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Abstract
Background  Ovarian cancer (OC) is a complex disease with significant tumor heterogeneity with the worst 
prognosis and highest mortality among all gynecological cancers. Glycosylation is a specific post-translational 
modification that plays an important role in tumor progression, immune escape and metastatic spread. The aim 
of this work was to identify the major glycosylation-related genes (GRGs) in OC and construct an effective GRGs 
signature to predict prognosis and immunotherapy.

Methods  AUCell algorithm was used to identify glycosylation-related genes (GRGs) based on the scRNA-seq and 
bulk RNA-seq data. An effective GRGs signature was conducted using COX and LASSO regression algorithm. The 
texting dataset and clinical sample data were used to assessed the accuracy of GRGs signature. We evaluated the 
differences in immune cell infiltration, enrichment of immune checkpoints, immunotherapy response, and gene 
mutation status among different risk groups. Finally, RT-qPCR, Wound-healing assay, Transwell assay were performed 
to verify the effect of the CYBRD1 on OC.

Results  A total of 1187 GRGs were obtained and a GRGs signature including 16 genes was established. The OC 
patients were divided into high- and low- risk group based on the median riskscore and the patients in high-risk 
group have poor outcome. We also found that the patients in low-risk group have higher immune cell infiltration, 
enrichment of immune checkpoints and immunotherapy response. The results of laboratory test showed that CYBRD1 
can promote the invasion, and migration of OC and is closely related to the poor prognosis of OC patients.

Conclusions  Our study established a GRGs signature consisting of 16 genes based on the scRNA-seq and bulk RNA-
seq data, which provides a new perspective on the prognosis prediction and treatment strategy for OC.
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Background
Ovarian cancer (OC) is a common malignancy of the 
female reproductive system, ranking third behind cer-
vical and endometrial cancers. In 2020, there will be an 
estimated 313,959 new cases of ovarian cancer world-
wide, with 207,252 deaths [1]. Because the onset is hid-
den and the diagnosis is often in the advanced stage of 
the disease, the mortality rate of ovarian cancer is the 
highest in gynecological tumors. Although there have 
been great advances in treatment options for ovarian 
cancer, such as surgery combined with platinum or tax-
ane chemotherapy, recurrence and drug resistance rates 
remain high, and the 5-year survival rate is only about 
40% [2]. Therefore, it is urgent to find new biomarkers 
or therapeutic targets to improve the survival rate and 
clinical efficacy for ovarian cancer patients. Recently, 
researchers have found that the biological behavior of 
tumors such as proliferation, metabolism, apoptosis are 
closely related to energy metabolism [3]. Glycosyltrans-
ferases (GTs) catalyze the transfer of active monosac-
charide donors to carbohydrates to produce a variety of 
oligosaccharide structures, which play an important role 
in energy metabolism [4]. Many studies have shown that 
the abnormal expression of glycosyltransferase is closely 
related to the malignant degree and prognosis of the 
tumor [5, 6].

Glycosylation is the process of attaching sugar chains 
to sugar, lipid or protein molecules under the control of 
enzymes. Glycosylation represents a unique set of pro-
tein modifications that may involve the linking of mono-
saccharides or even entire oligosaccharides (glycans) to 
specific amino acids within glycoproteins. Glycosylation 
occurs primarily in the Golgi apparatus and endoplasmic 
reticulum and reflects the coordinated action of a com-
plex set of enzymes, organelles, and other factors. The 
two most common mechanisms by which sugar chains 
link to lipins and proteins are the glycosylation of O⁃ and 
N⁃ links [7]. Glycosylation is also one of the epigenetic 
changes in tumor transformation [8]. Abnormal glyco-
sylation modifications in tumors were first described 50 
years ago [9]. So far, many studies have shown that glyco-
sylation modification led by glycosylation genes is closely 
related to the occurrence and development of tumors 
[10]. In particular, glycans cannot be synthesized directly 
from genome-coding templates like proteins and nucleic 
acids, and their fidelity depends largely on the specificity 
of glycosyltransferase (GT), which synthesizes complex 
glycans by adding one sugar at a time. Most eukaryotic 
GTs locate in the lumen of secretory pathways and mod-
ify proteins and lipids during transport to the cell sur-
face or extracellular space [11]. Compared to cells that 
were not malignantly transformed, tumor cells showed 
abnormal glycosylation changes, and abnormal glycosyl-
ation has been recognized as a universal hallmark of all 

cancers. Therefore, the in-depth study of glycosylation-
related genes (GRGs) may contribute to the prognosis 
prediction and accurate treatment of tumors.

Single-cell transcriptome sequencing (RNA-seq) allows 
for quantitative and qualitative analysis of cell compo-
sition in complex tissues at the level of individual cells. 
We can identify commonalities and differences in the cell 
composition of tumor samples from different sites using 
the RNA-seq technique [12, 13]. In this study, AUCell 
algorithm was used to identify GRGs among individ-
ual OC cells. Then, a GRGs signature was identified 
based on the LASSO and COX regression analysis. The 
patients were divided into high- and low-risk group and 
the patients in high-risk group have poor prognosis. We 
also found that the patients in low-risk group have higher 
immune cell infiltration, enrichment of immune check-
points and immunotherapy response. Our study provides 
a new perspective on the prognosis prediction and treat-
ment strategy for OC.

Materials and methods
Data processing
We downloaded one mRNAs-seq data (GSE63885) and 
one single-cell RNA-sequencing dataset (GSE184880) 
from the Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/). Hereby, 75 OC samples were 
obtained in GSE63885, 12 samples in GSE184880 (5 
healthy controls and 7 OC patients). GSE63885 was used 
as texting dataset. The Robust Multichip Average (RMA) 
was used to background adjust and quantile-normalize, 
then log2-transformed. The training dataset (TCGA-
OV including RNA sequencing data, somatic mutation 
data, Copy Number Variation (CNV) data and clini-
cal data) containing 379 patients, was downloaded from 
the Genomic Data Commons Data Portal (https://por-
tal.gdc.cancer.gov/). Subsequently, two immunotherapy 
cohorts including GSE78220 (GEO, https://www.ncbi.
nlm.nih.gov/) and IMvigor210 (BLCA, http://research-
pub.Gene.com/imvigor210corebiologies/) were obtained. 
The Robust Multichip Average (RMA) was used to back-
ground adjust and quantile-normalize, then log2-trans-
formed. The characteristics of the four datasets were 
presented in Supplementary Table 1.

Tissue sample collection and cell lines culture
One hundred and fifty OC patients were obtained from 
Tissue specimen Bank of Shengjing Hospital between 
2012 and 2022. All patients were diagnosed by histopath-
ological examination. Inclusion criteria: (1) Meet EOC 
diagnostic criteria; (2) did not receive any antitumor 
therapy before admission; (3) Receiving surgical treat-
ment; (4) clinicopathological and follow-up data were 
complete; (5) Age > 18. Exclusion criteria: (1) Patients 
with endometriosis or polycystic ovary syndrome; (2) 

https://www.ncbi.nlm.nih.gov/
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Patients with malignant tumors of other sites; (3) Patients 
with severe infectious diseases or autoimmune dis-
eases; (4) Pregnant or lactating women. This study was 
approved by the Ethics Committee of Shengjing Hospital 
of the China Medical University, and informed consent 
was obtained from all patients. In addition, all methods 
were executed in accordance with relevant guidelines 
and regulations (2023PS175K). Human OC cell lines 
HO-8910, OVCAR-3 were obtained from Bina Nusantara 
Computer Club (Beijing, China). The cells were cultured 
in RPMI-1640 medium with 10% fetal bovine serum at 
37 °C and 5% CO2 in an incubator.

Single-cell sequencing data and glycosylation-related 
genes acquired and processing
The low-quality cells were filtered for subsequent analy-
sis using R (version 4.1.3) and Seurat (version 4.1.1). Cells 
with the following conditions are considered low-quality 
cells: (1) the number of genes is less than 200 or more 
than 5000; (2) The proportion of mitochondrial gene 
expression was greater than 20%. We normalized the data 
using Harmony for the batch de-effect, and then we used 
the “FindVariableFeatures” function to detect the first 
3000 highly variable genes. Principal component analy-
sis (PCA) was then applied to reduce the dimensional-
ity of the scRNA-seq data based on 3000 variable genes. 
The “RunTSNE” function was applied to perform the 
t-distributed stochastic neighbor embedding (t-SNE) to 
analyze the scRNA-seq data. Cell cluster analysis uses the 
“FindClusters” function (with the “resolution” parameter 
set to 0.5) and “FindAllMarkers” to identify differentially 
expressed genes between each group of cells. To identify 
the marker genes in each group of cells, critical thresh-
olds were used, adjusted for p < 0.05,|Log2FC|≥0.5. Even-
tually, different cell types were annotated based on the 
marker genes [14, 15]. 185 glycosyltransferase pathway 
genes were obtained according to previous study [16].

AUCell
The “AUCell” R package was used to analyze the activity 
status of gene sets in the scRNA-seq data and was used 
to assign a GT activity score to each cell line. Based on 
the area under the curve (AUC) value of the selected 
GRGs, the gene expression ranking of each cell was used 
to estimate the percentage of highly expressed gene sets 
in each cell. The cells were divided into high-GT-AUC 
and low-GT-AUC groups according to the median AUC 
value and visualized using the “ggplot2” R software [15]. 
Single sample gene set enrichment analysis (ssGSEA) 
was employed to assign GT scores for each TCGA-OV 
patient. Differential expression analysis was used to 
screen differentially expressed genes (DEGs) in high and 
low GRGs_ AUC group for further investigation. Further-
more, we used correlation analysis to look at the genes 

most connected with GT activity, with the top 150 most 
associated genes being included for future study. The 
DEGs and genes discovered through association analysis 
were the ones that had the greatest effect on GT activity. 
Next, we applied Gene ontology (GO) and disease (DO) 
enrichment analysis using ‘clusterProfiler’ package in R 
software to explore the potential mechanisms of these 
GRGs [15, 17].

Construction and validation of a GRGs signature
Univariate analysis was conducted to select the GRGs 
with prognostic value. Next, the LASSO regression anal-
ysis and forward stepwise regression were performed to 
establish a scoring system to quantify all individuals with 
OC using the following formula:

Risk Score =
∑

(Coefi ∗ Expri); here, i means the 
genes, Coefi means the coefficient of each gene and Expri 
means the expression level of each gene.

The patients were divided into the high- and low-risk 
groups after zero-mean normalization. The robustness 
of the risk scoring system was verified using GSE57495 
dataset and clinical sample dataset.

GSVA Enrichment analysis
Gene set variation analysis (GSVA) enrichment analy-
sis was performed to explore the differential biological 
mechanism between different risk group using “GSVA” R 
package. The gene set c2.cp.kegg.v7.4.symbols. gmt and 
h.all.v2022.1.Hs.symbols. gmt were obtained from the 
MSigDB database (https://www.gsea-msigdb.org/gsea/
msigdb). False discovery rate (FDR) was corrected by 
Benjamini and Hochberg (BH) method and FDR < 0.05 
was regarded as significant difference [18].

Tumor immunity and immunotherapy
In our study, CIBERSORT algorithm was performed to 
compare the different levels of tumor immune cell infil-
tration in the high- and low- risk groups and visualized 
using the heatmap or histogram. “ESTIMATE” package 
in R software was used to estimate the ratio of immune 
matrix components in Immune microenvironment 
(TME), which was presented in the form of three scores: 
ImmuneScore, StromalScore and ESTIMATEScore 
were positively correlated with immunity, matrix and 
the sum of the two, respectively, which means that the 
higher the corresponding score, the greater the propor-
tion of corresponding components in TME. In addition, 
immune checkpoints were composed of various mole-
cules expressed on immune cells that regulate the level of 
immune activation. Therefore, we compared the expres-
sion levels of immune checkpoints in high- and low- risk 
groups. The potential reactivity to immune checkpoint 
inhibitors (ICIs) was evaluated using the online Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm 

https://www.gsea-msigdb.org/gsea/msigdb
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(http://tide.dfci.harvard.edu/), and the patients with 
lower TIDE scores are more sensitive to immunotherapy 
[19]. In addition, Submap was used to calculate corre-
lations between high- and low-risk groups, as well as 
patients who responded/ non-responded to ICIs, to infer 
the efficacy of immunotherapy [20].

Development of potential therapeutic agents
we obtained drug sensitivity data for human cancer cell 
lines (CCLs) from the Cancer Therapeutics Response 
Portal (CTRP, https://portals.broadinstitute.org/ctrp) 
and PRISM Repurposing dataset (https://depmap.
org/portal/prism/). The expression data of CCLs were 
downloaded from the Cancer Cell Line Encyclopedia 
(CCLE, https://portals.broadinstitute.org/ccle/) data-
base. The CTRP and PRISM datasets have areas under 
dose-response curves, and a lower AUC value indicates 
a higher sensitivity to this treatment [21]. In addition, we 
used the “prorophic” R package to assess the IC50 of four 
chemotherapy agents (cisplatin, gefitinib, gemcitabine, 
and paclitaxel) in the high- and low- risk groups. The 
correlations between GRGs expression and some chemo-
therapeutic drugs were calculated using Pearson correla-
tion analysis and visualized by ggplot2 [22].

Quantitative real-time RT-PCR
Total RNA form One hundred and fifty OC patients were 
obtained from Tissue specimen Bank of Shengjing Hos-
pital was extracted by TRIzol (Invitrogen, USA). Then, 
the purity and concentration of the RNA samples were 
measured. Subsequently, the sample RNA was first gen-
erated into cDNA by reverse transcription and Real time 
quantitative polymerase chain reaction (RT-qPCR) was 
performed. 2-ΔΔCt method was used to calculate the 
relative expression levels of genes, with GAPDH used as 
an internal reference. The primer sequences of the genes 
were presented in Supplementary Table 2.

Wound-healing assay
A cell suspension containing 10^6 cells was added to the 
six-well plate to ensure that the cell growth density could 
reach more than 95% the next day. Mark with a 200 µL 
gun head and line the bottom of the board according to 
the scratch. The scratch healing was observed after 48 h 
culture in the incubator, and 2% serum 1640 was used in 
the medium.

Transwell assay
At the stage of cell to logarithmic growth, the cells were 
starved for 12  h using low-serum medium. Between 
20,000 and 50,000 cells are added to each chamber. In 
a 24-well plate, the upper chamber and lower cham-
ber were cultured using serum-free medium and 1640 
medium with 30% serum, respectively. After the top layer 

cells were removed by PBS, the remaining cells at the 
bottom layer were fixed by adding 4% paraformaldehyde, 
and then the crystal violet dye was added for 15  min 
staining treatment.

Statistical analysis
The “maftools”R package was used to plot the “oncoplot” 
based on the somatic mutation data. Correlation analy-
sis was applied using Pearson or Spearman coefficients. 
T-test or the Mann-Whitney U test was performed to the 
comparison among groups. Chi-square and Fisher’s exact 
tests were used to ensure exact test. Kaplan-Meier (K-M) 
survival curves was plotted to assess prognostic value 
and the statistical significance was evaluated by log-rank 
test. All statistical data analyses were conducted using R 
software (version 4.1.2). The level of significance was set 
at P < 0.05, and all statistical tests were two-sided.

Results
Single-cell RNA sequencing in OC
Firstly, we performed quality control on the single cell 
sequencing data. Some cells were eliminated and the per-
centage of ribosomal genes, mitochondrial genes, and red 
blood cell genes were limited to confirm the validity of 
the cell sample (Supplementary Fig. 1A). There was a sig-
nificant positive correlation between sequencing depth 
and total intracellular sequence (R = 0.85, Supplemen-
tary Fig. 1B). The study included a total of 12 samples (5 
normal samples and 7 OC samples). The distribution of 
cells from different sample sources was uniform, indi-
cating that the batch effect was well corrected (Fig. 1A). 
Then, the single cell sequencing data was divided into 25 
cell clusters using the “FindClusters” function (Fig.  1B). 
After quality control, dimensionality reduction, integra-
tion and clustering of the data, the cells were annotated 
according to the marker genes of the cells, which could 
be divided into 10 cell types (Fig.  1D). The bubble map 
shows the marker genes of different cell types, confirm-
ing the accuracy of cell type annotation (Fig.  1E). Fig-
ure  1C shows the difference in the proportion of these 
10 cell types in OC tissues and normal tissues. Among 
them, NK cells, T cells, epithelial cells, macrophages, 
monocytes, plasma cells, occupied a higher proportion in 
OC tissues compared with normal tissues, while the pro-
portion of B cells, SMC, endothelial cells and fibroblasts 
were the opposite. The GT activity of each cell was mea-
sured using the “AUCell” R package, with higher AUC 
values indicating higher GT activity (Fig.  1F). Finally, 
we calculated a corresponding GRGs AUC score for 
each cell and divided them into high GRGs _AUC group 
and low GRGs_ AUC group according to the median 
AUC score (Fig.  1G). Figure  1H demonstrated signifi-
cant disparities in GT activity levels in in each cell type 
between normal and OC samples. We performed GSVA 

http://tide.dfci.harvard.edu/
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism/
https://depmap.org/portal/prism/
https://portals.broadinstitute.org/ccle/
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analysis to explore the underlying biological mecha-
nisms between high and low GRGs_ AUC group. The 
results indicated that the high GRGs _AUC group mainly 
enriched in PROTEIN SECRETION, ADIPOGENESIS, 
ANDROGEN RESPONSE and UNFOLDED PROTEIN 
RESPONSE (Fig. 2A, Supplementary Table 3). Next, dif-
ferential expression analysis screened 1169 DEGs in 
high and low GRGs_ AUC group (Fig.  2B). Correlation 

analysis was applied to select the genes associated with 
GRGs activity and the top 150 genes were screened 
(Fig. 2C). We integrated these 1169 DEGs with these 150 
genes for further study and 1187 genes were obtained. 
GO and DO functional enrichment analyses were used 
to explore the potential functions of these genes. DO and 
GO indicated that these genes were not only associated 

Fig. 1  Annotation of single-cell data and GT activity. (A) The tSNE plots of cells from 7 OC samples and 5 normal samples. (B) The t-SNE plots of 25 
clusters from 7 OC samples and 5 normal samples. (C) Different proportions of cells in 7 OC samples and 5 normal samples. (D) The t-SNE map indicates 
that 12 samples can be annotated as 10 cell types. (E) Bubble diagram plots of marker genes of ten major cell type. (F, G) All cells were scored according 
to glycosylation-associated genes (GRGs) and were classified into high- and low- AUC groups. (H) The difference in GT activity levels in each cell type 
between normal and OC samples. *p < 0.05; **p < 0.01; ***p < 0.001. Abbreviation: ns: not significant
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Fig. 2  Identification of GTs gene list in OC. (A) GSVA indicated the enrichment of hallmark gene sets in different GT AUCell groups. (B) Differential expres-
sion analysis in high and low GRGs_ AUC group. (C) Correlation analysis to select genes have significant correlation with GT-AUCell score. (D–E) GO and 
DO functional enrichment analysis of GTs gene
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with glycosylation process but also with ovarian cancer 
progression (Fig. 2D–E, Supplementary Tables 4 and 5).

Construction and validation of a GRGs signature
Univariate analysis selected the 106 genes with signifi-
cant prognostic value from the 1187 GRGs (P < 0.01) 
(Fig. 3A). Lasso Cox regression analysis was performed to 
narrow down the number of genes, with 38 genes left as 
lambda = 0.0343 (Fig. 3B). Finally, we included 16 genes in 
the risk signature after multivariate Cox regression analy-
sis with stepwise regression method forward stepwise 
regression (Fig.  3C). Each OC patient obtained a risks-
core based on the following formula:

risk score = 0.261 × expri IGFBP7 − 0.281 ×expri GBP5 
− 0.468 × expri PPP4R3A + 0.534 × expri ARID1B − 0.258 
× expri GSTK1 − 0.382 × expri ARL6IP5 + 0.103 × expri 
DDIT4 − 0.222 × expri BTN3A1 − 0.447 × expri TPM3 
− 0.371 × expri MAGED2 + 0.118 × expri ANGPTL4 
− 0.220 × expri NSG1 + 0.225 × expri RAB34 + 0.233 
× expri GAS1 + 0.312 × expri CYBRD1 + 0.111 × expri 
RAMP1 (Supplementary Table 6).

The OC patients in TCGA-OV were classified into 
high- and low- risk groups. The patients in high-risk 
group have poor outcome (Fig. 3D). ROC curve was plot-
ted and the areas under the 1, 2, 3, 4 and 5-year were 
0.71, 0.76, 0.74, 0.77 and 0.8 respectively (Fig. 3E). Cali-
bration curve at 1-, 3- and 5-year indicated that the pre-
dicted OS probability of the model was close to the actual 
(Fig.  3F). Then, the stability and accuracy of the GRGs 
signature were successfully verified in GSE63885 and 
clinical sample data (One hundred and fifty OC patients 
obtained from Tissue specimen Bank of Shengjing Hos-
pital) (Fig.  3D, G–L). In clinical sample data, we first 
obtained the expression levels of 16 genes using RT-PCR, 
and then obtained the riskscore using the same meth-
ods mentioned in training dataset. The GSVA algorithm 
was used to investigate the potential mechanism of poor 
prognosis in high-risk group. KEGG pathways related 
to cancer development and progression, such as GLY-
COLYSIS GLUCONEOGENESIS, MISMATCH REPAIR, 
HOMOLOGOUS RECOMBINATION, MTOR SIGNAL-
ING PATHWAY, WNT SIGNALING PATHWAY were 
enriched in high- risk group (Supplementary Fig.  2A). 
Hallmark pathways such as HALLMARK_TNFA_SIG-
NALING_VIA_NFKB, HALLMARK_HYPOXIA, 
HALLMARK_IL6_JAK_STAT3_SIGNALING, HALL-
MARK_APOPTOSIS and HALLMARK_COMPLE-
MENT have a strong positive correlation with riskscore 
(Supplementary Fig. 2B).

Mutation landscape analysis
A large number of somatic mutations produce neoanti-
gens, activate CD8 + cytotoxic T cells, and exert T-cell-
mediated anti-tumor effects. Therefore, understanding 

the genetic mutation status of tumors is beneficial to the 
immunotherapy of patients [23]. First, oncoplot was plot-
ted to show the mutation status of the 16 genes in the 
GRGs signature based on the TCGA-OV dataset. We 
found that the mutation frequency of the 16 genes was 
very low (Supplementary Fig. 3A). Supplementary Fig. 3B 
indicated that there was no significant mutation symbio-
sis between these 16 genes and the TOP10 mutant genes 
in ovarian cancer. Supplementary Fig. 3C displayed muta-
tion frequency of ten common carcinogenic pathways in 
OC. The copy number variation (CNV) of the 16 genes in 
TCGA-OV dataset was shown in Supplementary Fig. 3D. 
Supplementary Fig.  3E indicated that the 16 genes have 
a strong correlation with aneuploidy score. Moreover, we 
compared the differential gene mutations in the high- and 
low- risk groups and showed the top10 differential gene 
mutations in the oncoplot (Fig. 4A). C > T was the main 
type of mutation detected in TCGA-OV dataset (Fig. 4B). 
Figure  4C indicated that there is no mutation symbio-
sis among the top5 differentially mutated genes (TP53, 
TTN, CSMD3, MUC16 and FLG2). Tumor mutation bur-
den (TMB) is an important biological marker reflecting 
the degree of tumor mutation. When the TMB of a tumor 
sample is high, the mutations that produce immunogenic 
neoantigens in the mutations also increase. It is easier for 
the immune system to recognize and remove tumor cells 
[23]. Figure  4D and E displayed that the patients in the 
low-risk group had a higher TMB than that in high-risk 
group, indicating that the patients in low-risk group may 
be more sensitive to immunotherapy.

Immune-related characteristics and immunotherapy 
response assessment
CIBERSORT method was performed to calculate the 
abundance of tumor-infiltrating immune cells (TIICs) 
in the TCGA-OV dataset. We found that the infiltra-
tion levels of plasma cells, T cells follicular helper, T cells 
gamma delta, NK cells activated, Macrophages M1, Mast 
cells resting and Mast cells activated were higher in low-
risk group (Fig. 5A). We also found that the majority of 
immune checkpoints, such as BTLA, CD200, CD200R1, 
CD27, CD274, CD40LG, CD48, CD80, ICOS, IDO1, 
LAG3 were higher expressed in low-risk group, while 
VSIR, ICOSLG, TNFRSF8 and TNFSF9 were strongly 
expressed in high-risk group (Fig.  5B). The patients in 
low-risk group have lower TIDE score, suggesting that 
they may be more benefit from immunotherapy (Fig. 5C). 
In addition, we also found that TRS score, cytolytic activ-
ity and Th1/IFNy score related to inflammatory response 
were higher in low-risk group (Fig.  5D–F). Correlation 
analysis showed that the 16 genes in the GRGs signa-
ture were strongly correlated with ImmuneScore, Stro-
malScore, ESTIMATEScore, and TIICs (Supplementary 
Figs. 4, 5).
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Fig. 3  Construction and validation of a GRGs signature. (A) Univariate analysis selected genes with significant prognostic value from the GRGs. (B) LASSO 
Cox regression analysis was performed to select genes to conduct a GRGs signature. (C) Coefficients of 16 genes in GRGs signature. (D) Kaplan-Meier 
prognostic analysis in TCGA dataset. (E) The AUC values at 1, 2, 3, 4, and 5 years for TCGA dataset. (F) Calibration curves of 1-, 3-, 5-year in TCGA dataset. 
(G) Kaplan-Meier prognostic analysis in GSE63885 dataset. (H) The AUC values at 1, 2, 3, 4, and 5 years for GSE63885 dataset. (I) Calibration curves of 1-, 
3-, 5-year in GSE63885 dataset. (J) Kaplan-Meier prognostic analysis in clinical samples. (K) The AUC values at 1, 2, 3, 4, and 5 years for clinical samples. (L) 
Calibration curves of 1-, 3-, 5-year in clinical samples
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Considering the ability of the GRGs riskscore to pre-
dict immunotherapy sensitivity in OC patients, we vali-
dated its predictive stability in immunotherapy datasets: 
GSE78220 and IMvigor210. In IMvigor210 dataset, UC 
patients with low- GRGs riskscore have better survival 
outcomes and more sensitivity to anti-PD-L1 immuno-
therapy (Fig. 6A–C). In addition, the significant survival 
differences were not affected by tumor stage (Fig. 6D, E). 
In the GSE78220 dataset, melanoma patients with low- 
GRGs riskscore have longer overall survival and higher 
responsiveness to anti-PD-1 immunotherapy (Fig.  6F–
H). Subgraph analysis also showed that patients with 
low- GRGs riskscore presented better anti-PD-1 immu-
notherapy responses (Fig. 6I).

Development of potential therapeutic agents
The actual treatment modalities for OC were surgery 
combined with platinum or taxane chemotherapy. But 

many people develop resistance to the treatment. There-
fore, we predict that the potentially sensitive drugs for 
both high-risk and low-risk groups are beneficial to 
the accurate treatment of ovarian cancer patients and 
improve the long-term survival rate of patients. In our 
study, two different approaches, CTRP and PRISM, were 
used to screen potential drugs for high-risk groups of 
patients (Fig.  7A). We found that four CTRP-derived 
drugs (including BMS-754,807, 1  S,3R-RSL-3, ML210 
and dasatinib) and three PRISM-derived drugs (includ-
ing fosbretabulin, echinomycin and NVP-AUY922) were 
selected (Fig. 7B and C). Figure 7D indicated that the 16 
GRGs have a strong correlation with some chemotherapy 
drugs. Additionally, we compared the semi-maximum 
inhibitory concentrations (IC 50) of four chemotherapy 
agents in the high- and low- risk groups. We found that 
the patients in low-risk group have higher sensitivity 
to cisplatin (p = 0.0051, Fig.  7E), gemcitabine (p = 0.43, 

Fig. 4  Landscape of OC sample mutation profiles. (A) The top 10 mutated genes in TCGA-OV samples. (B) Transition and transversion distribution of 
SNVs in TCGA-OV samples. (C) Mutation symbiosis among the top5 mutated genes in TCGA-OV samples. (D, E) The difference of TMB between high- and 
low- risk groups. *p < 0.05;**p < 0.05<***p < 0.001
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Fig. 5  Immune-related characteristics between high- and low- risk groups. (A) The differential abundance of 22 types of TIICs between high- and low- 
risk groups. (B) The differential expression level of immune checkpoints between high- and low- risk groups. (C) The difference of TIDE score between 
high- and low- risk groups. (D–F) The difference of TPS score, cytolytic activity and Th1/IFNy score between high- and low- risk groups. *p < 0.05;**p < 0.
05<***p < 0.001
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Fig. 7G), and paclitaxel (p = 0.039, Fig. 7H), while patients 
in high- risk group have higher sensitivity to gefitinib 
(p = 0.77, Fig. 7F).

Validation of the impact of CYBRD1 in OC
Among the 16 GRGs, CYBRD1 showed relatively signifi-
cant carcinogenic capacity. Kaplan–Meier plotter analysis 
indicated that OC patients with low CYBRD1 expression 
had longer survival time (Fig.  8A), and we verified this 
result in 150 clinical samples (Fig.  8B). High expression 
of CYBRD1 was associated with pathological stage, dis-
tant metastasis, lymph node metastasis and other patho-
logical data of ovarian cancer (Supplementary Table 7). 

Two CYBRD1-silencing lentiviruses were constructed 
by encapsulation of CYBRD1-specific shrnas, and then 
transfected into HO-8910 cells to verify the knockdown 
effect of CYBRD1 at the mRNA level by PCR (Fig. 8C). 
Wound healing assay and transwell assay indicated that 
CYBRD1 promotes the migration and invasion capacity 
of OC cells (Fig.  8D and E). These results of laboratory 
test showed that CYBRD1 can promote the invasion, and 
migration of OC and is closely related to the poor prog-
nosis of OC patients.

Fig. 6  Immunotherapy response assessment. (A) Kaplan-Meier prognostic analysis in the IMvigor210 cohort. (B) The difference of riskscore between 
different immunotherapy responses in the IMvigor210 cohort. (C) The differential distribution of immunotherapy responses between high- and low- 
riskscore groups in the IMvigor210 cohort. (D) Kaplan-Meier prognostic analysis in the IMvigor210 cohort. (E) Kaplan-Meier prognostic analysis in stage 
I/II patients in the IMvigor210 cohort. (F) Kaplan-Meier prognostic analysis in stage III/IV patients in the GSE78220 dataset. (G) The difference of riskscore 
between different immunotherapy responses in the GSE78220 dataset. (H) The differential distribution of immunotherapy responses between high- and 
low- riskscore groups in the GSE78220 dataset. (I) Submap analysis indicated the association between the GRGs signature and immunotherapy responses. 
*p < 0.05;**p < 0.05<***p < 0.001
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Fig. 7  Development of potential therapeutic agents. (A) Schematic diagram of identifying agents with higher sensitivity for patients in high-risk group. 
(B) Four CTRP-derived drugs were selected. (C) Three PRISM-derived drugs were selected. (D) Correlation between 16 GRGs and chemotherapeutic drugs 
(E–H) The differential sensitivity of cisplatin, gemcitabine, paclitaxel and gefitinib in high- and low- risk groups
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Discussion
In recent years, several studies and clinical trials have 
shown that immunotherapy has made progress in pro-
longing remission rates and reducing recurrence of OC. 
Immune processes have important effects on tumor inva-
sion, metastasis, drug resistance and recurrence, and 
ultimately affect clinical efficacy. Glycosylation is a com-
mon post-translational modification of proteins, which 
transfers sugars to proteins through glycosyltransferase 
and forms glycosidic bonds with amino acid residues 
on proteins. Protein glycosylation modification can help 
immune cells to carry out correct localization and migra-
tion [24]. Abnormal glycosylation modification is closely 
related to tumor genesis, proliferation, invasion, metasta-
sis and immune escape [25, 26].

With the proliferation of medical data and the rapid 
development of technology and artificial intelligence, 
the use of big data analysis to build survival predic-
tion models has become an important research topic. 
Machine learning, a subfield of artificial intelligence, 
can identify patterns and relationships in the data and 
provide accurate predictions of future events [27, 28]. 
Machine learning methods have been used to construct 

prognostic models for various malignancies, such as 
lung, liver, breast, and gastrointestinal cancers [29–32]. 
In the present research, the transcriptome map of OC 
single cell was constructed and 10 different cell subtypes 
were obtained based on the data of scRNA-seq. The GT 
activity of each cell was measured using the “AUCell” 
R package, 1187 GRGs were obtained using differen-
tial expression analysis and correlation analysis. LASSO 
regression analysis can carry out variable selection and 
regularization at the same time to improve the prediction 
accuracy and interpretability of the model [33]. In our 
study, Lasso regression analysis and multivariate COX 
were performed to establish a GRGs signature, which was 
consist of 16 GRGs: IGFBP7, GBP5, PPP4R3A, ARID1B, 
GSTK1, ARL6IP5, DDIT4, BTN3A1, TPM3, MAGED2, 
ANGPTL4, NSG1, RAB34, GAS1, CYBRD1 and RAMP1. 
Finally, the stability and accuracy of the GRGs signa-
ture were successfully verified in GSE57495 and clinical 
sample data. Finally, RT-qPCR, Wound-healing assay, 
Transwell assay indicated that CYBRD1 can promote the 
invasion, and migration of OC and is closely related to 
the poor prognosis of OC patients.

Fig. 8  Validation of the impact of CYBRD1 in OC. (A, B) K–M analysis indicated that patients with low CYBRD1 expression have a longer survival time. (C) 
qRT-PCR to test the interference effect of CYBRD1-siRNAs. (D) Wound healing assay. (E) Transwell assay. *p < 0.05; **p < 0.05; ***p < 0.001
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Tumor mutation burden (TMB) is defined as the total 
number of somatic gene coding errors, base substitu-
tion, gene insertion or deletion errors detected per mil-
lion bases [34]. TMB is associated with the emergence 
of neoantigens that trigger anti-tumor immunity and 
can be used to select patients who benefit from immune 
checkpoint inhibitor (ICB) therapy [35–37]. High TMB 
indicates that more neoantigens are produced, and T 
cells released by immune checkpoint inhibitors are more 
likely to recognize neoantigens, thus achieving the role of 
attacking and killing tumors. In our study, we found that 
the patients in the low-risk group have higher TMB, indi-
cating that these patients may be more sensitive to ICB 
therapy. The GSVA algorithm was used to investigate 
the potential mechanism in different risk groups. GLY-
COLYSIS GLUCONEOGENESIS, MISMATCH REPAIR, 
HOMOLOGOUS RECOMBINATION, MTOR SIGNAL-
ING PATHWAY, WNT SIGNALING PATHWAY con-
siderably enriched in high-risk group, which explains the 
poor prognosis in the high-risk group. Tumor immune 
microenvironment (TME) is a complex and dynamic eco-
system with tumor cells, immune cells and supporting 
cells. Under the influence of chemokines of tumor cells, 
fibroblasts, or inflammatory cells, immune cells in the 
bloodstream migrate to the tumor site through a tran-
sendothelial process [38, 39]. CIBERSORT method was 
performed to calculate the abundance of tumor-infiltrat-
ing immune cells (TIICs) in the TCGA-OV dataset. We 
found that the low-risk group had higher infiltration lev-
els of TIICs. The TIDE algorithm is considered to be one 
of the ways to predict ICB response in cancer. The higher 
the TIDE score, the worse the ICB response [19]. In this 
study, TIDE scores in the high-risk group were signifi-
cantly higher than those in the low-risk group, indicat-
ing that the low-risk group had a better ICB response and 
a better prognosis. In addition, the TRS score, cytolytic 
activity and Th1/IFNy score related to inflammatory 
response were higher in low-risk group, which was in line 
with our expectations. Then, we successfully validated 
the immunotherapy predictive stability of the GRGs 
riskscore in immunotherapy datasets: GSE78220 and 
IMvigor210. Finally, several approaches have successfully 
selected appropriate chemotherapy agents for patients in 
high- and low- risk group, providing directions for the 
precision treatment of OC.

Our research has some advantages. Firstly, we evalu-
ated the predictive value, immunotherapy efficacy, che-
motherapy efficacy of the prognostic model for OC 
patients, providing a basis for the precise treatment of 
OC patients. Secondly, we incorporated omics informa-
tion from four dimensions of OC to fully leverage the 
informative content of each omics dimension. In addi-
tion, the current research still has some drawbacks 
that need to be assessed. Firstly, the limited number of 

samples involved in scRNA-seq may affect the accuracy 
and reliability of the results. Secondly, further studies are 
needed to verify the role of the genes in the development 
of OC and to fully understand its potential mechanisms 
and therapeutic value.

Conclusions
In conclusion, we established and validated a GRGs sig-
nature based on the single-cell and bulk RNA-sequenc-
ing, which may be used for prognostic prediction and 
immunotherapy response prediction in OC.
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