Committee of the Affiliated Cancer 
Hospital of Xinjiang Medical University (Approval No. k-2022006), and 
individual informed consent was waived for this retrospective analysis. All 
procedures were conducted in accordance with the ethical standards of the 
Declaration of Helsinki.

Consent to publish
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Department of Radiation Oncology, The Third Affillated Teaching 
Hospital of Xinjiang Medical University, Affilated Cancer Hospital, 
Urumuqi, China
2Department of Radiation Oncology, Shandong Cancer Hospital and 
Institute, Shandong First Medical University, Shandong Academy of 
Medical Sciences, Jinan, China
3Department of Nuclear Medicine, Third Affiliated Hospital of Xinjiang 
Medical University, State Key Laboratory of Pathogenesis, Prevention and 
Treatment of High Incidence Diseases in Central Asia, Urumqi, China
4School of Mechanical, Electrical and Information Engineering, Shandong 
University, Weihai, China
5Xinjiang Key Laboratory of Oncology, Urumqi, China
6Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese 
Academy of Medical Sciences, Urumqi, China

Received: 24 October 2023 / Accepted: 24 January 2024

References
1.	 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, 

et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence 
and Mortality Worldwide for 36 cancers in 185 countries. Cancer J Clin. 
2021;71(3):209–49.

2.	 Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, et al. Cancer incidence 
and mortality in China, 2016. J Natl Cancer Cent. 2022;2(1):1–9.

3.	 Gennigens C, Jerusalem G, Lapaille L, De Cuypere M, Streel S, Kridelka F, et 
al. Recurrent or primary metastatic cervical cancer: current and future treat-
ments. ESMO open. 2022;7(5):100579.

4.	 Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R. Cancer of the cervix uteri: 
2021 update. Int J Gynaecol Obstet. 2021;155(Suppl 1):28–44.

5.	 Pujade-Lauraine E, Tan DSP, Leary A, Mirza MR, Enomoto T, Takyar J, et al. Com-
parison of global treatment guidelines for locally advanced cervical cancer 
to optimize best care practices: a systematic and scoping review. Gynecol 
Oncol. 2022;167(2):360–72.

6.	 Gennigens C, De Cuypere M, Hermesse J, Kridelka F, Jerusalem G. Optimal 
treatment in locally advanced cervical cancer. Expert Rev Anticancer Ther. 
2021;21(6):657–71.

7.	 Salani R, Khanna N, Frimer M, Bristow RE, Chen LM. An update on post-treat-
ment surveillance and diagnosis of recurrence in women with gynecologic 
malignancies: Society of Gynecologic Oncology (SGO) recommendations. 
Gynecol Oncol. 2017;146(1):3–10.

8.	 Cibula D, Pötter R, Planchamp F, Avall-Lundqvist E, Fischerova D, Haie Meder 
C, et al. The European Society of Gynaecological Oncology/European Society 
for Radiotherapy and Oncology/European Society of Pathology guidelines 
for the management of patients with cervical cancer. Radiotherapy and 
Oncology: Journal of the European Society for Therapeutic Radiology and 
Oncology. 2018;127(3):404–16.

9.	 Sehnal B, Kmoníčková E, Sláma J, Tomancová V, Zikán M. Current FIGO 
staging for Carcinoma of the Cervix Uteri and Treatment of Particular stages. 
Klinicka Onkologie: casopis Ceske a Slovenske Onkologicke Spolecnosti. 
2019;32(3):224–31.

10.	 Bhatla N, Berek JS, Cuello Fredes M, Denny LA, Grenman S, Karunaratne K, 
et al. Revised FIGO staging for carcinoma of the cervix uteri. Int J Gynaecol 
Obstet. 2019;145(1):129–35.

11.	 Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren 
J, et al. Radiomics: the bridge between medical imaging and personalized 
medicine. Nat Reviews Clin Oncol. 2017;14(12):749–62.

12.	 Jiang K, Ai Y, Li Y, Jia L. Nomogram models for the prognosis of cervical can-
cer: a SEER-based study. Front Oncol. 2022;12:961678.

13.	 Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuzé S, et al. Promises 
and challenges for the implementation of computational medical imaging 
(radiomics) in oncology. Annals of Oncology: Official Journal of the European 
Society for Medical Oncology. 2017;28(6):1191–206.

14.	 Zheng RR, Cai MT, Lan L, Huang XW, Yang YJ, Powell M, et al. An MRI-based 
radiomics signature and clinical characteristics for survival prediction in early-
stage cervical cancer. Br J Radiol. 2022;95(1129):20210838.

15.	 Lin G, Yang LY, Lin YC, Huang YT, Liu FY, Wang CC, et al. Prognostic model 
based on magnetic resonance imaging, whole-tumour apparent diffusion 
coefficient values and HPV genotyping for stage IB-IV cervical cancer patients 
following chemoradiotherapy. Eur Radiol. 2019;29(2):556–65.

16.	 Mu W, Chen Z, Liang Y, Shen W, Yang F, Dai R, et al. Staging of cervical cancer 
based on tumor heterogeneity characterized by texture features on (18)
F-FDG PET images. Phys Med Biol. 2015;60(13):5123–39.

17.	 Altazi BA, Fernandez DC, Zhang GG, Hawkins S, Naqvi SM, Kim Y, et al. Inves-
tigating multi-radiomic models for enhancing prediction power of cervical 
cancer treatment outcomes. Physica Medica: PM: an international journal 
devoted to the applications of physics to medicine and biology. Official J 
Italian Association Biomedical Phys (AIFB). 2018;46:180–8.

18.	 Pedraza S, Seiffert AP, Sarandeses P, Muñoz-Lopez B, Gómez EJ, Sánchez-
González P, et al. The value of metabolic parameters and textural analysis 
in predicting prognosis in locally advanced cervical cancer treated with 
chemoradiotherapy. Strahlentherapie Und Onkologie: Organ Der Deutschen 
Rontgengesellschaft. 2022;198(9):792–801.

19.	 Nakajo M, Jinguji M, Tani A, Yano E, Hoo CK, Hirahara D, et al. Machine learn-
ing based evaluation of clinical and pretreatment (18)F-FDG-PET/CT radiomic 
features to predict prognosis of cervical cancer patients. Abdom Radiol (New 
York). 2022;47(2):838–47.

20.	 Sun M, Baiyasi A, Liu X, Shi X, Li X, Zhu J, et al. Robustness and reproduc-
ibility of radiomics in T2 weighted images from magnetic resonance image 
guided linear accelerator in a phantom study. Phys Medica: PM: Int J Devoted 
Appl Phys Med Biology: Official J Italian Association Biomedical Phys (AIFB). 
2022;96:130–9.

21.	 Zwanenburg A, Vallières M, Abdalah MA, Aerts H, Andrearczyk V, Apte A, et 
al. The image Biomarker Standardization Initiative: standardized quantita-
tive Radiomics for High-Throughput Image-based phenotyping. Radiology. 
2020;295(2):328–38.

22.	 Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology: 
more than meets the eye. Lancet Oncol. 2015;16(4):e173–80.

23.	 Tian X, Sun C, Liu Z, Li W, Duan H, Wang L, et al. Prediction of response to Pre-
operative Neoadjuvant Chemotherapy in locally Advanced Cervical Cancer 
using Multicenter CT-Based Radiomic Analysis. Front Oncol. 2020;10:77.

24.	 Li H, Zhu M, Jian L, Bi F, Zhang X, Fang C, et al. Radiomic score as a potential 
imaging Biomarker for Predicting Survival in patients with cervical Cancer. 
Front Oncol. 2021;11:706043.

25.	 Zhou Y, Gu HL, Zhang XL, Tian ZF, Xu XQ, Tang WW. Multiparametric magnetic 
resonance imaging-derived radiomics for the prediction of disease-free sur-
vival in early-stage squamous cervical cancer. Eur Radiol. 2022;32(4):2540–51.

26.	 Moore KN, Java JJ, Slaughter KN, Rose PG, Lanciano R, DiSilvestro PA, et 
al. Is age a prognostic biomarker for survival among women with locally 
advanced cervical cancer treated with chemoradiation? An NRG Oncol-
ogy/Gynecologic Oncology Group ancillary data analysis. Gynecol Oncol. 
2016;143(2):294–301.

27.	 Zou P, Yang E, Li Z. Neutrophil-to-lymphocyte ratio is an independent 
predictor for survival outcomes in cervical cancer: a systematic review and 
meta-analysis. Sci Rep. 2020;10(1):21917.

28.	 Zhu M, Feng M, He F, Han B, Ma K, Zeng X et al. Pretreatment neutrophil-
lymphocyte and platelet-lymphocyte ratio predict clinical outcome and 
prognosis for cervical Cancer. Clinica chimica acta; international journal of 
clinical chemistry. 2018;483:296–302.



Page 14 of 14Liu et al. BMC Cancer          (2024) 24:150 

29.	 Trinh H, Dzul SP, Hyder J, Jang H, Kim S, Flowers J, et al. Prognostic value of 
changes in neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte 
ratio (PLR) and lymphocyte-to-monocyte ratio (LMR) for patients with cervi-
cal cancer undergoing definitive chemoradiotherapy (dCRT). Int J Clin Chem. 
2020;510:711–6. Clinica chimica acta.

30.	 Wei G, Jiang P, Tang Z, Qu A, Deng X, Guo F, et al. MRI radiomics in overall 
survival prediction of local advanced cervical cancer patients tread by adju-
vant chemotherapy following concurrent chemoradiotherapy or concurrent 
chemoradiotherapy alone. Magn Reson Imaging. 2022;91:81–90.

31.	 Mu W, Liang Y, Hall LO, Tan Y, Balagurunathan Y, Wenham R, et al. 18F-FDG 
PET/CT Habitat Radiomics predicts outcome of patients with cervical Cancer 
treated with Chemoradiotherapy. Radiol Artif Intell. 2020;2(6):e190218.

32.	 Jiang X, Song J, Duan S, Cheng W, Chen T, Liu X. MRI radiomics combined 
with clinicopathologic features to predict disease-free survival in patients 
with early-stage cervical cancer. Br J Radiol. 2022;95(1136):20211229.

33.	 Chen SW, Shen WC, Hsieh TC, Liang JA, Hung YC, Yeh LS, et al. Textural 
features of cervical cancers on FDG-PET/CT associate with survival and 
local relapse in patients treated with definitive chemoradiotherapy. Sci Rep. 
2018;8(1):11859.

34.	 Han L, Wang Q, Zhao L, Feng X, Wang Y, Zou Y et al. A Systematic Review and 
Meta-Analysis of the Prognostic Impact of Pretreatment Fluorodeoxyglu-
cose Positron Emission Tomography/Computed Tomography Parameters in 
Patients with Locally Advanced Cervical Cancer Treated with Concomitant 
Chemoradiotherapy. Diagnostics (Basel, Switzerland). 2021;11(7).

35.	 Calles-Sastre L, Mucientes-Rasilla J, San-Frutos Llorente LM, Royuela A, 
Garcia-Espantaleón Navas M, Herrero Gámiz S, et al. Prognostic significance 
of metabolic tumor volume and total lesion glycolysis in patients with 
advanced cervical carcinoma. Revista Esp De Med Nuclear e Imagen Mol. 
2019;38(1):17–21.

36.	 Liu S, Li R, Liu Q, Sun D, Yang H, Pan H, et al. Radiomics model of 18F-FDG PET/
CT imaging for predicting disease-free survival of early-stage uterine cervical 
squamous cancer. Cancer Biomark A. 2022;33(2):249–59.

37.	 Ferreira M, Lovinfosse P, Hermesse J, Decuypere M, Rousseau C, Lucia F, et al. 
[(18)F]FDG PET radiomics to predict disease-free survival in cervical cancer: 
a multi-scanner/center study with external validation. Eur J Nucl Med Mol 
Imaging. 2021;48(11):3432–43.

38.	 Gandy N, Arshad MA, Park WE, Rockall AG, Barwick TD. FDG-PET imaging in 
Cervical Cancer. Semin Nucl Med. 2019;49(6):461–70.

39.	 Kirienko M, Cozzi L, Antunovic L, Lozza L, Fogliata A, Voulaz E, et al. Prediction 
of disease-free survival by the PET/CT radiomic signature in non-small cell 
lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging. 
2018;45(2):207–17.

40.	 Ho KC, Fang YH, Chung HW, Yen TC, Ho TY, Chou HH, et al. A preliminary 
investigation into textural features of intratumoral metabolic heterogeneity 
in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical 
cancer treated with definitive concurrent chemoradiotherapy. Am J Nucl 
Med Mol Imaging. 2016;6(3):166–75.

41.	 Cui Y, Li Z, Xiang M, Han D, Yin Y, Ma C. Machine learning models predict over-
all survival and progression free survival of non-surgical esophageal cancer 
patients with chemoradiotherapy based on CT image radiomics signatures. 
Radiation Oncol (London England). 2022;17(1):212.

42.	 Lucia F, Visvikis D, Desseroit MC, Miranda O, Malhaire JP, Robin P, et al. Predic-
tion of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in 
locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl 
Med Mol Imaging. 2018;45(5):768–86.

43.	 Cho HW, Lee ES, Lee JK, Eo JS, Kim S, Hong JH. Prognostic value of textural 
features obtained from F-fluorodeoxyglucose (F-18 FDG) positron emission 
tomography/computed tomography (PET/CT) in patients with locally 
advanced cervical cancer undergoing concurrent chemoradiotherapy. Ann 
Nucl Med. 2023;37(1):44–51.

44.	 Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a mul-
tivariable prediction model for individual prognosis or diagnosis (TRIPOD): 
the TRIPOD statement. BMJ (Clinical Research ed). 2015;350:g7594.

45.	 Gu X, Sun G, Zheng R, Zhang S, Zeng H, Sun K, et al. Incidence and mortality 
of cervical cancer in China, 2015. J Natl Cancer Cent. 2022;2(2):70–7.

46.	 Xin H, Pan Z, Zhe X, Zhang C, Li H, Zheng W, et al. HPV16 E6 gene polymor-
phisms and the functions of the mutation site in cervical cancer among 
Uygur ethnic and Han nationality women in Xinjiang, China. Cancer Cell Int. 
2022;22(1):94.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿Development and validation of a ﻿18﻿F-FDG PET/CT radiomics nomogram for predicting progression free survival in locally advanced cervical cancer: a retrospective multicenter study
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Study design and workflow
	﻿Patients
	﻿Treatment and follow-up
	﻿PET-CT image acquisition
	﻿Tumor segmentation
	﻿Feature extraction
	﻿Feature selection and development of prediction models
	﻿Prediction performance and clinical utility of prediction models
	﻿Establishment and validation of the nomogram
	﻿Statistical analysis

	﻿Results
	﻿Patient characteristics ant PET metabolic parameters

	﻿Discussion
	﻿Conclusion
	﻿References


