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Abstract 

Copy-number alterations (CNAs) are a hallmark of cancer and can regulate cancer cell states via altered gene expres-
sion values. Herein, we have developed a copy-number impact (CNI) analysis method that quantifies the degree 
to which a gene expression value is impacted by CNAs and leveraged this analysis at the pathway level. Our results 
show that a high CNA is not necessarily reflected at the gene expression level, and our method is capable of detect-
ing genes and pathways whose activity is strongly influenced by CNAs. Furthermore, the CNI analysis enables unbi-
ased categorization of CNA categories, such as deletions and amplifications. We identified six CNI-driven pathways 
associated with poor treatment response in ovarian high-grade serous carcinoma (HGSC), which we found to be 
the most CNA-driven cancer across 14 cancer types. The key driver in most of these pathways was amplified wild-type 
KRAS, which we validated functionally using CRISPR modulation. Our results suggest that wild-type KRAS amplification 
is a driver of chemotherapy resistance in HGSC and may serve as a potential treatment target.
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Background
Copy-number alterations (CNAs) are a hallmark of can-
cer and play a critical role in cancer progression and 
therapy resistance by modulating the expression levels of 
genes [1–3]. Gene activity at the mRNA-level, however, 
is regulated by several mechanisms in addition to CNAs, 
such as DNA methylation and micro-RNAs, which make 
transcriptomics analysis challenging. Thus, it is impor-
tant to systematically identify genes whose expression 
values are strongly influenced by CNAs as these genes 
may have fundamental importance in cancer progression 
and therapy resistance. Moreover, owing to the superior 
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stability of DNA compared to RNA, copy-number altera-
tions are often favored as biomarkers in routine diagnos-
tics over gene expression assays.

Several computational methods have been developed 
to identify genes that exhibit concomitant changes in 
CNAs and expression levels from genomic data [4]. How-
ever, none of the existing methods explicitly quantify the 
degree to which a gene’s expression value is regulated by 
CNAs or enable unbiased categorization of the CNAs, 
such as amplifications or deletions. Furthermore, many 
of these methods suffer from a high rate of false positives 
[4]. which can compromise the accuracy of downstream 
analyses and lead to erroneous conclusions.

To identify genes and pathways that are likely regulated 
by CNAs, we developed a statistical model that estimates 
gene-specific copy-number impact (CNI) values, quan-
tifying the degree to which CNAs are associated with 
alterations in gene expression levels. We show that CNI 
differs from the abundance of CNAs, and the landscape 
of the two can be used to discriminate between CNAs 
that potentially drive changes in gene expression and 
those that do not.

We applied our CNI approach to ovarian high-grade 
serous carcinoma (HGSC), the most common and lethal 
subtype of epithelial ovarian cancers with five-year sur-
vival of < 40% [5–7]. HGSC is known for high genomic 
instability and extensive CNAs due to TP53 mutations 
and is considered as a copy-number driven cancer [8]. 
Still, except for a few genes, such as CCNE1 [9, 10],  or 
NCOA3-adjacent [9, 10] amplifications, the specific 
CNAs that govern therapy response in HGSC remain 
poorly understood. To identify the genes and pathways 
that are regulated by CNAs, we utilized whole-genome 
sequencing (WGS) and RNA-seq data from 263 sam-
ples derived from 93 patients with HGSC enrolled in 
the DECIDER study (Multi-layer Data to Improve Diag-
nosis, Predict Therapy Resistance and Suggest Targeted 
Therapies in HGSOC; ClinicalTrials.gov identifier: 
NCT04846933).

Methods
DECIDER cohort patients and samples
The prospective DECIDER cohort consists of patients 
with HGSC who have undergone primary debulking 
surgery (PDS) or neoadjuvant chemotherapy (NACT) 
treated at Turku University Central Hospital. NACT con-
sisted of a median of three (range 3–4) cycles of carbopl-
atin and paclitaxel chemotherapy. The subcohort used in 
this project consists of 475 bulk RNA-seq and 364 whole-
genome sequencing samples (with purity > 5%), of which 
263 samples of 93 patients are matching (Supplementary 
Table 6). There were 39 PDS and 54 NACT patients in the 
analysis, among which there were 177 treatment-naïve 

(before chemotherapy), 56 post-treatment (after neo-
adjuvant chemotherapy), and 30 relapse samples (after 
recurrence). Tumor tissues include primary tubo-ovarian 
tumors, other intra-abdominal (omentum, peritoneum, 
mesenterium), and tumors from other sites (including 
ascites). All patients participating in the study gave their 
informed consent, and the study was approved by the 
Ethics Committee of the Hospital District of Southwest 
Finland.

DECIDER whole‑genome sequencing preprocessing
Whole-genome sequencing and data preprocessing was 
performed as described in [11]. The preprocessing steps 
include quality control and trimming (using FastQC 
[12] version 0.11.4, Trimmomatic [12, 13] version 0.32), 
alignment to the reference genome (GRCh38.d1.vd1), 
duplicate marking (Picard [14] MarkDuplicates version 
2.6), base quality score recalibration (GATK [15] BaseRe-
calibrator [16] version 3.7) and contamination estimation 
(GATK version 4.1.9.0). All the steps were performed 
using Anduril 2, a bioinformatics workflow platform 
developed for large data sets [17].

Absolute copy‑number estimation
We used GATK version 4.1.4.1 to perform the CN seg-
mentation. The analysis pipeline follows the GATK 
best-practices documentation [18] and builds upon the 
Anduril 2 platform [17].

To collect the minor allele counts (b-allele frequency, 
BAF), we used all the filtered biallelic germline SNPs, 
genotyped using GATK version 4.1.9.0 joint calling [19] 
with heterozygous calls (VAF between 40 and 60%) from 
each patient. Read-count collection used one kilobase 
intervals. Both read and allelic count collection excluded 
regions listed in the ENCODE blacklist [20]. We used 
platform specific (HiSeq, DNBSEQ) panels of normals 
built from the normal samples to denoise the read counts.

To estimate purity, ploidy, and allele specific CNAs, 
we used a re-implemented ASCAT algorithm [21]. The 
original ASCAT R package was not directly applicable 
because it does not accept data segmented using exter-
nal tools. Our implementation also uses the variant-allele 
frequency (VAF) of truncal pathogenic TP53 mutation as 
additional evidence for the optimal ploidy/purity selec-
tion. As nearly all HGSC patients have a homozygous 
TP53 mutation in the cancer cells, the VAF can be used 
to the estimate of the total CN to approximate the purity:

Patients having discordant ploidy estimates between 
the samples went through manual curation. The CN of 
each gene is based on the longest segment that intersects 
the gene.

purity = 2/((CN/VAF)− (CN − 2)).
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DECIDER bulk RNA‑seq preprocessing
Sequencing libraries for 475 samples were performed 
with DNBSEQ, HiSeq X Ten or Illumina Hiseq 4000 (Illu-
mina, USA), as 100 bp or 150 bp paired end sequencing 
producing around 60 M reads.

The data were then processed using SePIA, a compre-
hensive RNA-seq data processing workflow [22]. Read 
pairs were trimmed using Trimmomatic [13] version 0.33 
as follows: (i) the first 12 and last 5 bases were cropped due 
to uneven per base sequence content; (ii) any leading bases 
with a quality score < 20 and any trailing bases with a quality 
score < 30 were removed; (iii) the reads were scanned with a 
3-base wide sliding window, cutting when the average qual-
ity per base dropped < 20; (iv) resulting sequences < 20  bp 
were discarded. Trimmed reads were aligned to the refer-
ence genome (GRCh38.d1.vd1) using STAR [23] version 
2.5.2b, allowing up to 10 mismatches, and all alignments for 
a read were output. Gene level expression was quantified 
using eXpress [24] version 1.5.1-linux_x86_64.

Bulk RNA‑seq decomposition
The bulk RNA samples were decomposed into cancer, 
immune, and stromal components using PRISM [25]. The 
decomposition provides both sample composition and 
expression profiles for each individual sample and cell 
type. The decomposition was guided by single-cell data 
of 16,826 cells from 15 patients (18 samples) from multi-
ple tissue sites that were isolated from partially matching 
DECIDER patient samples [26]. The cell types were anno-
tated using shared nearest neighbor modularity cluster-
ing from Seurat version 2.3.4 [27] based on the following 
markers: WFDC2, PAX8, MUC16, EPCAM, KRT18 (epi-
thelial); COL1A2, FGFR1, DCN (stroma); CD14, CD79A, 
FCER1G, PTPRC, NKG7, CD3D, CD8A (immune). The 
cancer cell specific expression was extracted for the cur-
rent analysis, while the signal from the non-cancerous 
cells was discarded to match the WGS data.

Batch effects between the samples with different library 
preparation protocols were corrected using POIBM [28] 
by mapping all the samples to the space of the larger 
dataset using the default parameters.

TCGA copy‑number and bulk RNA‑seq data
TCGA gene level absolute CNAs and bulk RNA gene 

expression data of 14 cancer types were downloaded from 
the Broad Firehose [29] on February 16 2022. The list of the 
cancer types and the number of patients used in each spe-
cific analysis are reported in Supplementary Table 7. Clini-
cal annotations for each data set were also downloaded, 

and the available overall survival (OS) data were included in 
our analysis. RNA-seq decomposition was implemented for 
the TCGA OV cohort using the same single-cell reference 
set as for the DECIDER HGSC cohort. For SKCM, 4,097 
single-cells classified as ‘Melanoma’, ‘B’, ‘T’, ‘Macrophage’, 
‘Endothelial’, ‘CAF’, or ‘NK’ in [30] (available from Gene 
Expression Omnibus under the identifier GSE72056) was 
used as the reference. For GBM, 3,381 single cells classified 
as ‘Neoplastic’, ‘Myeloid’, ‘Astrocytes’, ‘Oligodendrocytes’, 
or ‘OPCs’ in both malignant and non-malignant tissues in 
[31] (GSE84465) was used as a reference in the PRISM [25] 
decomposition. In each case, the non-cancerous signal was 
discarded to match the signal from the CNA data.

Copy‑number expression model
Linear and nonlinear Poisson models: Since gene expres-
sion values are discrete, non-negative, and possess widely 
varying noise levels [32] we developed an approach based 
on a Poisson model to extract the gene expression vari-
ation explained by their corresponding CNAs. For each 
individual gene, we first considered a constant model mod-
eling gene expression in the absence of any CNA induced 
changes, as Xij ~ Poi( bi,0 gj) st. bi,0 ≥ 0 where Xij denotes the 
expression of the i:th gene in the j:th sample, gj the global 
expression level of the j:th sample, and bi,0 denotes a con-
stant (basal) expression level for the i:th gene. We also made 
two linear models, one with no interaction effect to act as a 
null model for testing the asymmetric relation, as Xij ~ Poi( 
( bi,0 + ai ( Aij + Bij) gj) st. bi,0, ai ≥ 0, where Aij and Bij are the 
major and minor absolute CNA values for the i:th gene and 
the j:th sample, respectively, and ai is the linear CNA effect; 
and another including an interaction term capturing asym-
metries in the major and minor numbers:

where ci > 0, ci = 0, ci < 0 denote synergistic, linear, and 
antagonistic interaction between the major and minor 
numbers. All models were fit in maximum likelihood 
sense using PRISM [25]. Afterwards, we tested for any 
effect of CNAs over gene expression using a likelihood 
ratio test between the null and the alternative models.

To capture a nonlinear CNA effect on gene expression 
variation, we applied the following monotonic Poisson 
model:

where 1E is an indicator for the expression E, and ai,k-(k-1) 
represent the major and minor allele specific CNA effects 
when the CNA increases from k-1 to k in the i:th gene. 
A non-linear model was found to outperform a linear 
model significantly (see Supplement).

Xij ∼ Poi
((

bi,0 + ai
(

Aij + Bij

)

+ ci Aij Bij

)

gj
)

st. bi,0, ai ≥ 0,

Xij ∼ Poi bi,0 + ai,1−0 1Aij ≥ 1 + 1Bij ≥ 1 + ai,2−1 1Aij ≥ 2 + 1Bij ≥ 2 + . . . gj st. bi,0, ai,k−(k−1) ≥ 0,
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Stacked nonlinear response models: To identify if the 
CNA impact over gene expression varies systematically 
over the response groups, we implemented a nonlinear 
monotonic Poisson model, where the response model has 
a constant effect direction between the good and poor 
responder groups. The constant general model was used 
as the null model. As the alternative model, we used a 
stacked form where the gene expression is modeled via 
two models, one for the good responders as

where di,k-(k-1) ≥ 0 are the additional good responder spe-
cific deviations, and the model for the poor responders is 
as specified previously. A corresponding model with pos-
itive poor responder specific deviations was also fitted, 
and the better fitting model selected as the final one to 
quantify the expression differences between the groups.

Stacked nonlinear phase model. To characterize if the 
CNA effect over gene expression changes is different over 
treatment, we also implemented a nonlinear monotonic 
Poisson model where the treatment model has a constant 
effect direction from diagnosis to post treatment group. As 
with the poor and good responder group models, two sub-
models were used, one for the diagnosis samples and one for 
the post treatment samples. Both effect directions were fit-
ted, and in the final model some genes had a positive effect 
changing from the diagnosis to post-treatment while others 
showed the positive effect from post-treatment to diagnosis.

Statistical tests and correlation coefficients: The gen-
eralized correlation of the linear/nonlinear model was 
calculated as the square root of the explained vari-
ance, in which the explained variance is measured as 
the R-squared values of linear/nonlinear model over the 
constant model. A Likelihood Ratio Test with test statis-
tics equal to the log-likelihood differences between the 
constant and the linear/nonlinear model and degree of 
freedom as the difference between the rank of the linear/
nonlinear and the constant one was used to compute a 
p-value following Wilks’ theorem. For the pathway/gene-
set level absolute value of correlation, the R-squared val-
ues of the linear/nonlinear model and the constant model 
were aggregated separately for all the genes of a pathway, 
and the generalized correlation coefficient for the collec-
tion of the models was computed accordingly.

Pathway enrichment analysis
First we calculated the ssGSEA [33] scores for the 18 
pathways enriched in poor responders using all 177 
treatment-naïve samples from 88 patients and tested 
for association with the platinum-free interval (PFI) 
as described below. In the analysis, each patient was 

Xij ∼ Poi
(((

bi,0 + di,0
)

+
(

ai,1−0 + di,1−0

)(

1Aij ≥ 1 + 1Bij ≥ 1

)

+ . . .
)

gj
)

st. bi,0, di,0, ai,k−(k−1), di,k−(k−1) ≥ 0,

represented by the ssGSEA score from the sample with 
the highest tumor purity.

Survival analysis
Kaplan–Meier (K-M) curves were estimated for sur-
vival analysis based on either platinum-free interval 
(PFI) or overall survival (OS). PFI is defined as the 
time from the last cycle of platinum treatment to can-

cer progression or to the last follow-up, whereas OS 
is the time from diagnosis to death or the last follow-
up. A log-rank test was used to test the significance of 
the PFI/OS-based survival differences. To optimize the 
threshold for grouping the patients in the survival anal-
ysis, we used maximally selected rank statistics (max.
stat) thresholding method in R [34] which appropriately 
controls the significance for the threshold optimization.

Clustering of CNA versus CNI
As the TCGA CN and mutation driver gene sets are natu-
rally reside in the high CNA/high CNI and low CNA/low 
CNI regions, respectively, we used these genes to opti-
mize clustering for the CNA versus CNI landscape. The 
pathways were clustered based on the CN and mutation 
driver pathway distributions such that for the CN path-
ways, the known mutation driver genes from each indi-
vidual pathway were replaced with randomly sampled 
genes selected from the whole genome. The sampling 
was repeated 1,000 times to mitigate random effects. The 
same procedure was repeated for the mutation driver 
pathways, and the process resulted in two distributions 
of mutation and CN driver specific pathway statistics. 
Finally, the threshold that optimized the clustering accu-
racy based on the two distributions in the CNI and the 
average CNA axes were acquired independently.

Gene specificity of the pathway aberrations
To assess the specificity of CNI at the pathway level, 
we quantified the contribution of the involved genes 
to the aggregate pathway CNI. This was implemented 
through a leave one out procedure in the nonlinear 
model, which allowed us to quantify how much impact 
each gene contributed to the overall correlation coeffi-
cient over the pathway. From the relative explained var-
iance by each involved gene, we calculated per-pathway 
perplexity values representing the effective number of 
genes contributing to pathway activity for each path-
way. The perplexity π is computed as follows:
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where pi is the relative contribution (normalized fraction 
of explained variance) of the ith gene over the k involved 
genes in the pathway, and 0.log(0) = 0.

Functional transition point of the CNA and its variability
To probe the functional CNA for each gene, we analyzed 
the fitted expression model curves across all samples. 
The median and the lower and upper quartiles of the 
gene expression were projected on the nonlinear model 
curve, and the corresponding CNAs were interpolated 
to quantify the transition point and the transition band-
width of the model curve. Based on the resulting CNAs, 
the genes were further categorized into five groups as 
genes with deletion (CNA = 0), loss (CNA = 1), nor-
mal (CNA = 2), gain (2 < CNA ≤ 5), and amplification 
(CNA > 5). The category with the most hits was then 
chosen to obtain the pathway level transition points and 
their variability.

Cell culture
KURAMOCHI cells (JCRB Cell Bank, JCRB0098) were 
grown in RPMI1640 (Corning, 10–040-CV) with 10% 
fetal bovine serum (FBS) (Gibco, 10,270,106), 1% peni-
cillin–streptomycin (PS) (Gibco, 15,140,122). CAOV3 
cells (ATCC, HTB-75) were grown in DMEM (Corning, 
15–013-CV) with 10% FBS, 1% PS, and 1% GlutaMAX 
(Gibco, 35,050,038).

Plasmid construction
The Lenti-idCas9-KRAB-neo and Lenti-idCas9-VP64-neo 
plasmids were generated from Lenti-iCas9-neo (Addgene, 
plasmid # 85,400), TRE-KRAB-dCas9-IRES-GFP (Addgene, 
plasmid # 85,556) and lenti dCAS-VP64_Blast (Addgene, 
plasmid # 61,425). The lentiMPH v2-EGFP plasmid was gen-
erated by replacing hygromycin with EGFP from lentiMPH 
v2 (Addgene, plasmid # 89,308). CROPseq-i-sgRNA-BFP 
and CROPseq-a-sgRNA-BFP backbones were generated 
from CROPseq-Guide-Puro (Addgene, plasmid # 86,708). 
CROPseq-i-NC-BFP and CROPseq-i-KRAS-BFP plasmids 
were generated from CROPseq-i-sgRNA-BFP backbone 
with i-NC or i-KRAS, respectively. CROPseq-a-NC-BFP. 
CROPseq-a-KRAS-1-BFP and CROPseq-a-KRAS-2-BFP 
plasmids were generated from CROPseq-a-sgRNA-BFP 
backbone with a-NC, a-KRAS-1, or a-KRAS-2, respectively. 
The sgRNA sequences are listed in Supplementary Table 8. 
Lenti-iCas9-neo was a gift from Qin Yan, TRE-KRAB-
dCas9-IRES-GFP was a gift from Eric Lander, lenti dCAS-
VP64_Blast and lentiMPH v2 were gifts from Feng Zhang, 
and CROPseq-Guide-Puro was a gift from Christoph Bock 
[35–39].

π = exp

(

−

∑k

i=1
pi.log(pi)

)

,
Lentivirus production and cell transduction
Lentiviral particles were produced by transfecting 293FT 
cells (Thermo Fisher, R70007) with each target plasmid, 
along with packaging constructs psPAX2 (Addgene, plasmid 
# 12,260), and pMD2.G (Addgene, plasmid # 12,259). The 
lentivirus were collected 48 h and 72 h after transfection and 
aliquoted for storage at -80 °C, following filtering through a 
low-protein binding 0.45-μm filter. To generate stably trans-
duced cell lines, cells were infected with the lentivirus for 
24 h and then either selected for 7 days in the correspond-
ing culture medium with 400 μg/mL G418 (ThermoFisher 
Scientific, 10,131,035) or FACS sorted for GFP/ BFP positive 
populations with BD FACSAria II cell sorter.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR)
RNA was isolated by using NucleoSpin® RNA Plus kit 
(Macherey–Nagel, 740,984,250), and reverse-transcrip-
tion was performed with iScript cDNA Synthesis Kit 
(Bio-Rad, 1,708,891) according to the handling proce-
dure. qRT-PCR was performed with PowerUp™ SYBR™ 
Green Master Mix (ThermoFisher Scientific, A25776). 
Three replicates were performed. The primer sequences 
are listed in Supplementary Table 8.

Apoptosis assay
One hundred thousand cells were seeded in 6-well plates 
and treated with individual drugs for 3  days. Media and 
cells were collected and washed with PBS twice. Cells were 
resuspended with 100  μl of 1X annexin-binding buffer 
(ThermoFisher Scientific, V13246), 5 μl of Annexin V-APC 
(ThermoFisher Scientific, R37176) and 1  μl of 100  μg/ml 
propidium iodide (PI) (ThermoFisher Scientific, P3566). 
Cells were incubated at room temperature for 15  min in 
dark, then added 400  μl of 1X annexin-binding buffer. 
Quantification was performed with flow cytometry Novo-
Cyte Quanteon Analyser. Three replicates were performed.

Colony formation assay
Cells were seeded in 6-well plates (2 000 cells for the 
untreated group, and 10,000 for platinum groups), cultured 
overnight, treated with platinum for 7  days, and cultured 
with complete media for another 7 days. Then colonies were 
washed with PBS once, fixed with methanol for 10 min, and 
stained with crystal violet for 20 min. Three replicates were 
performed. The colony intensity quantification is done using 
the ColonyArea plugin in the ImageJ software [40].

Results
Gene level quantification of CNA impacted expression 
in 14 cancers
To identify genes whose expressions are regulated by 
CNAs, we developed a nonlinear monotonic Poisson 
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regression model (Fig.  1. Methods, Supplement). The 
inputs of the model are RNA-seq gene expression and 
allele specific absolute CNAs estimated by ASCAT [21] for 
matching samples. The model can be used to extract copy-
number impact (CNI) values, which quantify the degree 
of a gene’s expression variation directly exerted by the 
CNAs in the same chromosomal region. The CNI values 
were obtained by taking the square root of the explained 
variance, defined as the R-squared values of the linear/
nonlinear model over the constant model (see Methods). 
Examples of the model curves with various CNI values for 
six genes (RB1, ERBB2, CCNE1, FOXA1, MET and MUC4) 
are shown in Supplementary Fig. 1.

Cancers can be considered as mutation- or CNA-
driven [6]. However, as earlier studies have not consid-
ered the functional impact of CNAs on expression values 
in their analyses, we first compared the degree to which 
CNAs impact gene expression values in 14 different can-
cer types. Accordingly, we calculated CNI values for each 
gene across for 14 cancers using The Cancer Genome 
Atlas (TCGA) data. The CNI distribution and their rank-
ing are provided in Fig.  2A. HGSC exhibit the highest 
CNI values followed by lung squamous cell carcinoma 
(LUSC) and lung adenocarcinoma (LUAD), whereas glio-
blastoma multiforme (GBM) and brain lower grade gli-
oma (LGG) showed low CNI values.

To illustrate further CNI analysis across three cancer 
types, we selected HGSC, melanoma, which is less driven 
by CNAs than HGSC [41] and glioblastoma multiforme 
(GBM), which shows very low CNI and is considered as a 
mutation-driven cancer in earlier studies [42]. These three 
cancer types also have single-cell RNA-seq data available 
that enables decomposition of bulk RNA-seq into cancer 
cell specific gene expression values. As patient-derived 
samples have wide variability of tumor cell fraction, analy-
sis without decomposition may lead to confounding results 
[25]. Herein we used PRISM [25] which uses a latent statis-
tical framework to extract cell-type specific transcriptome 
profiles. After decomposition, the cancer cell specific gene 
expression values and whole-genome allele-specific CNAs 
were used to calculate CNI values. The obtained CNI value 
distributions over all genes corroborate the known role of 
CNAs in these cancers, with HGSC having a high number 
of genes whose expression is driven by CNAs, melanoma, 
substantially fewer, and glioblastoma multiforme only a 
very low number (Supplementary Fig. 2). Additionally, our 
analysis of the established TCGA CN and mutation driver 
genes [43] in the DECIDER and TCGA cohorts show that 
the potential CN drivers predominantly exhibit high CNI 
and CNAs (see Supplementary results and Supplementary 
Table 1) while potential mutational drivers have low CNI 
with fewer CNAs.

Fig. 1  Overview of the material, model and CNI capture 

Allele specific copy-number values per gene and the gene expression profiles across different samples are used as input in the model. A nonlinear 
Poisson model is implemented to quantify the CNI over gene expression for each individual gene, and the results are pooled statistically to obtain 
a pathway level CNI. Afterwards, the CNI and absolute CNAs are used to create a landscape of CNA functionality at pathway level. A thresholding 
method is applied to cluster the landscape resulting into CN/non-CN aberrant and CN/non-CN-driven pathways simultaneously. The pathway level 
ssGSEA scores are computed using gene expression of CN-driven pathways enriched in poor and good responding patients. A survival analysis 
reveals prognostic pathways for all DECIDER cohort patients at diagnosis
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Fig. 2  CNI and functional CNA levels at gene level

A. The spectrum of CNI across 14 TCGA cancer types using raw bulk RNA-seq expression data and absolute CNAs. The model was applied 
on the TCGA OV, LUSC, LUAD, STAD, BRCA, BLCA, HNSC, UCEC, SKCM, GBM, LIHC, LGG, PRAD, and KIRC datasets, allowing the quantification of CNI 
in each. The dashed line shows the median CNI. The results indicate that OV lands on the high extreme of the CNI, along with LUSC, LUAD, STAD, 
and BRCA, while KIRC, GBM, SKCM, and LGG are located in the lower tail of the CNI spectrum. Nine of these 14 cancer types have been shown 
to have a similar trend in CNA abundance in previous literature, suggesting the abundance correlates with but does not equate CNA driverness. 
B. CNA transition point captured from nonlinear model curve as functional CNA level for CCNE1 as an example gene. C. The obtained functional 
CNA status (red target) as the point with the highest impact over gene expression and its range of variability (cyan bar) across the DECIDER cohort 
are visualized for some example genes including ATR​, BRCA1, CCNE1, FOXA1, KRAS, MET, RAD52, RB1, ZNF195, and ZNF733P 



Page 8 of 14Jamalzadeh et al. BMC Cancer          (2024) 24:173 

Identification of categories, i.e., deletions, losses, gains, 
and amplifications, is important for interpretation of the 
CNA-based analysis. However, currently the thresholds 
for these categories are done manually and they may 
differ substantially between studies for the same gene. 
The CNI model allows unbiased categorization, which 
is based on the functional impact a CNA level has to 
gene expression values. This is based on obtaining the 
transition point of the model curve, i.e., the CNA that 
exerts an expression change (Methods). An example of 
a transition point and bandwidth for the CCNE1 gene in 
the DECIDER cohort is shown in Fig. 2B. A low transi-
tion point indicates a functional change due to dele-
tions/losses, and a high one due to gains/amplifications. 
The corresponding transition bandwidth character-
izes the range of CNAs that modulate expression (Sup-
plementary Table  2). Examples of the transition points 
and bandwidths for 10 genes (ATR​, BRCA1, CCNE1, 
FOXA1, KRAS, MET, RAD52, RB1, ZNF195, ZNF733P) 
in DECIDER cohort are shown in Fig. 2C. For instance, 
CCNE1 expression changes are due to gains (2 < CNA ≤ 5) 
and amplifications (CNA > 5) only, whereas for MET, any 

type of CNAs ranging from deletion (CNA = 0) to ampli-
fication (CNA > 5) is reflected in the expression level.

Pathway level analysis with CNI and CNAs identifies 
enriched pathways in poor and good responding patients 
with HGSC
To test whether high CNI at the pathway level is reflected 
in patients’ response to therapy at diagnosis, we used a 
stacked nonlinear version of our model (Methods) and 
analyzed 133 treatment-naïve samples including 76 
samples from patients with good response (platinum-
free interval > 12  m) and 57 samples from patients with 
poor response (platinum-free interval ≤ 6 m) to therapy. 
Pathway level values were computed from the gene level 
CNI values among the 196 curated Pathway Interaction 
Database (PID) pathways [44, 45] (Supplementary Fig. 3). 
Each pathway was visualized in a space described by the 
average of absolute CNAs across all samples and CNI 
as axes, and then assigned to one of the four segments 
(Methods) as illustrated in Fig. 3.

First, the pathways characterized by both high CNI 
and high CNAs highlight putative CN-driven pathways. 

Fig. 3  The landscape of CNA versus CNI in the DECIDER treatment-naïve samples

 CNA versus CNI landscape for the response model based on the general model’s thresholding in the treatment-naïve samples. The magenta points 
represent the pathways in CN-driven cluster, blue the conserved, orange the non-CN-driven and the green shows pathways with passenger CN 
events, while those pathways enriched in poor responders, good responders and non-enriched ones are shown via triangles, circles and squares 
respectively
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Second, the segment with low CNI and low CNAs con-
tains pathways whose activity is not driven by CN 
changes, but are controlled by other means. Third, the 
segment that contains pathways with high CNI and low 
CNAs are named as conserved CN pathways, because 
these pathways are highly impacted by CNAs but only 
minor CNAs manifest in the patients. Fourth, pathways 
that have low CNI and high CNAs highlight putative pas-
senger CN events. We found that of the 85 putative CN-
driven pathways at diagnosis (Fig. 3 and Supplementary 
Table 3) 18 pathways were significantly enriched in poor 
responders, 36 were enriched in good responders, and 31 
were common to both groups.

To capture the systematic changes in CNI over the 
treatment phase, we implemented the stacked nonlin-
ear version of our model (Methods). Interestingly, the 
CNI changes over treatment (177 treatment-naïve vs. 56 
chemotherapy treated samples) was significant with very 
low CNI for only one pathway (Beta2 integrin cell surface 
interactions; R = 0.1, p < 2.2e-16). This suggests that the 
mechanisms behind functional CNAs remain stable dur-
ing chemotherapy, and that they can be identified already 
from the treatment-naïve samples.

The CNI and CNA landscape for all DECIDER samples, 
including all treatment phases and treatment responses, 
are displayed across the four clusters in Supplementary 
Fig.  4 providing an overview of the landscape for the 
entire cohort. As the CNI values do not significantly 
change during chemotherapy, the pathways with high 
CNI contribution are likely to have prognostic power.

CNI quantification reveals CN‑driven pathways 
with prognostic significance
To test whether pathways with high CNI contribution 
are more prognostic than the less CNA regulated, we 
used pathway level ssGSEA scores [33]. We calculated 
the pathway scores for the 177 treatment-naïve samples 
in the DECIDER cohort and calculated their association 
to platinum-free interval (PFI). Among the 18 pathways 
enriched in poor-responding patients, six exhibited sta-
tistical significance (Fig. 4A). Supplementary Figs. 5 and 
6 depict the gene expression profiles and CNAs for these 
pathways. The top contributing genes to CNI in these six 
pathways, are detailed in Supplementary Table 4, show-
ing each gene’s contribution and their genomic localiza-
tion. Additionally, Supplementary Fig.  7 represents the 
gene expression correlation among the top contributing 
genes of candidate pathways in diagnostic samples.

To explore the associations between the three other 
pathway categories and platinum-free interval (PFI), we 
also investigated non-CN-driven (n = 28), passenger CN 
(n = 21), and conserved CN (n = 62) pathways. We found 
that no pathways in the non-CN-driven and passenger 

CN categories were significantly associated with PFI. In 
the conserved CN category, only three pathways (Notch-
mediated HES/HEY network, Regulation of nuclear 
SMAD2/3 signaling and FAS (CD95) signaling pathway) 
showed a significant association with PFI.

Pathway level CNI analysis suggests KRAS as a treatment 
resistance driver
We observed that many pathways have only a single or a 
few genes with high CNI values, whereas others have a 
more uniform CNI distribution. This suggests that path-
ways whose  activity is  driven by a single or few genes 
provide opportunities  for effective interventions. Thus, 
we quantified the contributions of the genes in the 196 
PID pathways. We first quantified the contribution of the 
involved genes to the aggregate pathway CNI. Then, from 
the relative explained variance by each involved gene, we 
calculated the effective number of pathway activity-con-
tributing genes for each individual pathway (Methods). 
Some pathways displayed specific CNI patterns implying 
that aberrations are caused by few genes, whereas oth-
ers showed more dispersed CNI patterns indicating that 
multiple genes within these pathways showed similar 
dysregulation in terms of CNAs (Fig. 4B).

Interestingly, three out of six pathways associated 
with poor treatment response (Class I PI3K signaling 
events, C-MYB transcription factor network, EPHB for-
ward signaling) had KRAS as the single dominant gene 
exhibiting contribution of 36% to 46% (Supplementary 
Table  5) with the individual contributions by the other 
genes  being < 8%. Indeed, Class I PI3K signaling events 
has KRAS as the major contributor with a 46% contri-
bution, followed by HSP90AA1 with 8%. Similarly, the 
C-MYB transcription factor network has KRAS as the 
primary contributor with 41% contribution, followed by 
HSPA8 with 7%. Lastly, EPHB forward signaling shows 
KRAS as the principal contributor with a 36% contribu-
tion, followed by TF with a 3% contribution.

In the DECIDER cohort, the size of the subset of 
patients with HGSC and functional wild-type KRAS 
amplification (wtKRASamp) is ~ 13%. Of note, none of 
the patients in the DECIDER has KRAS mutations. 
We then tested whether KRAS amplifications have 
independent survival association and analyzed KRAS 
gene expression and CNAs separately for the 88 treat-
ment-naïve patients. The KRAS gene expression was 
significantly associated with PFI (p = 0.012) and OS 
(p = 0.0028) in the DECIDER cohort, as shown in Sup-
plementary Fig. 8. The KRAS gene expression was also 
associated with unfavorable OS in TCGA OV cohort 
(p = 0.047). For the CNA survival association, we used 
the functional CNA threshold of seven copies, result-
ing in 12 patients with wtKRASamp, and 75 patients with 
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unamplified wtKRAS. We observed a similar, albeit not 
significant, survival association trend as with KRAS 
gene expression (PFI: p = 0.46; OS: p = 0.08). Out of the 
12 patients with wtKRASamp, nine had high gene expres-
sion values that were associated with poor survival, 
which supports the utility of CNI values in finding func-
tionally relevant CNAs. 

KRAS decreases platinum sensitivity in ovarian cancer cells
To experimentally validate our findings regarding the 
role of KRAS in treatment resistance, we examined how 
modulation of KRAS levels affects platinum response in 
two HGSC cell lines, KURAMOCHI, which has a KRAS 
amplification and CAOV3 that is KRAS copy-number 
neutral [46]. For KURAMOCHI, we generated KRAS 

Fig. 4  Pathways with ssGSEA scores associated to the patients’ survival and their specificity

A. Kaplan–Meier survival curves of six pathways which were found to be significantly associated with unfavorable PFI in a two-group analysis 
based on an optimized ssGSEA threshold using the max.stat method in DECIDER cohort. B. The quantified CNI specificity values across the 196 PID 
pathways along with the CNI values. Pathways are ordered based on their CNI gene specificity. Two examples of diffuse and specific pathways are 
shown, along with the genes that most significantly contribute to their CNI
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downregulated cells via CRISPR inhibition [47] and for 
CAOV3, we upregulated KRAS by CRISPR activation 
[37]. qRT-PCR was performed to confirm the down- 
and upregulation efficiency of KRAS in these cells, with 
around 30% reduction and 4.5x induction (Fig.  5A, B, 
respectively).

We first assessed effects of increased levels of wtKRAS 
to cell viability and short-term platinum response. The 
knockdown of KRAS significantly increased the propor-
tion of apoptotic cells in both untreated control cells 
and after 3-day carboplatin (12 μM) or cisplatin (3 μM) 
treatment in the KURAMOCHI cell line (Fig.  5C, E). 
However, KRAS inhibition increased the level of apop-
totic cells significantly only in carboplatin treatment 
when normalized to untreated control (Supplementary 
Fig.  9A). In CAOV3, up-regulation of KRAS reduced 
the percentage of apoptotic cells in both untreated and 
carboplatin (9  μM) or cisplatin (1.5  μM) treated cells 
to a similar extent (Fig.  5D, F, Supplementary Fig.  9B). 
These results suggest that increased KRAS levels are 
associated with improved viability in both intrinsically 
KRAS amplified and CN neutral contexts but provide 
no or minimal additional benefit in short-term platinum 
treatment.

To analyze the effect of KRAS perturbation in a pro-
longed platinum treatment by using lower, more clinically 
relevant concentrations of platinum drugs, we performed 
colony formation assays with one week of treatment and 
one week of recovery. Here, the effects of KRAS on plati-
num resistance were more pronounced and significant in 
both cell line pairs. KURAMOCHI cells were consider-
ably more sensitive to platinum after KRAS down-reg-
ulation (Fig. 5G, I, Supplementary Fig. 9C), while KRAS 
up-regulation made CAOV3 cells highly resistant to 
both carboplatin and cisplatin (Fig. 5H, J, Supplementary 
Fig. 9D). These results indicate that increased KRAS lev-
els improve viability, and drive chemoresistance in func-
tional models that mimic the effects of wild-type KRAS 
amplification.

Conclusion
While copy-number alterations (CNAs) are prominent in 
many cancers [2] different cancer types exhibit varying 
degrees of CNAs, allowing classification to mutation or 
CN dominant cancers [6]. Herein, we hypothesized that 
systematic and robust discovery of genome regions that 
have direct and strong impact on the mRNA levels of the 
genes in these regions is integral to understand cancer 
progression and treatment resistance. To identify such 
genes and pathways in an unbiased and systematic fash-
ion, we developed an approach that quantifies the degree 
to which CNAs regulate expression levels. We applied 
this approach to 14 cancer types and found significant 

variations in the copy-number impact (CNI) on expres-
sion levels. Our results show that HGSC is characterized 
by high levels of CNAs and a high CNI, followed by lung 
squamous cell carcinoma (LUSC) as expected [6].

Our analysis revealed that dividing pathways into four 
clusters based on their CNA level and the CNI charac-
terized by our model distinguishes putative driver and 
passenger CNA changes. Interestingly, some pathways 
in the copy-number driver cluster with high CNA level 
and high CNI were prognostic at diagnosis. These results 
highlight that the analysis of CNAs, while taking their 
impact on expression levels into account, enables us to 
understand the role of CNAs and identify clinically rel-
evant alterations in genomically unstable cancers such as 
HGSC.

The CNI analysis identified several pathways that are 
likely driven by genes whose expression levels are regu-
lated by CNAs. Interestingly, three out of the six poor 
response associated pathways were dominated by the 
KRAS gene. Furthermore, EPHA2 forward signaling 
and Arf1 pathway, both showing a more diffuse pattern 
of CNI, are also closely linked to KRAS [48, 49]. High 
expression of the KRAS gene was significantly associated 
with short PFI. While activating mutations in KRAS have 
been studied extensively in low-grade serous [50] and 
other cancers, in HGSC [51] the activating mutations are 
almost non-existent and the role of wtKRAS has been less 
explored [52]. Our results indicate that the wtKRASamp 
plays an important role in treatment response for a sub-
set of patients with HGSC. In the DECIDER cohort, the 
size of this subset of patients with HGSC and functional 
wtKRASamp is ~ 13% and none of DECIDER patients had 
KRAS mutations. 

To functionally test the effect of KRAS amplification 
on platinum response, we mimicked the modulation of 
KRAS CNAs by CRISPR interference in a cell line con-
text. Here, KRAS induction drove chemoresistance in 
intrinsically copy-number-neutral cells, and repression 
rendered KRAS amplified cells more sensitive to both cis-
platin and carboplatin. Previously, the effects of wtKRAS 
amplification have been studied in the context of tyrosine 
kinase inhibitor resistance [53, 54] whereas the effects to 
platinum chemotherapy response have been unexplored. 
Our findings demonstrate that KRAS plays a functional 
role in platinum resistance, and suggest wtKRASamp-
induced chemoresistance as a putative cause for the 
shortened PFI in patients with high KRAS expression.

The current success in developing effective inhibitors 
for wtKRASamp tumors [55] underscores the substantial 
translational value of the role for wtKRASamp in HGSC. 
Identification of a specific subgroup of HGSC patients 
who might exhibit resistance to existing standard-of-
care treatments but could greatly benefit from therapies 
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Fig. 5  KRAS promotes platinum resistance in ovarian cancer cells

A, B. qRT-PCR was performed to determine KRAS mRNA levels in KURAMOCHI-i-NC (negative control sgRNA for the inhibition system), 
KURAMOCHI-i-KRAS (KRAS inhibition sgRNA), CAOV3-a-NC (negative control sgRNA for the activation system), CAOV3-a-KRAS-1 (KRAS activation 
sgRNA #1) and CAOV3-a-KRAS-2 (KRAS activation sgRNA #2). RPS13 was used as a housekeeping gene. C, D. Flow cytometry assay was used 
to detect apoptotic cells in KURAMOCHI (C) after 72 h treatment with carboplsatin (12 μM) and cisplatin (3 μM) or CAOV3 (D) with carboplatin 
(9 μM) and cisplatin (1.5 μM). E, F. Quantification of percentage of apoptotic cells from (C) and (D). G, H. Colony formation assay was performed 
to verify the colony formation ability of KURAMOCHI (G) and CAOV3 (H) after 7 days of presence of the indicated concentration of platinum 
plus another 7 days after removing platinum. I, J Quantification of the colony intensity from (G) and (H) after normalization by untreated condition. 
(Student’s t test were used; NS p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001; replicates: n = 3)
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specifically designed to target wtKRASamp tumor is of 
high importance to improve treatment outcomes.

In addition to the importance of wtKRASamp, our path-
way level analysis identified three pathways that were 
associated with poor response at diagnosis. Interestingly, 
these pathways involve multiple genes that collectively 
contribute to pathway dysregulation manifesting as simi-
lar malignant phenotypes. This highlights the strength of 
our method in identifying prognostic mechanisms at the 
pathway level with convergent dysregulation due to dis-
tinct CNAs.

The main limitation of this study is that in addition to 
CNAs, there are other processes that affect gene regu-
lation, such as point mutations [56], epigenetic aberra-
tions [57], and phenotypic diversity [58] which we have 
not considered in this study. However, the model can be 
modified to be applicable to other data layers and this is 
one of our future directions. These additional data layers 
could potentially offer insights for conserved and pas-
senger CNA clusters. Furthermore, our pathway analy-
ses were based on gene expression data, while pathways 
function at the protein level, highlighting the need for 
further investigation of the pathways identified.

Taken together, we developed an approach that ena-
bles identifying CNAs that have a strong and measurable 
impact on gene expression values. This allows pinpoint-
ing the genes and pathways that are likely to be more 
important in cancer progression and therapy resistance, 
as abundant CNAs alone can lead to high levels of noise 
and manifests as passenger findings. Our approach also 
provides means to identify the most important altera-
tions contributing to pathway dysregulation, which can 
be used to reveal contexts in which a gene contributes 
to therapy resistance. Importantly, our results demon-
strate the importance of wtKRASamp in HGSC driving the 
chemotherapy resistance.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12885-​024-​11895-6.

Additional file 1: Supplementary results. Copy number impact (CNI) on 
gene expression. Supplementary Figure 1. Examples of copy-number 
gene expression models. Supplementary Figure 2. CNI over all genes 
across different cancers, Supplementary Figure 3. Changes in CNI over 
the HGSC response groups, Supplementary Figure 4. The landscape of 
CNA versus CNI in the DECIDER HGSC cohort, Supplementary Figure 5. 
Pathway enrichment scores between the HGSC response groups of the 
potential CN driven pathways, Supplementary Figure 6. CNAs between 
the HGSC response groups of the potential CN driven pathways, Supple‑
mentary Figure 7. Gene expression correlation among top contributing 
genes to CNI in six pathways associated to survival., Supplementary 
Figure 8. KRAS CNA level and gene expression association with patient 
surviva, Supplementary Figure 9. Quantification of apoptotic cells 
percentage and colony intensities, Supplementary Table 1. CNA versus 
CNI across four driver gene sets in different cancers, Supplementary 
Table 2. CNA functional transition point and its range across whole 

genome, Supplementary Table 3. PID pathways and association to 
response groups, Supplementary Table 4. Characteristics of top genes in 
six survival associated pathways, Supplementary Table 5. Specificity of 
functional CNAs in the PID pathways, Supplementary Table 6. DECIDER 
HGSC cohort sample information, Supplementary Table 7. DECIDER 
HGSC cohort sample information, Supplementary Table 8. Primer/sgRNA 
sequences

Acknowledgements
We thank Prof. Sakari Vanharanta for critical comments of the manuscript. Comput-
ing resources from CSC – IT Center for Science Ltd. are gratefully acknowledged. The 
flow cytometry analysis was performed at the HiLife Flow Cytometry Unit, University 
of Helsinki. S.J. thankfully acknowledges grants from Orion research foundation, 
Cancer Foundation Finland, Ida Montin, Emil Aaltonen and Wihuri foundations.

Authors’ contributions
S.J implemented the method, analyzed sequencing data, and wrote the initial 
draft of the manuscript. J.D and J.J conducted the experiments and statistical 
analysis with S.J, and wrote the experimental-related methods. K.L and Y.L 
performed sequencing data processing. K.H handled patient materials. A.Vi 
interpreted results and conducted pathology examinations. J.O interpreted 
the results. J.H and S.Hi contributed to the results interpretation and the 
clinical management of patients. A.Vä conceptualized and supervised wet-lab 
experiments and contributed to results interpretation. A.H and S.Ha conceptu-
alized the study, provided supervision, and interpreted the results. All authors 
reviewed and approved the final manuscript.

Funding
Open Access funding provided by University of Helsinki (including Helsinki 
University Central Hospital). This work was supported in part by the European 
Union’s Horizon 2020 research and innovation programme under Grant 
Agreement No. 965193 for DECIDER; the Academy of Finland [Project Nos. 
292402, 325956, and 314395] and [No. 952179] for S.H, [No. 322927] for A.H. 
and [No. 351196] and ERA PerMed JTC2020 PARIS/Academy of Finland project 
[No. 344697] for A.V.; the Sigrid Jusélius Foundation; and the Finnish Cancer 
Association (S.H. and A.V.).

Availability of data and materials
All raw DNA sequencing data is submitted to the European Genome-
phenome Archive (EGA) and will be publicly available under study accession 
number EGAS00001006775. Raw bulk RNA sequencing data are deposited in 
the EGA and are publicly available (EGAS00001004714).

Declarations

Ethics approval and consent to participate
For the prospective DECIDER cohort, all patients participating in the 
study gave their informed consent, and the study was approved by 
the Ethics Committee of the Hospital District of Southwest Finland 
(VARHA/28314/13.02.02/2023).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 25 October 2023   Accepted: 17 January 2024

References
	1.	 Stuart D, Sellers WR. Linking somatic genetic alterations in cancer to thera-

peutics. Curr Opin Cell Biol. 2009;21:304–10.
	2.	 Beroukhim R, et al. The landscape of somatic copy-number alteration across 

human cancers. Nature. 2010;463:899–905.

https://doi.org/10.1186/s12885-024-11895-6
https://doi.org/10.1186/s12885-024-11895-6


Page 14 of 14Jamalzadeh et al. BMC Cancer          (2024) 24:173 

	3.	 Steele CD, et al. Signatures of copy number alterations in human cancer. 
Nature. 2022;606:984–91.

	4.	 Louhimo R, Lepikhova T, Monni O, Hautaniemi S. Comparative analysis of 
algorithms for integration of copy number and expression data. Nat Meth-
ods. 2012;9:351–5.

	5.	 Marone M, et al. Analysis of cyclin E and CDK2 in ovarian cancer: gene 
amplification and RNA overexpression. Int j cancer. 1998;75:34–9.

	6.	 Ciriello G, et al. Emerging landscape of oncogenic signatures across human 
cancers. Nat Genet. 2013;45:1127–33.

	7.	 Zack TI, et al. Pan-cancer patterns of somatic copy number alteration. Nat 
Genet. 2013;45:1134–40.

	8.	 Drews RM, et al. A pan-cancer compendium of chromosomal instability. 
Nature. 2022;606:976–83.

	9.	 Etemadmoghadam D, et al. Integrated genome-wide DNA copy number 
and expression analysis identifies distinct mechanisms of primary chemore-
sistance in ovarian carcinomas. Clin Cancer Res. 2009;15:1417–27.

	10.	 Zhou C, et al. Integrated Analysis of Copy Number Variations and Gene 
Expression Profiling in Hepatocellular carcinoma. Sci Rep. 2017;7:10570.

	11.	 Lahtinen, A. et al. Evolutionary states and trajectories characterized by 
distinct pathways stratify ovarian high-grade serous carcinoma patients. 
bioRxiv 2022.08.30.505808 (2022) doi:https://​doi.​org/​10.​1101/​2022.​08.​30.​
505808.

	12.	 Andrews, S. (2010) FastQC: A quality control tool for high throughput 
sequence data Available online at: http://​www.​bioin​forma​tics.​babra​ham.​ac.​
uk/​proje​cts/​fastqc/.

	13.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics. 2014;30:2114–20.

	14.	 Picard. https://​broad​insti​tute.​github.​io/​picard/.
	15.	 McKenna A, et al. The Genome Analysis Toolkit: A MapReduce frame-

work for analyzing next-generation DNA sequencing data. Genome Res. 
2010;20:1297–303.

	16.	 DePristo MA, et al. A framework for variation discovery and genotyping 
using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.

	17.	 Cervera A, et al. Anduril 2: upgraded large-scale data integration framework. 
Bioinformatics. 2019;35:3815–7.

	18.	 Van der Auwera, G. A. & O’Connor, B. D. Genomics in the Cloud. (O’Reilly 
Media, Inc.).

	19.	 Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thou-
sands of samples. bioRxiv 201178 (2018) doi:https://​doi.​org/​10.​1101/​201178.

	20.	 Amemiya HM, Kundaje A, Boyle AP. The ENCODE Blacklist: Identification of 
Problematic Regions of the Genome. Sci Rep. 2019;9:1–5.

	21.	 Van Loo P, et al. Allele-specific copy number analysis of tumors. Proc Natl 
Acad Sci U S A. 2010;107:6910–5.

	22.	 Icay K, et al. SePIA: RNA and small RNA sequence processing, integration, 
and analysis. BioData Min. 2016;9

	23.	 Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 
2013;29:15–21.

	24.	 Roberts A, Pachter L. Streaming fragment assignment for real-time analysis 
of sequencing experiments. Nat Methods. 2013;10:71–3.

	25.	 Häkkinen A, et al. PRISM: recovering cell-type-specific expression 
profiles from individual composite RNA-seq samples. Bioinformatics. 
2021;37:2882–8.

	26.	 Zhang, K. et al. Longitudinal single-cell RNA-seq analysis reveals stress-
promoted chemoresistance in metastatic ovarian cancer. Science Advances 
vol. 8 Preprint at https://​doi.​org/​10.​1126/​sciadv.​abm18​31 (2022).

	27.	 Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of 
single-cell gene expression data. Nat Biotechnol. 2015;33:495–502.

	28.	 Holmström S, Hautaniemi S, Häkkinen A. POIBM: batch correction of hetero-
geneous RNA-seq datasets through latent sample matching. Bioinformatics. 
2022;38:2474–80.

	29.	 Broad GDAC Firehose. https://​gdac.​broad​insti​tute.​org/.
	30.	 Tirosh I, et al. Dissecting the multicellular ecosystem of metastatic mela-

noma by single-cell RNA-seq. Science. 2016;352:189–96.
	31.	 Darmanis S, et al. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells 

at the Migrating Front of Human Glioblastoma. Cell Rep. 2017;21:1399–410.
	32.	 Raj A, van Oudenaarden A. Stochastic gene expression and its conse-

quences. Cell. 2008;135:216.
	33.	 Barbie DA, et al. Systematic RNA interference reveals that oncogenic KRAS-

driven cancers require TBK1. Nature. 2009;462:108–12.
	34.	 Hothorn T, Lausen B. On the Exact Distribution of Maximally Selected Rank 

Statistics. 2002.

	35.	 Cao J, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved 
specificity for multiple gene targeting. Nucleic Acids Res. 2016;44: e149.

	36.	 Fulco CP, et al. Systematic mapping of functional enhancer-promoter con-
nections with CRISPR interference. Science. 2016;354:769–73.

	37.	 Konermann S, et al. Genome-scale transcriptional activation by an engi-
neered CRISPR-Cas9 complex. Nature. 2014;517:583–8.

	38.	 Joung J, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional 
activation screening. Nat Protoc. 2017;12:828–63.

	39.	 Datlinger P, et al. Pooled CRISPR screening with single-cell transcriptome 
readout. Nat Methods. 2017;14:297–301.

	40.	 ImageJ. https://​imagej.​nih.​gov/​ij/.
	41.	 Guan J, Gupta R, Filipp FV. Cancer systems biology of TCGA SKCM: efficient 

detection of genomic drivers in melanoma. Sci Rep. 2015;5:7857.
	42.	 Comprehensive genomic characterization defines human glioblastoma 

genes and core pathways. Nature 455, (2008).
	43.	 Liu S-H, et al. DriverDBv3: a multi-omics database for cancer driver gene 

research. Nucleic Acids Res. 2020;48:D863–70.
	44.	 Schaefer CF, et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 

2008;37:D674–9.
	45.	 NDEx WebApp. https://​www.​ndexb​io.​org/#/​netwo​rkset/​7bc65​b82-​2a2f-​

11ed-​ac45-​0ac13​5e8ba​cf.
	46.	 Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines 

as tumour models by comparison of genomic profiles. Nat Commun. 
2013;4:1–10.

	47.	 Gilbert LA, et al. CRISPR-Mediated Modular RNA-Guided Regulation of 
Transcription in Eukaryotes. Cell. 2013;154:442–51.

	48.	 Bennecke M, et al. Ink4a/Arf and oncogene-induced senescence prevent 
tumor progression during alternative colorectal tumorigenesis. Cancer Cell. 
2010;18:135–46.

	49.	 Yeddula N, Xia Y, Ke E, Beumer J, Verma IM. Screening for tumor suppressors: 
Loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting 
lung adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:E6476–85.

	50.	 Auner V, et al. KRAS mutation analysis in ovarian samples using a high 
sensitivity biochip assay. BMC Cancer. 2009;9:1–8.

	51.	 Stewart ML, et al. KRAS Genomic Status Predicts the Sensitivity of Ovarian 
Cancer Cells to Decitabine. Cancer Res. 2015;75:2897–906.

	52.	 Rahman MT, et al. KRAS and MAPK1 gene amplification in type II ovarian 
carcinomas. Int J Mol Sci. 2013;14:13748–62.

	53.	 Cepero V, et al. MET and KRAS gene amplification mediates acquired resist-
ance to MET tyrosine kinase inhibitors. Cancer Res. 2010;70:7580–90.

	54.	 Bahcall M, et al. Amplification of Wild-type KRAS Imparts Resistance to 
Crizotinib in MET Exon 14 Mutant Non-Small Cell Lung Cancer. Clin Cancer 
Res. 2018;24:5963–76.

	55.	 Kim D, et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour 
growth. Nature. 2023. https://​doi.​org/​10.​1038/​s41586-​023-​06123-3.

	56.	 Masoodi T, et al. Genetic heterogeneity and evolutionary history of high-
grade ovarian carcinoma and matched distant metastases. Br J Cancer. 
2020;122:1219–30.

	57.	 Tomar T, et al. Methylome analysis of extreme chemoresponsive patients 
identifies novel markers of platinum sensitivity in high-grade serous ovarian 
cancer. BMC Med. 2017;15:1–16.

	58.	 Lisio M-A, Fu L, Goyeneche A, Gao Z-H, Telleria C. High-Grade Serous Ovarian 
Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int J Mol Sci. 
2019;20:952.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1101/2022.08.30.505808
https://doi.org/10.1101/2022.08.30.505808
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://broadinstitute.github.io/picard/
https://doi.org/10.1101/201178
https://doi.org/10.1126/sciadv.abm1831
https://gdac.broadinstitute.org/
https://imagej.nih.gov/ij/
https://www.ndexbio.org/#/networkset/7bc65b82-2a2f-11ed-ac45-0ac135e8bacf
https://www.ndexbio.org/#/networkset/7bc65b82-2a2f-11ed-ac45-0ac135e8bacf
https://doi.org/10.1038/s41586-023-06123-3

	Genome-wide quantification of copy-number aberration impact on gene expression in ovarian high-grade serous carcinoma
	Abstract 
	Background
	Methods
	DECIDER cohort patients and samples
	DECIDER whole-genome sequencing preprocessing
	Absolute copy-number estimation
	DECIDER bulk RNA-seq preprocessing
	Bulk RNA-seq decomposition
	TCGA copy-number and bulk RNA-seq data
	Copy-number expression model
	Pathway enrichment analysis
	Survival analysis
	Clustering of CNA versus CNI
	Gene specificity of the pathway aberrations
	Functional transition point of the CNA and its variability
	Cell culture
	Plasmid construction
	Lentivirus production and cell transduction
	Quantitative real-time polymerase chain reaction (qRT-PCR)
	Apoptosis assay
	Colony formation assay

	Results
	Gene level quantification of CNA impacted expression in 14 cancers
	Pathway level analysis with CNI and CNAs identifies enriched pathways in poor and good responding patients with HGSC
	CNI quantification reveals CN-driven pathways with prognostic significance
	Pathway level CNI analysis suggests KRAS as a treatment resistance driver
	KRAS decreases platinum sensitivity in ovarian cancer cells

	Conclusion
	Acknowledgements
	References


