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Abstract 

Background  Breast cancer remains a significant health challenge worldwide, necessitating the identification of reli-
able biomarkers for early detection, accurate prognosis, and targeted therapy.

Materials and methods  Breast cancer RNA expression data from the TCGA database were analyzed to identify 
differentially expressed genes (DEGs). The top 500 up-regulated DEGs were selected for further investigation using 
random forest analysis to identify important genes. These genes were evaluated based on their potential as diagnos-
tic biomarkers, their overexpression in breast cancer tissues, and their low median expression in normal female tissues. 
Various validation methods, including online tools and quantitative Real-Time PCR (qRT-PCR), were used to confirm 
the potential of the identified genes as breast cancer biomarkers.

Results  The study identified four overexpressed genes (CACNG4, PKMYT1, EPYC, and CHRNA6) among 100 genes 
with higher importance scores. qRT-PCR analysis confirmed the significant upregulation of these genes in breast 
cancer patients compared to normal samples.

Conclusions  These findings suggest that CACNG4, PKMYT1, EPYC, and CHRNA6 may serve as valuable biomark-
ers for breast cancer diagnosis, and PKMYT1 may also have prognostic significance. Furthermore, CACNG4, CHRNA6, 
and PKMYT1 show promise as potential therapeutic targets. These findings have the potential to advance diagnostic 
methods and therapeutic approaches for breast cancer.
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Introduction
Breast cancer has become the most common cancer in 
women, surpassing lung cancer as the leading cause of 
cancer incidence. The high incidence rate of the dis-
ease, with more than 2.3 million new cases each year, 
continues to be a cause for concern [1]. Due to the vari-
ation in molecular traits, histological features, and clin-
ical outcomes, breast cancer is classified into several 
subtypes, providing valuable insights into the disease 
and aiding treatment planning. Breast cancer is typi-
cally divided into six subgroups based on their molecu-
lar characteristics: basal-like, claudin-low, normal-like, 
luminal A and B, and HER2-positive. These subgroups 
have unique molecular profiles that distinguish their 
characteristics. The basal-like and claudin-low subtypes 
of triple-negative breast cancer (TNBC) lack expression 
of estrogen receptor (ER), progesterone receptor (PR), 
and HER2. These subtypes are associated with a higher 
risk of disease relapse and a greater likelihood of devel-
oping visceral metastases [2].

Biomarkers play a crucial role in identifying and pre-
dicting outcomes as well as therapeutic approaches for 
breast cancer. However, some commonly used biomark-
ers, including carcinoembryonic antigen (CEA), CA 15-3, 
and CA 27–29, have insufficient sensitivity and specific-
ity, making them unsuitable for detecting breast cancer. 
They are recommended for monitoring disease progres-
sion and evaluating treatment response, particularly in 
patients with metastatic breast cancer [3]. On the other 
hand, biomarkers such as ER, PR, and HER2 have been 
extensively used in the management of breast cancer. 
They provide valuable information for prognosis and 
serve as targets for targeted therapy and hormone ther-
apy [4]. In the pursuit of advancing breast cancer diag-
nosis and treatment, it is crucial for researchers to gain 
a comprehensive understanding of the molecular path-
ways that underlie breast carcinogenesis. Despite years of 
dedicated research into breast cancer patients, the over-
all 5-year survival rate remains unsatisfactory [5]. Con-
sequently, there is a significant need for the discovery of 
reliable and novel biomarkers to aid in the early detection 
of breast cancer, enhance prognostic accuracy, enable 
precise prediction of disease behavior, and facilitate the 
development of targeted therapeutic approaches.

High throughput gene expression technologies provide 
comprehensive genetic information on cancer samples 
and identify changes in disease progression [6–8]. High 
throughput data like genomics, epigenomics, and tran-
scriptomics in online databases were mined to identify 
potentially novel cancer-associated biomarkers. Recently, 
machine learning models such as support vector machine 
(SVM) and random forest have become attractive strate-
gies for obtaining gene signatures.

The study identified new genes associated with breast 
cancer using large-scale transcriptomics data and the 
random forest technique. The expression of these genes 
in breast cancer tissues was validated using qRT-PCR and 
compared to normal tissues.

Materials and methods
Data collection and differential expression analysis
The RNA expression data for breast cancer was obtained 
from TCGA using the TCGA biolinks package [7]. Then, 
differential expression analysis between breast cancer 
and normal samples was performed using the edgeR 
Bioconductor package [7]. The DEGs (differentially 
expressed genes) were identified based on absolute fold 
changes > 2 and a false discovery rate (FDR) < 0.01. The 
top 500 up-regulated genes were selected from DEGs for 
further scrutiny and analysis.

To investigate the altered expression of selected genes, 
we investigated their expression levels in the Molecular 
Taxonomy of Breast Cancer International Consortium 
(METABRIC) database[9].

Screening of important genes based on the random forest 
method
A random forest analysis was conducted to identify key 
genes. The expression data obtained from the TCGA 
database were initially normalized through log2 trans-
formed fragments per kilobase of transcript per mil-
lion mapped reads (UQ-FPKMs). Feature selection was 
then performed using the random forest classifier in the 
R package ’randomForest’ to identify the most impor-
tant gene features among the up-regulated DEGs. The 
random forest model’s Gini index was used to discrimi-
nate between normal and cancer samples [10]. A higher 
Gini index value indicates greater relevance and impor-
tance of the gene in the classification process. Finally, 
the genes were ranked based on their significance level, 
and the top 100 genes with the highest Gini index val-
ues were selected as candidate feature genes for further 
investigation.

Expression profiling analysis
The online database GEPIA2 (http://​gepia2.​cancer-​pku.​
cn/#​index) is a valuable resource that provides data 
derived from the Genotype-Tissue Expression (GTEx) 
and the TCGA databases. This database contains a com-
prehensive collection of RNA sequencing data for both 
cancer and normal tissues [11]. The GEPIA2 database 
was used to determine the expression levels of selected 
genes and their profiles based on pathological stages. 
Overexpressed genes in breast cancer tissues were iden-
tified in comparison to normal tissues. The UCSC Xena 
(http://​xena.​ucsc.​edu) platform [12] and the UALCAN 
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web resource (https://​ualcan.​path.​uab.​edu/) [13] were 
also used to compare tumor samples derived from TCGA 
and normal samples to validate the upregulation of 
selected genes in the breast cancer sample types.

Subcellular localization study
GeneCards (https://​www.​genec​ards.​org/) is  a compre-
hensive and integrative database that provides informa-
tion on all predicted and known human genes, including 
concise genomic, transcriptomic, proteomic, genetic, and 
functional information [14]. The GeneCards database 
was employed to undertake an initial evaluation of the 
subcellular location of each protein.

Clinico‑pathological variables associated with selected 
genes
Breast Cancer Gene-Expression Miner v4.8 analysis 
(bc-GenExMiner v4.8) was employed to assess the asso-
ciation between the expression pattern of selected genes 
and various clinico-pathological variables in breast can-
cer. These variables included Scarff-Bloom and Rich-
ardson grade status (SBR1, SBR2, and SBR3), BRCA1/2 
status (Wild type and Mutated), and PAM50 subtypes 
(Basal-like, HER-2, Luminal A, Luminal B, and Normal 
breast-like) [15]. To determine statistically significant 
differences between groups, we employed Welch’s test 
followed by the Dunnett-Tukey-Kramer’s test. We con-
sidered a p-value of less than 0.05 as significant. The 
UALCAN web resource (https://​ualcan.​path.​uab.​edu/) 
[13] was used to assess further clinico-pathological fea-
tures, including nodal metastasis status, TP53 mutation 
status, and the patient’s gender. The student’s t-test was 
employed to assess the differences in transcriptional 
expression.

Functional enrichment analysis
GEPIA2 was used to identify genes with similar expres-
sion patterns, ranked by Pearson correlation coefficient 
(PCC). This facilitated the identification of closely related 
genes [9]. In addition, cBioPortal was used to iden-
tify genes positively associated with our selected genes 
through co-expression network analysis. The FunRich 
tool 3.1.3 [16] was then used to perform Gene Ontology 
(GO) and biological pathway enrichment analyses on the 
overlapping genes obtained from the GEPIA2 and cBio-
Portal databases. Furthermore, we conducted gene set 
enrichment analysis (GSEA) utilizing the GSEA software 
to investigate hallmark gene sets showing significant 
enrichment [17]. The expression levels of shared genes 
sourced from the GEPIA2 and cBioPortal databases were 
employed to assess the correlation between a gene set 
and a specific phenotype.

Genetic alteration and somatic mutation analysis
The cBioPortal database (https://​www.​cbiop​ortal.​org/) 
was used to assess the genetic alterations of the selected 
genes [9]. The spectrum of genomic alterations, includ-
ing mutations and putative copy-number alterations 
(CNAs), was analysed using default parameters and the 
GISTIC (Genomic Identification of Significant Targets 
in Cancer) algorithm. Additionally, the COSMIC data-
base (cancer.sanger.ac.uk) [18] was employed to investi-
gate the somatic mutations in the candidate genes.

Survival analysis
The association between mRNA expression levels of 
the selected genes and overall survival (OS) outcomes 
in breast cancer patients was investigated using the 
Kaplan-Meier (KM) plotter database (https://​kmplot.​
com/​analy​sis/) [19]. Statistical significance in the analy-
sis was determined using a log-rank p-value threshold 
of less than 0.05.

Assessment of selected genes as potential therapeutic 
targets
To assess the potential impact of the selected genes on 
breast cancer cell growth and survival and to explore 
their suitability as potential therapeutic targets, the 
Cancer Dependency Map (https://​depmap.​org/​portal/) 
was used [20].

In vitro mRNA expression quantification
Tissue samples preparation
Fifty-five female breast cancer patients were included 
in this study, conducted at MRI Hospital in Shiraz, Iran, 
between 2015 and 2019. Patients were selected based 
on molecular pathology tests, biopsy results, and imag-
ing techniques. Surgical procedures were performed to 
obtain samples of breast cancer tissues (BCT) as well 
as non-tumoral adjacent tissues (NTAT), serving as the 
normal control. The collected tissues were promptly 
frozen and stored at -70°C. Before tissue collection, 
none of the patients had undergone any form of treat-
ment. Careful collection of tumor tissues from non-
necrotic areas ensured that over 90% of the samples 
were of high-quality. The research protocol received 
ethical approval from the Research Ethics Committee 
of Shiraz University of Medical Sciences (Approval ID: 
IR.SUMS.REC.1401.215).

RNA extraction and cDNA synthesis
The RNX-Plus buffer (CinnaGen, Iran) was used to 
extract total RNA from snap-frozen tissues, following 
the manufacturer’s instructions. To prevent potential 
contamination with genomic DNA, DNase I treatment 

https://ualcan.path.uab.edu/
https://www.genecards.org/
https://ualcan.path.uab.edu/
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was applied during the RNA extraction process. After-
ward, cDNA synthesis was conducted using a cDNA 
synthesis kit (Fermentas, Lithuania), which combined 
oligo-dT primers and random hexamers.

qRT‑PCR
The ABI StepOne instrument (Applied Biosystems, USA) 
was used to perform the qRT-PCR experiments in 48-well 
microtitre plates. Each reaction consisted of a total vol-
ume of 20 µL containing primers specific for the target 
genes and an ABI SYBR Green master mix. The amplifi-
cation process included an initial denaturation step at 95 
°C for 10 minutes, followed by 45 cycles of denaturation 
at 95 °C for 20 seconds, and annealing/extension at 60 
°C for 60 seconds. To ensure accurate quantification, the 
CtNorms algorithm was applied to normalize amplifica-
tion efficiency [21]. Melt curve analysis was performed 
to confirm the specificity of the qRT-PCR results. Data 
normalization was carried out using the 2-ΔΔCT formula, 
a widely used method for comparing gene expression lev-
els between different samples. Specific primers for the 
target genes (CACNG4, PKMYT1, EPYC, and CHRNA6) 
and the internal control gene (Actin Beta) were designed 
using Allele ID 7 software (see Table 1). Each sample was 
tested in triplicate, and the final result was determined by 
the average Ct value. To validate the qRT-PCR results and 
exclude the possibility of genomic DNA contamination, 
additional PCR reactions were conducted using extracted 
RNA samples without reverse transcription. This step 
was implemented to confirm that the PCR results origi-
nated from complementary DNA (cDNA) and not from 
genomic DNA.

Clinico‑pathological data collection
Clinico-pathological data, including age, human epi-
dermal growth factor receptor 2 (HER2) status, pro-
gesterone receptor (PR) status, estrogen receptor (ER) 

status, lymph nodes (LN) involvement, and molecular 
breast cancer subtypes (luminal, HER2 overexpressed, 
and TNBC) were collected from the patient’s medical 
records. The data were then compiled and analyzed to 
assess their association with CACNG4, PKMYT1, EPYC, 
and CHRNA6 gene expression patterns in the breast 
cancer tissue samples. This step was important in deter-
mining the potential clinical relevance of these genes as 
biomarkers for breast cancer diagnosis and prognosis. 
At last, to assess the potential correlation between these 
gene expression patterns, a nonparametric Spearman 
correlation coefficient was calculated using the expres-
sion data obtained from the qRT-PCR analysis.

Statistical analysis
The data was analyzed using GraphPad Prism 9.4.0 soft-
ware (GraphPad Software, Inc., USA). A paired t-test 
was employed to determine the mean differences of the 
CACNG4, PKMYT1, EPYC, and CHRNA6 genes between 
BCT and NTAT tissues. At the same time, the Mann-
Whitney test was used to assess the normalized expres-
sion ratio concerning the clinico-pathological features of 
the study population. The Kruskal-Wallis test was also 
applied to examine the variations among breast cancer 
subtypes. The nonparametric Spearman correlation coef-
ficient was used to measure the expression correlation 
between these genes (CACNG4, PKMYT1, EPYC, and 
CHRNA6).

Results
Screening of important genes
The RNA expression data were extracted from the 
TCGA database to compare the differentially expressed 
genes (DEGs) between breast invasive carcinoma 
(BRCA) and normal samples. A random forest algo-
rithm was then used to determine the significance of 
the up-regulated DEGs and identify important gene 
features (Additional files 1 & 2). After the selection of 
100 genes with higher importance scores, these genes 
were subjected to a meticulous selection process. Genes 
exhibiting overexpression in breast cancer tissues com-
pared to normal tissues were identified through an 
evaluation utilizing UCSC Xena server, UALCAN, 
and GEPIA2 databases. Then GEPIA2 was employed 
to discriminate genes with a low median expression 
in normal female tissues. Finally, a comprehensive 
examination and analysis of relevant scientific litera-
ture and articles were conducted to identify a novel 
panel of potential diagnostic biomarkers among the 
determined DEGs, highlighting the innovative aspects 
of gene exploration. Through this screening process, 
four genes, namely CACNG4, PKMYT1, EPYC, and 
CHRNA6, were identified, and then the prognostic and 

Table 1  Primer sequences

Primer sequences were designed via Allele ID 7 software for the qRT-PCR 
technique with an annealing temperature of 60 °C

Gene symbol Primer sequences

CACNG4 Forward: 5´-CAA​TGA​CTA​CGA​CCA​CGA​CAG-3´
Reverse: 5´-GCA​GCC​ACG​AAG​AGG​ATG​-3´

PKMYT1 Forward: 5´-GCC​AGA​GTC​CTT​CTT​CCA​G-3´
Reverse: 5´-GAA​CGC​TTT​ACC​GCA​TAG​AG-3´

EPYC Forward: 5´-CCA​GGA​AGA​GGA​AGA​GGA​GGA​GGA​AT-3´
Reverse: 5´-GGC​AGC​GGA​GGA​ATA​GCA​TCA​AGT​-3´

CHRNA6 Forward: 5´- TCA​CAG​AAA​CCA​TCC​CAT​CCA​CAT​ -3´
Reverse: 5´- TCA​ACA​CAA​ACA​CAG​TCA​CCACG -3´

ACTB Forward: 5´-GCC​TTT​GCC​GAT​CCGC-3´
Reverse: 5´-GCC​GTA​GCC​GTT​GTCG-3´
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therapeutic implications of these selected genes were 
investigated using various databases. Based on META-
BRIC database, CACNG4, PKMYT1, and CHRNA6 
exhibited differential expression in breast cancer tis-
sues compared to normal tissues. However, EPYC did 
not display such a distinction (Additional file 3).

Profiles of mRNA expression
The GEPIA2 database was used to compare the expres-
sion levels of the selected genes between breast can-
cer patient tissues and normal subjects. The analysis 
revealed an overexpression of CACNG4, PKMYT1, 
EPYC, and CHRNA6 genes in BRCA tissues compared 
to normal breast tissues, while this overexpression was 
statistically significant in the case of CACNG4 and 
PKMYT1 genes, as depicted in Fig. 1A. The differential 
expression of these four genes was also analyzed using 
the UCSC and UALCAN databases. Using the Xena 
UCSC tool and the UALCAN web resource (https://​
ualcan.​path.​uab.​edu/), it was found that the expression 
levels of all four selected genes were significantly higher 
in breast cancer than in normal tissues, as presented 
in Additional file 4. In addition, the expression level of 
PKMYT1 (P = 0.006) showed differential expression 
across tumor stages, whereas the expression levels of 

CACNG4 (P = 0.06), EPYC (P = 0.4), and CHRNA6 (P 
= 0.2) did not show any statistically significant differ-
ences, as illustrated in Fig. 1B.

Prediction of subcellular localization
The GeneCards database was employed to determine the 
subcellular localization of the identified proteins. Consid-
ering the significance of cell membrane proteins as thera-
peutic targets, the identified genes were investigated for 
subcellular localization. CACNG4 and CHRNA6 were 
predicted to be localized to the plasma membrane. In 
contrast, PKMYT1 was predicted to be localized in the 
nucleus and cytosol, while EPYC was predicted to be 
located in the extracellular matrix (Additional file 5).

Investigating the correlation of expression 
with clinico‑pathological parameters
We investigated the expression level of CACNG4, 
PKMYT1, EPYC, and CHRNA6 genes in breast cancer 
patients categorized by Scarff-Bloom and Richardson 
grade status (SBR1, SBR2, and SBR3), BRCA1/2 status 
(Wild type and Mutated), and PAM50 subtypes (Basal-
like, HER-2, Luminal A, Luminal B, and Normal breast-
like) using the Breast Cancer Gene-Expression Miner 
v4.8 databases (bc-GenExMiner v4.8) (see Additional files 
6 & 7). The results revealed significant differences in the 

Fig. 1  Expression analysis and stage correlation in Breast Invasive Carcinoma (BRCA) patients from GEPIA2 Database. A Expression level of CACNG4, 
PKMYT1, EPYC, and CHRNA6 between BRCA and normal breast tissues. B Correlation with Tumor Stages. TPM, transcripts per million

https://ualcan.path.uab.edu/
https://ualcan.path.uab.edu/
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expression levels of CACNG4, PKMYT1, and CHRNA6 
among SBR1, SBR2, and SBR3 (CACNG4 (SBR1 and SBR 
2> SBR3, SBR1=SBR2) PKMYT1 (SBR3>SBR2>SBR1) 
CHRNA6 (SBR1 and SBR 2> SBR3, SBR1=SBR2)). How-
ever, no difference was observed in the expression of the 
EPYC gene among SBR1, SBR2, and SBR3, as displayed 
in Additional file  7 (Supplementary Fig.  4A). Moreover, 
when comparing BRCA1/2 status, no significant dif-
ferences in the expression levels of CACNG4 and EPYC 
were found across wild type and mutated BRCA1/2. In 
contrast, the expression level of PKMYT1 in the mutated 
ones was higher than that of the wild type, and the 
expression level of CHRNA6 in the mutated group was 
lower than that of the wild type as shown in Additional 
file  7 (Supplementary Fig.  4A). Furthermore, this analy-
sis revealed various expressions of CACNG4, PKMYT1, 
EPYC, and CHRNA6 in different BRCA subtypes com-
pared to normal breast-like (CACNG4 (HER-2, Lumi-
nal A, and B > normal breast-like, basal-like < normal 
breast-like), PKMYT1 (basal-like, HER-2, and Luminal 
B > normal breast-like, Luminal B < normal breast-like), 
EPYC (Luminal A and B > normal breast-like, basal-like 
< normal breast-like HER-2 = normal breast-like), and 
CHRNA6 (HER-2, Luminal A, and B, basal-like > normal 
breast-like)) that can be seen in Additional file 7 (Supple-
mentary Fig.  4A). To supplement our findings, we ana-
lyzed CACNG4, PKMYT1, EPYC, and CHRNA6 genes 
expression and clinico-pathological parameters based on 
nodal metastasis status (Normal, N0, N1, N2, N3), TP53 
mutation status (Normal, TP53 mutant, and TP53 non-
mutant), and patient’s gender (Normal cases, Male and 
Female patients) through UALCAN database. The find-
ings revealed significant variations in the expression lev-
els of CACNG4, PKMYT1, EPYC, and CHRNA6 mRNA 
in nodal metastasis status (N0, N1, N2, N3 > Normal) 
and TP53 mutation status (TP53 mutant and TP53 non-
mutant > Normal)) (Additional file  7, Supplementary 
Fig. 4B). Furthermore, an evaluation of the patient’s gen-
der demonstrated that CACNG4, PKMYT1, and CHRNA6 
mRNA expression levels were significantly higher in male 
and female patients than in normal cases. Notably, the 
expression level of EPYC mRNA in female patients was 
higher than in normal cases (p < 0.05); however, there 
was no significant difference in the expression of EPYC 
mRNA between male patients and normal cases (p > 0.05) 
as illustrated in Additional file 7 (Supplementary Fig. 4B).

Functional and pathway enrichment analysis
The GEPIA2 database (BRCA dataset) and cBioPortal 
dataset (TCGA, PanCancer Atlas) were used to select 
the genes co-expressing with CACNG4, PKMYT1, EPYC, 
and CHRNA6 genes. Data from these two databases were 
crossed to identify the common genes. The co-expressed 

genes were subjected to gene ontology and pathway anal-
ysis using the FunRich tool (version 3.1.1) (Detailed data 
are supplied in the Additional files 8 to 12). GO enrich-
ment analysis categorizes gene functions into three dis-
tinct groups: biological process (BP), molecular function 
(MF), and cellular component (CC). Based on GO analy-
sis, the common co-expressed genes of CACNG4 were 
considerably prominent in the subcategories of plasma 
membrane, transport activity, and signal transduction 
(Additional file 8).

Similarly, the PKMYT1 common co-expressed genes 
were enriched in the nucleus, DNA binding, and cell cycle 
subcategories (Additional file  9). In contrast, the EPYC 
common co-expressed genes were enriched in the extra-
cellular matrix, extracellular matrix consistent, and cell 
growth subcategories (Additional file 10). In addition, the 
CHRNA6 common co-expressed genes were enriched in 
the subcategories of cytoplasm, transcription regulation 
activity, and cell communication subcategories (Addi-
tional file 11). Our biological pathway enrichment analysis 
revealed that CACNG4 was significantly associated with 
the ErbB receptor signaling network and the mTOR signal-
ing pathway. At the same time, PKMYT1 was enriched in 
the DNA replication and cell cycle pathways. Furthermore, 
EPYC was mainly associated with epithelial-to-mesenchy-
mal transition, and CHRNA6 was observed to be involved 
in the ErbB receptor signaling network and signal trans-
duction. We also conducted the GSEA to pinpoint the 
most notable hallmark gene sets. The results of the GSEA 
showed enrichment in 5 gene sets (Additional file 13).

Genetic alterations and somatic mutations in selected 
genes
The cBioPortal database was utilized to investigate the 
frequency of genetic alterations in CACNG4, PKMYT1, 
EPYC, and CHRNA6 genes in BRCA. Our findings indi-
cate an overall alteration frequency of 37% across all 
queried genes, as shown in Additional file  14. Notably, 
the highest proportion (16%) of cases were patients with 
CACNG4 alteration, resulting in mRNA upregulation. 
Conversely, for the CHRNA6 gene, amplification was the 
most common alteration (6.55%). Furthermore, the COS-
MIC database analyzed the mutations of the CACNG4, 
PKMYT1, EPYC, and CHRNA6 genes in breast cancer. 
Additional file 14 provides details on the types of muta-
tions observed in these four genes. The most significant 
proportion of cases for all four genes were missense 
mutations among other types of transformation.

Prognostic potential of selected genes
Based on the findings obtained from the Kaplan-Meier 
plotter database analysis, it was observed that a higher 
expression of PKMYT1 exhibited a significant association 
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with unfavorable overall survival (OS) outcomes in 
BRCA (OS Hazard Ratio (HR) = 1.38, log-rank p-value 
= 0.00074) as illustrated in Fig.  2A. In contrast, a high 
expression of CHRNA6 was shown to confer a potentially 
favorable prognosis (OS HR=0.81, logrank P=0.025) 
(Fig.  2B). However, there was no statistically significant 
difference in OS for CACNG4 (OS HR=0.84, logrank 
P=0.06) (Fig.  2C) and EPYC (OS HR=1.04, logrank 
P=0.72) genes (Fig. 2D).

Assessment of tumor cell line dependency on CACNG4, 
PKMYT1, EPYC, and CHRNA6
Tumor cell growth and survival are dependent on the 
expression levels of some of the therapeutic biomark-
ers. The Cancer Dependency Map analysis tool is one of 
the databases that can help identify biomarkers associ-
ated with tumour cell viability. In this study, the DepMap 
tool was used to evaluate the significance of identi-
fied biomarkers for breast tumour cell growth and sur-
vival. Specifically, siRNA and CRISPR screening data 

were analyzed to determine the likelihood of breast cell 
line dependency on the identified genes, as indicated 
by the dependency scores. A lower Chronos score sug-
gests a higher likelihood that the gene of interest is cru-
cial in a particular cell line. Among our identified genes, 
PKMYT1 exhibited a significant dependency score in the 
case of CRISPR knockout (a lower Chronos score), while 
CACNG4, EPYC, and CHRNA6 did not display substan-
tial dependency scores, as indicated in Additional file 15.

mRNA expression quantification
Based on qRT-PCR analysis conducted on 55 breast 
cancer patients and normal cases, it was observed that 
CACNG4, PKMYT1, EPYC, and CHRNA6 mRNA exhib-
ited significantly higher expression levels in breast cancer 
tissues (BCT) compared to non-tumoral adjacent tissues 
(NTAT) (P < 0.0001). As depicted in Fig. 3, paired t-tests 
comparing the gene expression profiles of CACNG4, 
PKMYT1, EPYC, and CHRNA6 between breast tumors 

Fig. 2  Survival analysis of query genes in BRCA patients from the Kaplan-Meier plotter database. Overall survival curves of (A) PKMYT1, (B) CHRNA6, 
(C) CACNG4, and (D) EPYC were analyzed. A log-rank p-value below the 0.05 threshold indicates a statistically significant association. HR, Hazard ratio

Fig. 3  The relative gene expression levels of CACNG4, PKMYT1, EPYC, and CHRNA6 were compared between non-tumoral adjacent tissues 
(NTAT) and breast cancer tissues (BCT) using the qRT-PCR technique. The findings revealed a significant upregulation of mRNA expression levels 
for CACNG4, PKMYT1, EPYC, and CHRNA6 in BCT compared to NTAT (**** indicates a p-value less than 0.0001)
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and normal tissues revealed an almost 5.55-fold, 2.31-
fold, 2.32-fold, and 2.14-fold increase in breast tumors, 
compared to normal tissues, respectively. Notably, PCR 
reactions performed on extracted RNA samples without 
reverse transcription showed no amplification.

Association of gene expression pattern 
with clinico‑pathological characteristics
An evaluation of the clinico-pathological features of the 
breast cancer patients revealed that the mean age was 
57.6 ± 11.5 (37-76) years. Most patients (77.5%) were 
diagnosed with early-stage breast cancer, specifically 
stages I and II, and 47% had positive lymph node involve-
ment. Fig. 4 and Additional file 16 show the association 

between the relative expression of CACNG4, PKMYT1, 
EPYC, and CHRNA6 genes with clinico-pathological fea-
tures, including age, ER, PR, HER2 status, TNM stages, 
and histological grades, which were assessed using the 
Mann-Whitney test. Analysis of CACNG4 mRNA expres-
sion unveiled a significant upregulation in patients with 
grade III breast cancer compared to patients with grade 
I and II tumors. Additionally, a significant increase in 
CACNG4 mRNA expression was observed in ER-positive 
breast cancer patients compared to ER-negative cases, as 
illustrated in Fig.  4A. PKMYT1 mRNA expression was 
up-regulated in patients aged 50 years and older, as well 
as in patients with HER2-positive status, as displayed in 
Fig. 4B. Analysis revealed a significant increase in EPYC 

Fig. 4  Association of gene expression patterns of CACNG4, PKMYT1, EPYC, and CHRNA6 with clinico-pathological features in breast cancer patients. 
The expression patterns of these genes with age, ER, PR, and HER2 status, TNM stages, and histological grades. Statistical significance was indicated 
using asterisks (* p < 0.05, ** p < 0.01, and *** p < 0.001). ER: Estrogen Receptor; PR: Progesterone Receptor; HER2: Human Epidermal Growth Factor 
Receptor 2; and TNM: Tumor, Node, Metastasis
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mRNA expression levels in hormone receptor-positive 
(HR+) breast cancer patients compared to HR-negative 
(HR-) individuals. Moreover, a substantial upregulation 
of EPYC mRNA expression was observed in late-stage 
(III+IV) breast cancer patients compared to early-stage 
(I+II) patients, as depicted in Fig. 4C. Fig. 4D shows that 
CHRNA6 mRNA expression was higher in patients over 
50 years of age, as well as in patients with PR-positive and 
HER2-positive status. The association of these identified 
genes with lymph node status and breast cancer subtypes 
was also evaluated, but no significant differences were 
observed. Therefore, these findings were not included in 
Fig. 4. Nonparametric Spearman correlation analysis was 
conducted to assess the strength of association between 
the identified genes. A significant positive correlation was 
observed between CACNG4 and EPYC mRNA expres-
sion levels (Spearman’s correlation coefficient = 0.87, P 
value < 0.0001), and between CACNG4 and CHRNA6 
mRNA expression levels (Spearman’s correlation coef-
ficient = 0.5, P value = 0.0008). However, no significant 
correlations were observed between PKMYT1 and EPYC, 
PKMYT1 and CACNG4, PKMYT1 and CHRNA6, as well 
as EPYC and CHRNA6 mRNA expression levels in breast 
cancer patients (Fig. 5).

Discussion
There is an urgent need to characterize new biomarkers 
that can facilitate early detection of breast cancer and 
overcome the limitations of mammography and the chal-
lenges of current tumor biomarkers such as CA-125 and 
CEA [22, 23].

In this study, RNA expression data was obtained from 
TCGA to identify DEGs between BRCA and normal 
samples. The up-regulated genes were then analyzed 

using the random forest algorithm to identify the most 
important genes. These key genes were further investi-
gated based on their overexpression in breast cancer tis-
sues, low median expression in normal female tissues, 
and potential as novel diagnostic biomarkers. Four genes 
were identified from this screening: CACNG4, PKMYT1, 
EPYC, and CHRNA6. Integrated online bioinformatics 
databases were used to gain insight into the diagnos-
tic, prognostic, and therapeutic roles of these identified 
potential biomarkers. Analysis using the UCSC Xena tool 
confirmed higher expression of these four genes in breast 
cancer tissues than in normal tissues. In vitro quantifica-
tion in breast tumor tissues further confirmed the over-
expression of these novel identified BRCA biomarkers. 
The association of these genes with various clinico-path-
ological parameters in breast cancer patients suggests 
that these identified genes could be used as potential 
therapeutic biomarkers in breast cancer patients. Path-
way analysis conducted using the biological pathway 
revealed the involvement of these identified genes in 
the regulation of key cellular processes, including cell 
growth, which is critical for cancer development and 
progression. In addition, analysis of the COSMIC and 
cBioPortal databases showed that aberrant expression 
of these novel genes in breast cancer is associated with 
mutations and genetic alterations. These findings pro-
vide valuable insights for researchers investigating the 
molecular mechanisms of breast cancer. They also pro-
vide clinicians with potential targets that could improve 
diagnostic accuracy and contribute to the development 
of more effective treatment strategies.

The identification of CACNG4 as a potential breast 
cancer biomarker is an important step towards improv-
ing clinical outcomes for breast cancer patients. As a 

Fig. 5  Correlation analysis. Spearman correlation analysis based on qRT-PCR results of 55 breast cancer patients showed a significant positive 
correlation between CACNG4 and EPYC mRNA expression (Spearman’s correlation = 0.87, P < 0.0001), and a positive correlation was observed 
between CACNG4 and CHRNA6 mRNA expression (Spearman’s correlation = 0.5, P = 0.0008)
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transmembrane type I, AMPA receptor regulatory pro-
tein, CACNG4 plays a critical role in regulating both 
channel gating and trafficking of AMPA receptors [24].

Amplification of CACNG4 has been shown to con-
tribute to increased breast cancer cell motility, transfor-
mation, and metastasis, highlighting the importance of 
targeted therapies that can disrupt its actions [25]. As 
CACNG4 is located on the plasma membrane, antibody-
based therapies have the potential to inhibit its func-
tion and impede breast cancer progression, providing 
a viable and valuable approach for the development of 
novel treatment strategies. Additionally, our findings in 
the biological pathway analysis revealed that CACNG4 is 
involved in the ErbB receptor signaling network and the 
mTOR signaling pathway, both of which have been impli-
cated in cancer metastasis and poor prognosis based on 
studies by Drago et al. and Tian et al. [26, 27]. It is worth 
noting that the molecular function of CACNG4 is volt-
age-gated calcium channel activity. Studies have shown 
that calcium channel antagonists have anti-proliferative 
effects on various cell types, including vascular, retinal 
pigment, and prostate cancer cells. Therefore, targeting 
Ca2+ pumps or channels has been suggested as a poten-
tial therapeutic approach for the treatment of breast can-
cer [28].

The protein kinase PKMYT1 (Membrane Associated 
Tyrosine/Threonine 1), a member of the WEE kinase 
family, has been shown to play a negative role in the 
G2/M phase of the cell cycle and has been implicated 
in the development and progression of several can-
cers, including hepatic, glioblastoma, colorectal, and 
non-small cell lung cancers [29]. Overexpression of 
PKMYT1 in these cancers is typically associated with 
poor prognosis and disease progression [30]. Based 
on Kaplan-Meier plotter database analysis, PKMYT1 
overexpression is also associated with a poor progno-
sis in breast cancer patients. Liu et  al. also reported 
that PKMYT1 overexpression had been linked to poor 
prognosis, suggesting that it may be an appealing 
therapeutic target for breast carcinoma [29]. A study 
by Zhang et al. demonstrated that PKMYT1 upregula-
tion promotes tumor progression and correlates with 
poorer overall survival in patients with esophageal 
squamous cell carcinoma (ESCC) [31]. In this study, 
FunRich tool analysis revealed that the biological path-
way for co-expressed genes with the PKMYT1 gene is 
cell cycle and DNA replication, indicating that over-
expression of this gene could develop breast cancer 
tumorigenesis. This protein upregulation is crucial 
for the development of some cancers, such as glio-
blastoma, colon cancer, and hepatic carcinoma [32], 
and promotes gastric cancer (GC) cell proliferation 

and apoptosis resistance [33]. This may be due to the 
effects of PKMYT1 on enhancing the AKT/mTOR 
signaling pathway in promoting carcinogenesis and 
the progression of cancer cells through other path-
ways, such as activation of Notch signaling [34]. Based 
on the Cancer Dependency Map analysis tool, lower 
dependency scores correspond to a higher likelihood 
that the gene is essential for cell survival or growth. 
PKMYT1 has been identified as critical for breast can-
cer cell line survival, suggesting its potential as a viable 
strategy for therapeutic intervention in breast cancer 
patients. In another study, PKMYT1 was identified as 
a promising target to enhance the radio sensitivity of 
lung adenocarcinoma (LUAD). This finding suggests 
that targeting PKMYT1 could potentially be an attrac-
tive target for anticancer therapy [35].

Epiphycan (EPYC) is a member of the small leucine-
rich repeat proteoglycan family. Epiphycan, also known 
as dermatan sulfate proteoglycan 3, interacts with col-
lagen fibrils and other extracellular matrix proteins and 
regulates fibrillogenesis. It has been suggested that EPYC 
is involved in bone formation, maintaining joint integ-
rity, and establishing the organized structure of carti-
lage through matrix organization [36]. EPYC protein is 
secreted into the extracellular matrix based on the Gen-
Cards database analysis. Studies have shown that insuf-
ficient expression of EPYC can lead to corneal dystrophy 
and hearing loss [37]. However, there have been very few 
studies on the role of EPYC in cancer. The FunRich analy-
sis tool revealed that genes co-expressed with EPYC are 
mainly involved in epithelial-mesenchymal transition 
(EMT), a process in which breast cancer cells acquire 
mobility, leading to progression and metastasis [38]. A 
study by Deng et al. investigated the effects of EPYC over-
expression on the proliferation, invasion, and metastasis 
of ovarian cancer cells [36]. In the current study, EPYC 
was found to be positively co-expressed with COL11A1 
and MMP13. Overexpression of COL11A1 is often asso-
ciated with an aggressive tumor phenotype and a poor 
prognosis in many solid tumor types, including pancre-
atic, breast, ovarian, and colorectal cancers [39]. MMP-
13 may be vital for the invasion and metastasis of breast 
cancer cells [40] and may be helpful as a prognostic 
marker when assessed simultaneously with lymph node 
status and HER2 expression [41]. Additionally, Spearman 
correlation analysis revealed a significant positive corre-
lation between the mRNA expression level of CACNG4 
and EPYC, indicating a strong association between the 
expression of these two genes.

The CHRNA6 gene encodes an alpha subunit of 
neuronal nicotinic acetylcholine receptors, which 
function as ion channels and play a crucial role in 
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neurotransmission in the nervous system. This pro-
tein is activated by acetylcholine and exogenous nico-
tine and mediates dopaminergic neurotransmission. 
In this study, the CHRNA6 protein is predicted to 
be expressed on the plasma membrane based on the 
GenCards database, indicating that antibody-targeted 
therapy could be helpful. However, there is currently 
no in silico or experimental study on the effects of the 
CHRNA6 gene on cell proliferation and tumor progres-
sion, and it could be a potential novel biomarker in 
cancer studies. This study investigates for the first time 
the mRNA expression of CHRNA6 in breast tumor tis-
sues. The FunRich analysis tool revealed that CHRNA6 
interacts with other molecules and is involved in the 
ErbB receptor signaling network and signal transduc-
tion. This pathway plays a crucial role in regulating 
cell growth and differentiation, and its dysregulation 
has been implicated in various cancers [27]. The clin-
ico-pathological databases analysis showed that HER2 
upregulation and PR downregulation were associated 
with high CHRNA6 expression, and BRCA1/2 mutation 
was associated with low CHRNA6 expression, suggest-
ing that CHRNA6 may be a potential diagnostic bio-
marker in breast cancer. The co-expression of CHRNA6 
with TLR7 and OLR1 was investigated and confirmed. 
Survival analysis showed that TLR7 expression had 
a significant impact on survival [42]. OLR1 overex-
pression revealed a poor prognosis in breast cancer 
and might represent a potential therapeutic target for 
breast cancer patients [43].

This retrospective study has some limitations. First, 
although new breast cancer-associated biomarkers are 
predicted, their mechanism of action remains unclear. 
Second, the results need to be validated by a larger sam-
ple size and more experimental studies. Therefore, addi-
tional prospective clinical and large-scale studies are 
needed to validate these results.

Conclusion
The integration of bioinformatics databases could help 
to find and select novel diagnostic, prognostic, and 
therapeutic biomarkers. Through bioinformatics analy-
sis and qRT-PCR validation, we confirmed the upreg-
ulation of CACNG4, PKMYT1, EPYC, and CHRNA6 
in breast cancer. The co-expression and GO enrich-
ment analyses shed light on the potential mechanisms 
of these genes in breast cancer development and pro-
gression. We propose that CACNG4, PKMYT1, and 
CHRNA6 hold promise as potential targets for both the 
diagnosis and treatment of breast cancer, while EPYC 
has the potential to be used only as an effective diag-
nostic biomarker.
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