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Abstract 

Background This study aimed to identify metabolic subtypes in ESCA, explore their relationship with immune land‑
scapes, and establish a metabolic index for accurate prognosis assessment.

Methods Clinical, SNP, and RNA‑seq data were collected from 80 ESCA patients from the TCGA database and RNA‑
seq data from the GSE19417 dataset. Metabolic genes associated with overall survival (OS) and progression‑free 
survival (PFS) were selected, and k‑means clustering was performed. Immune‑related pathways, immune infiltration, 
and response to immunotherapy were predicted using bioinformatic algorithms. Weighted gene co‑expression 
network analysis (WGCNA) was conducted to identify metabolic genes associated with co‑expression modules. Lastly, 
cell culture and functional analysis were performed using patient tissue samples and ESCA cell lines to verify the iden‑
tified genes and their roles.

Results Molecular subtypes were identified based on the expression profiles of metabolic genes, and univariate 
survival analysis revealed 163 metabolic genes associated with ESCA prognosis. Consensus clustering analysis classi‑
fied ESCA samples into three distinct subtypes, with MC1 showing the poorest prognosis and MC3 having the best 
prognosis. The subtypes also exhibited significant differences in immune cell infiltration, with MC3 showing the high‑
est scores. Additionally, the MC3 subtype demonstrated the poorest response to immunotherapy, while the MC1 
subtype was the most sensitive. WGCNA analysis identified gene modules associated with the metabolic index, 
with SLC5A1, NT5DC4, and MTHFD2 emerging as prognostic markers. Gene and protein expression analysis validated 
the upregulation of MTHFD2 in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic 
target for ESCA.

Conclusion The established metabolic index and identified metabolic genes offer potential for prognostic 
assessment and personalized therapeutic interventions for ESCA, underscoring the importance of targeting 
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metabolism‑immune interactions in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential thera‑
peutic target for ESCA.

Keywords Tumor immune microenvironment, Esophageal carcinoma, Prognosis assessment, Personalized treatment, 
MTHFD2

Introduction
Esophageal carcinoma (ESCA) is the 7th most commonly 
diagnosed cancer worldwide [1], and those with advanced 
ESCA still suffer from limited treatment options and 
poor survival rates [2]. First-line chemotherapy regimens 
for advanced ESCA typically involve fluorouracil- or plat-
inum-based treatments, which achieve a response rate of 
40–60% [3]. However, if first-line treatment fails, patients 
have a median overall survival (OS) of only 5–10 months, 
and there is currently no efficient standard second-line 
therapy available. Despite the comprehensive characteri-
zation of the human genome [4, 5], targeted therapy for 
ESCA remains challenging. The tumor–node–metastasis 
(TNM) classification system is widely used in clinics to 
assess risk and make treatment decisions [6]. However, 
even cases with similar clinicopathological characteris-
tics can exhibit significantly different risks of death and 
recurrence due to substantial molecular heterogeneities 
[7, 8]. Therefore, it is crucial to further investigate the 
molecular mechanisms associated with the genetic diver-
sity of ESCA to enable precise diagnosis and the develop-
ment of individualized treatments.

Whole-genome mRNA expression profiling refers 
to the comprehensive analysis of gene expression pat-
terns in the entire genome of cancer cells, providing 
detailed information about the molecular characteris-
tics and functional changes in tumors [9]. By analyzing 
the expression levels of thousands of genes, researchers 
can identify gene signatures, pathways and molecular 
subtypes associated with specific tumor phenotypes or 
patient outcomes to improve our understanding of tumor 
biology and identify novel therapeutic targets [10–12]. 
Thus, while the TNM staging system remains essential 
for clinical decision-making in esophageal carcinoma, 
whole-genome mRNA expression profiling research 
offers additional layers of molecular information that can 
potentially enhance personalized medicine approaches, 
improve prognostic accuracy, guide treatment selection, 
and facilitate the discovery of novel therapeutic targets 
[13]. However, the relationship between these identi-
fied genes and the clinical characteristics of ESCA still 
requires comprehensive elucidation, especially consider-
ing the lack of validation of these identified targets in cell 
lines and patient samples.

Cancer has been proposed as a disease associated with 
metabolic disturbances [14]. Various genes and mutations 

linked to cancer interfere with different metabolic pro-
cesses that support the proliferation of cancer cells, 
including aerobic glycolysis, one-carbon metabolism, and 
glycogenolysis [15, 16]. In ESCA, intratumoral metabo-
lism is also influenced by the heterogeneity of gene muta-
tions [17, 18]. Glycolytic ESCA cells experience a state of 
relative oxidative stress due to increased levels of reactive 
oxygen species (ROS), which is counterbalanced by the 
activation of redox metabolic pathways [19]. Addition-
ally, metabolic changes such as obesity and elevated tri-
glycerides (TG) observed in metabolic syndrome (MetS) 
are associated with the risk [20, 21]. Furthermore, a ret-
rospective study has confirmed that MetS, characterized 
by hypertriglyceridemia and impaired fasting glucose, 
predicts a higher risk of relapse in early ESCA cases [22]. 
Numerous studies have suggested that immune function 
can undergo plasticity in different metabolic contexts [23, 
24]. Some research focuses on specific metabolic patterns 
to modulate immune polarization and function, open-
ing possibilities for treating immune-related diseases 
like cancer [25]. Previous studies have also demonstrated 
the impact of the tumor microenvironment (TME) on T 
cell metabolism, particularly in terms of tumor response, 
offering new insights for opportunities to enhance T cell 
response through metabolic manipulation, potentially 
improving the effectiveness of anticancer immunother-
apy [26]. Overall, these findings emphasize the impor-
tance of investigating the genetic landscape of ESCA at 
the metabolic level. Thus, accurate identification and 
characterization of metabolic subpopulations are crucial 
for a better understanding of ESCA and optimizing anti-
cancer immunotherapy’s effectiveness.

In this study, we aimed to investigate the importance 
of metabolism-immune interactions and contribute to 
the understanding of ESCA biology. For this, we classify 
ESCA patients into metabolic subtypes based on gene 
expression profiles from the GSE19417 and TCGA-ESCA 
datasets, investigate the relationship between these sub-
types and immune landscapes, establish a metabolic 
index for accurate prognosis assessment, identify meta-
bolic genes associated with the index, validate their 
expression in patient samples and cell lines, and assess 
their functional significance. Collectively, the findings 
provide important insights into ESCA heterogeneity, 
which could be used as a reference for strategizing per-
sonalized treatment interventions for ESCA patients.
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Materials and methods
ESCA datasets
To investigate the characteristic changes of ESCA in 
metabolism-related pathways, we collected clinical, 
SNP, and RNA-seq data from 80 ESCA patients from 
the TCGA database (https:// cance rgeno me. nih. gov/) 
based on the following criteria: (a) availability of com-
prehensive follow-up information and (b) availability of 
comprehensive gene expression profiles in ESCA. Fur-
thermore, we obtained the expression levels and clini-
cal data from the GSE19417 dataset (n = 70, samples 
with insufficient prognosis data were excluded) from 
the GEO database [27].

Data preprocessing
The clinical data of the ESCA samples obtained from 
TCGA were successfully matched with the correspond-
ing RNA-seq data. Additionally, the ENSG identifiers 
were mapped to GeneSymbol, allowing us to obtain 
expression profiles for 21,652 genes. Similarly, for the 
samples from the GSE19417 dataset, the clinical data 
were consistent with the RNA-seq data, and expression 
profiles for 20,101 genes were obtained by mapping 
chip probes to gene names using probe annotation files.

Metabolic ESCA subtype identification
In this study, a total of 2,923 metabolic genes enriched 
in 117 metabolic pathways were obtained from the 
Molecular Signatures Database (MSigDB) [28]. These 
genes were then used to select metabolic genes asso-
ciated with survival based on a threshold of log-rank 
P < 0.05. Among these, expression data from 163 met-
abolic genes associated with survival were used for 
k-means unsupervised clustering. The clustering pro-
cess was performed using the "ConsensusClusterPlus" 
package [29] with 500 iterations. To determine the opti-
mal cluster number, curves were plotted based on the 
consensus score and cumulative distribution function 
(CDF). Subsequently, SigClust analysis was conducted 
to compare the two subtypes and assess the significance 
of the clustering results.

Prediction of activity of immune‑related pathway, immune 
infiltration, as well as response to immunotherapy
In this study, the ESTIMATE algorithm was employed 
to calculate the ESTIMATE/immune/stromal scores 
and tumor purity for all cancer samples [30]. The xCell 
algorithm [31] was used to predict the relative lev-
els of different types of human immune cells within 
the tumor microenvironment (TME). To validate the 
results, established approaches such as EPIC [32] and 
MCPcounter [33] were combined. The activities of 

immune pathways in various subtypes were predicted 
using Single-sample GSEA (ssGSEA) with the GSVA 
R package [34]. Enrichment scores were used to indi-
cate the extent of up- or downregulation of coordinated 
genes in individual samples. The response to immuno-
therapy was assessed using the tumor immune dysfunc-
tion and exclusion (TIDE) algorithm (http:// tide. dfci. 
harva rd. edu/). A higher TIDE score suggests a higher 
likelihood of immune escape, indicating that patients 
are less likely to benefit from immunotherapy.

Establishment of the typical metabolic index for ESCA 
cases
To establish a typical index for classifying metabolic sub-
types, linear discriminant analysis (LDA) was employed. 
A total of 163 metabolic genes associated with prog-
nosis were utilized, and each segment was subjected to 
Z-transformation. Fisher’s LDA optimization criterion 
was used to ensure maximal dispersion of the centroids 
for each group. As a result, a linear combination, denoted 
as A, was determined to maximize the inter-class vari-
ance relative to the intra-class variance. The model 
indicated that the initial two features were sufficient to 
distinctly differentiate the different subtypes.

Weighted gene co‑expression network analysis (WGCNA) 
and clustering analysis
Gene transcription data were analyzed using Weighted 
Gene Co-expression Network Analysis (WGCNA) [35] 
to identify metabolic genes associated with co-expression 
modules. The gene expression data were collected from 
the TCGA database, and specific parameters were set as 
follows: a cluster threshold of 5, a median absolute devia-
tion greater than 5%, and a β value of 50%. The expression 
matrix was then transformed into a topological matrix. 
Modules were obtained using average linkage with the 
following parameters: a height of 0.3, a minimum module 
size of 30, and a depth split of 1.

Sample collection and preparation
Twenty-seven patients diagnosed with esophageal squa-
mous cell carcinoma (ESCA) were included in this study. 
The patient inclusion criteria were: (1) treatment naïve 
patients, (2) underwent surgical resection, (3) pathologi-
cally confirmed as ESCA, and (4) had complete baseline 
data required for data analysis for this study. Those who 
did not consent to the anonymous use of their tissue sam-
ples, underwent previous cancer treatment and were syn-
chronously diagnosed with other cancer were excluded. 
The patients received treatment at the Department of 
Gastrointestinal Surgery of Fujian Medical University 
Second Affiliated Hospital. Prior to their participation, 
written informed consent was obtained from all patients, 

https://cancergenome.nih.gov/
http://tide.dfci.harvard.edu/
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which was approved by the Institutional Review Board 
of Fujian Medical University Second Affiliated Hospital 
(2021 − 414). The detailed clinical characteristics of the 
patients are presented in Supplementary Table 1.

During surgery, fresh esophageal carcinoma and adja-
cent normal tissue samples were cryopreserved and 
stored in liquid nitrogen. Before the experiment, the 
specimens were thawed at room temperature.

Cell culture
The human normal esophageal epithelial Het-1A cells 
and esophageal squamous cell carcinoma cells (TE-1) 
were purchased from Shanghai Cell Resource Center 
(Shanghai, China). The cells were cultured in RPMI-1640 
(Wako, Osaka, Japan) containing 10% fetal bovine serum 
(FBS) and antibiotics (100 U/ml penicillin and 100 µg/ml 
streptomycin) in a humidified 5%  CO2 incubator at 37°C.

Small interfering RNA (siRNA) experiment
TE-1 cells were selected to investigate the functional role 
of MTHFD2. The experiment included two groups: the 
siNC Group and the si-MTHFD2 Group. The siRNAs 
for MTHFD2 (si-MTHFD sense 5’-GAG CAG UUG AAG 
AAA CAU ATT-3’, si-MTHFD antisense 5’-UAU GUU 
UCU UCA ACU GCU CTT-3’) and the siRNAs for nega-
tive control (si-NC sense 5’-UUC UCC GAA CGU GUC 
ACG UTT-3’, si-NC antisense 5’-ACG UGA CAC GUU 
CGG AGA ATT-3’) were purchased from GenePharma 
(Shanghai, China).

TE-1 cells were inoculated into 6-well plates with a 
density of 1.5 ×  105 cells per well. Transfection mix-
tures of si-MTHFD2 and siNC were added to the cells, 
respectively, according to the manufacturer’s instructions 
(Thermo Fisher Scientific), at a final concentration of 30 
nM/well. 48 h after transfection, the transfection effect 
was detected by qRT-PCR and western blot.

Gene expression analysis by real‑time qPCR
RNA was extracted using TRIzol protocol. Next, cDNA 
synthesis was performed using the PrimeScript RT rea-
gent Kit (Perfect Real Time) following the provided 
instructions. Reverse transcription of RNA into cDNA 
was carried out using reverse transcriptase enzyme. 
The expression levels of target genes, namely SLC5A1, 
MTHFD2, and NT5DC4, were determined using real-
time PCR with the TB Green® Premix Ex Taq fluorescent 
II kit (Tli RNaseH Plus). The reaction mixture was pre-
pared according to the manufacturer’s instructions, and 
PCR amplification was carried out using a Roche Light-
Cycler 480II amplification instrument. The reaction con-
ditions included an initial denaturation step at 95°C for 
30 seconds, followed by 40 cycles of denaturation at 95°C 
for 5 seconds and annealing/extension at 60°C for 30 

seconds. The primer sequence is shown in Supplemen-
tary Table 2.

Western blot
The cells were lysed using a protein lysis buffer supple-
mented with protease inhibitors, and the protein concen-
tration was determined using a protein assay kit. Equal 
amounts of protein were separated by sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 
The proteins were then transferred onto PVDF mem-
brane, followed by blocking using a blocking buffer to 
prevent non-specific binding and incubated with the 
primary antibody against MTHFD2 (ab151447, abcam, 
UK) overnight at 4°C. After washing, the membrane was 
incubated with a secondary antibody conjugated with 
horseradish peroxidase (HRP) for one hour at room 
temperature. Protein bands were visualized using an 
enhanced chemiluminescence (ECL) substrate, and the 
signals were captured using a chemiluminescence imag-
ing system. The protein expression level of MTHFD2 was 
normalized to a loading control GAPDH.

Cell counting Kit‑8 (CCK‑8) assay
Briefly, the transfected TE-1 cells were inoculated in a 
96-well plate with approximately 5,000 cells per well and 
incubated under appropriate conditions for 24 hours. 
Then, the 10 µL of CCK-8 reagent was added to each well 
according to the manufacturer’s instructions, and the 
cells were further incubated at 37°C for 1 h, the absorb-
ance value of each well at 450 nm was detected using a 
microplate analyzer (Multiskan EX, Lab systems, Hel-
sinki, Finland). Each experiment was repeated thrice.

Colony formation assay
After transfection, the cells were plated in six-well plates 
at a density of 1000 cells per well and incubated in RPMI-
1640 medium supplemented with 10% FBS at 37°C and 
allowed to grow undisturbed for 14 days to view the 
visible colonies formed by each cell group. After the 
incubation period, the colonies were fixed with 4% para-
formaldehyde to preserve their structure, stained with 
0.2% crystal violet (Sigma), and photographed using an 
appropriate imaging system. Lastly, the number of cell 
colonies was recorded for both the siNC group and the 
si-MTHFD2 group. Each experiment was repeated thrice.

Transwell assay
Matrigel (BD Biosciences) was dissolved overnight at 4°C 
and then diluted in complete medium at a ratio of 1:3. 
Around 50 µL of the diluted Matrigel mixture was added 
to the upper and lower compartments of each well in a 
24-well plate (Millipore). The plate was then placed in a 
37°C cell incubator for 30 minutes to allow the Matrigel 
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to coagulate. Next, The cells were suspended in 200 µL 
serum-free medium and added to the upper compart-
ment of the Transwell insert, and 600 µL whole medium 
was added to the lower cavity. After incubation for 24 
hours, the matrix and upper compartment cells were 
carefully removed. Cells invading and settling in the sub-
membrane cavity through matrix coating are stained with 
crystal violet. Images of the stained cells were captured 
using a Nikon frontal microscope. Ten random fields of 
view were selected, and the number of invaded cells was 
counted in each field. Each experiment was repeated 
thrice.

Statistical analysis
R software (version 3.5.3, http:// www.R- proje ct. org) was 
used for statistical analysis. The relationship between 
clinical features and different ESCA subtypes was deter-
mined using the chi-squared test or Fisher’s exact test. 
Correlation coefficients were determined using Pearson’s 
correlation and distance correlation analyses. The contin-
gency table was checked using a two-sided Fisher exact 
evaluation. In addition, Kaplan-Meier evaluation was 
employed to generate cluster survival curves, whereas 
statistical differences were analyzed using the log-rank 
test. In multiple testing, FDR correction was performed 
to reduce the false-positive rate (FPR). All the basic 
research experiments were replicated at least three times. 
The data are expressed as mean ± standard deviation, and 
the means of two groups were determined using the Wil-
coxon test for outliers and unpaired Student’s t-test for 
normally distributed variables. One-way ANOVA and 
Kruskal-Wallis test were used separately for parametric 
and nonparametric approaches for comparison between 
different groups. A difference of P < 0.05 (two-tailed) was 
considered statistically significant.

Results
Molecular subtypes identified based on metabolic genes
In this study, the ESCA subtype database was obtained 
from MsigDB based on the expression profiles of meta-
bolic genes. Univariate survival analysis revealed that of 
the 117 metabolic pathways involving 2,923 genes, 163 
were associated with TCGA-ESCA sample prognosis. 
As a result, these 163 metabolic genes were selected for 
further analysis using an unsupervised consensus algo-
rithm. Using ConsensusClusterPlus, the cancer tissues 
from each dataset were classified into k distinct subtypes 
(k = 2, 3, 4, 5, and 6). Based on the Cumulative Distribu-
tion Function (CDF) curves of the consensus scores, the 
optimal classification was achieved with k = 3 for both 
the TCGA-ESCA and GEO datasets (Fig.  1A and 1F). 
SigClust analysis confirmed diverse consensus clusters 
(k = 3) compared to pairwise comparisons (Fig. 1B-C and 

G-H). Prognosis analysis of the three metabolic pheno-
types in the GEO and TCGA databases demonstrated 
significant differences, with MC1 having the poorest 
prognosis and MC3 having the best prognosis (Fig. 1D-E 
and I). Additionally, clinical characteristics, including 
TNM stage, stage, grade, age, and sex, were analyzed 
across the different subtypes. The results showed no sig-
nificant differences in the distribution of these clinical 
characteristics between the subtypes in both the TCGA-
ESCA and GEO datasets (Supplementary Fig.  1). These 
findings indicate that the classification of ESCA samples 
based on metabolic genes exhibits high reproducibility 
across diverse datasets, enabling effective stratification of 
patient prognosis.

Metabolic profiles of diverse subtypes
In this study, GSVA was employed to investigate the het-
erogeneity in metabolic pathways among the three sub-
groups of ESCA. Figure 2 displays the results, indicating 
the enrichment of specific metabolic pathways in each 
subtype. The MC1 subtype, associated with the poor-
est prognosis, exhibited enrichment in two metabolic 
pathways, namely retinoic acid metabolism and glyco-
gen biosynthesis. On the other hand, the MC3 subtype, 
associated with the best prognosis, showed enrichment 
in seven metabolic pathways, including glycosaminogly-
can metabolism, prostanoid biosynthesis, prostaglandin 
biosynthesis, and ADP-ribosylation. The MC2 subtype 
(n = 42) mainly demonstrated enrichment in pathways 
such as the citric acid cycle, pentose phosphate path-
way, and fatty acid metabolism. These findings highlight 
the differential activation of metabolic pathways across 
diverse subtypes, underscoring the genetic significance of 
classification based on metabolic genes.

ESCA immunogenicity
In the TCGA dataset we used five software programs, 
EPIC, MCPcounter, ESTIMATE, CIBERSORT, and 
xCell, to evaluate the immune cell infiltration. In TCGA-
ESCA samples, the proportions of B cells, CD8_Tcells, 
and Endothelia immune cells were significantly higher 
in MC3 than in MC1 and MC2 in the EPIC approach 
(Fig.  3A). Further analysis using the MCP counter 
approach revealed significant differences in immune cell 
infiltration within the tumor microenvironment (TME) 
across the subgroups. The CM3 subgroup exhibited 
the highest scores for most immune cell types, while 
the MC1 subtype had relatively lower scores, and the 
MC2 subtype had the lowest scores (Fig.  3B). Similar 
results were obtained using ESTIMATE score (Fig. 3C). 
The software calculations of CIBERSORT allowed us to 
observe that most of the immune cells were not signifi-
cant between metabolic subtypes (Fig.  3D). In addition, 

http://www.R-project.org
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most of the 64 immune cells assessed by xCell were found 
in higher proportions in MC3 than in MC1 and MC2 
(Fig. 3E). By evaluating the five immune infiltration soft-
ware, we found significant differences in immune charac-
teristics between subgroups (Fig.  3F), with MC3 having 
the highest immune infiltration.

Different responses to immunotherapy of 3 ESCA 
metabolic subtypes
The TIDE algorithm is a useful tool for modeling two 
major tumor immune infiltration mechanisms: prevent-
ing T-cell infiltration with low cytotoxic T-lymphocyte 
(CTL) levels and stimulating T-cell dysfunction with 
high CTL levels. In this study, the TIDE algorithm was 
employed to investigate whether there are significant dif-
ferences in the response to immunotherapy among the 
different subtypes in the GEO and TCGA-ESCA datasets.

The results indicated that the TIDE score of the MC3 
subtype in the TCGA cohort was significantly higher 
compared to the MC1 and MC2 subtypes (Supple-
mentary Fig.  2A-B). Additionally, the percentage of 
immunotherapy responders was significantly lower in 
the MC3 subtype, suggesting a higher probability of 
immune escape and a lower likelihood of benefiting from 
immunotherapy.

To further validate these findings, the subclass mapping 
method was used to compare the similarity of our defined 
three metabolic subtypes to patients in the GSE7220 
dataset with different responses to immunotherapy. 
Lower p-values indicate higher similarity. The analysis 
revealed that the MC3 subtype was insensitive to PD-1 
inhibitors (Supplementary Fig.  2E). Similar results were 
obtained when analyzing the GSE19417 dataset (Sup-
plementary Fig. 2C, D and F). This indicate that samples 

Fig. 1 Identification of metabolic subtypes in the ESCA sample from the TCGA and GEO cohorts. A The cumulative distribution function 
(CDF) curves of consensus scores based on different subtype number (k = 2 ~ 6) in the TCGA‑ESCA cohort. B The CDF Delta area curve of all 
samples in the TCGA‑ESCA cohort when k = 3. C The consensus score matrix of ESCA samples in the TCGA‑ESCA cohort when k = 3 (1 = MC1, 
2 = MC2, 3 = MC3). D and E Kaplan–Meier curves showing the distinct OS (D) and PFS (E) of patients in the three metabolic‑related subtypes 
in the TCGA‑ESCA cohort. F The cumulative distribution function (CDF) curves of consensus scores based on different subtype number 
(k = 2 ~ 6) in the GEO‑ESCA cohort. G The CDF Delta area curve of all samples in the GEO‑ESCA cohort when k = 3. H The consensus score matrix 
of samples in the GEO‑ESCA cohort when k = 3 (1 = MC1, 2 = MC2, 3 = MC3). I Kaplan–Meier curves showing the distinct OS of patients in the three 
metabolic‑related subtypes in the GEO‑ESCA cohort
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belonging to the MC3 subtype exhibited the poorest 
response to immunotherapy, while those in the MC1 sub-
type showed the highest sensitivity to immunotherapy.

Furthermore, the study investigated the differences 
in the sensitivity of different subtype samples in the 
TCGA-ESCA dataset to chemotherapeutics. The analy-
sis revealed that the MC2 subtype was more sensitive to 
gemcitabine, cisplatin, and docetaxel, whereas the MC3 
subtype was more sensitive to paclitaxel than the other 
subtypes (Supplementary Fig. 2G).

The construction of a typical metabolic index
In this study, a typical indicator model for ESCA sample 
classification was constructed using the Latent Dirichlet 
Allocation (LDA) model. The different colors in Sup-
plementary Fig. 3A represent the diverse metabolic sub-
types, showing concentrated distributions and distinct 
inter-category distances.

Significant differences in LDA scores were observed 
among the three TCGA subgroups, with higher scores 

in the MC2 and MC3 subgroups and lower scores in the 
MC1 subgroup (Supplementary Fig. 2B). Similar signifi-
cant differences in LDA scores were observed among 
the diverse subgroups from the GEO databases, with 
significantly higher scores in the MC3 subgroup and 
lower scores in the MC1 and MC2 subgroups (Supple-
mentary Fig. 3C and D). The consistency of LDA scores 
between the two databases suggests the stability of the 
metabolic subtypes across diverse datasets.

Furthermore, receiver operating characteristic (ROC) 
curves were generated to assess the accuracy of the 
typical index in predicting prognosis in the TCGA 
dataset, with an area-under-the-curve (AUC) value of 
0.87 (Supplementary Fig.  3E). Similarly, for the GEO 
dataset, the multiclass AUC value was determined to 
be 0.96 (Supplementary Fig. 3F). These multiclass AUC 
values indicate that the typical metrics used to measure 
different metabolic characteristics demonstrate favora-
ble accuracy in classifying ESCA cases.

Fig. 2 Metabolic profiles of diverse subtypes

(See figure on next page.)
Fig. 3 Immune profiles for the three metabolic subtypes in the TCGA‑ESCA cohort. A The levels of immune infiltrating cells in the samples 
from three ESCA subtypes obtained by the EPIC algorithm. B The levels of immune infiltrating cells obtained by MCPcounter. C The immune scores, 
stromal scores and ESTIMATE scores of the samples from three ESCA subtypes. D Proportion of immune cell components calculated by CIBERSORT 
software. E The levels of immune infiltrating cells obtained by the xCELL approach. E The heatmap showed the immune infiltration levels in samples 
from three subtypes obtained by diverse scoring algorithm
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Fig. 3 (See legend on previous page.)
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Metabolic indices associated with co‑expressed genes
The gene module was determined using the dynamic 
shear method, and the corresponding eigenvector val-
ues were calculated. Clustering analysis was performed 
on all modules, and closed modules were merged into a 
new module using the parameters: depth split = 1, mini-
mum module size = 30, and height = 0.3. A total of 13 
modules were obtained (Fig.  4A-D). The distribution 
of eigenvectors for these 13 modules in the three meta-
bolic subtypes was calculated (Fig. 4E). Eight out of the 
13 modules showed significant differences in their distri-
bution among the three molecular subtypes. Notably, the 
green and yellow modules were significantly associated 
with the MC2 subtype, while the turquoise module was 
significantly enriched in the MC3 subtype.

Correlation analysis was conducted between the 
feature vectors of each module and age, sex, T-stage, 
N-stage, M-stage, and the MC1, MC2, and MC3 sub-
types (Fig. 4F-I). The green and yellow modules showed 
significant positive correlations with the MC2 subtype, 
while the turquoise module displayed a significant posi-
tive correlation with the MC3 subtype. Additionally, the 
eigenvectors of the green and yellow modules exhibited 
significant positive correlations with the constructed typ-
ical metabolic index (Fig. 5A-C).

Enrichment analysis of the modules (Fig.  5E-G) 
revealed that the green module is associated with 
nucleic acid metabolism and oxidative phosphorylation 
processes. The yellow module is related to glycolipid 
metabolism processes, such as cellular lipid catabolism, 
phospholipid biosynthesis, and lipid catabolism. The 
genes in the turquoise module are primarily enriched in 
biological processes such as glycosaminoglycan synthe-
sis, arachidonic acid metabolism, and protein transport.

Finally, to identify metabolism-related prognostic 
markers for ESCA patients, 13 genes (Fig.  5D) with a 
module co-expression weight > 0.5 and significant cor-
relation with the typical metabolic index were selected 
from the green, yellow, and turquoise modules. Among 
them, six genes (SLC40A1, GSTP1, MTHFD2, NT5DC4, 
ABCF2, and SLC5A1) were derived from the green mod-
ule, three genes (CDS1, SLC37A1, and IVD) from the 
yellow module and four genes (DPEP2, TAP2, PDE1A, 
and FAR1) from the turquoise module. The correlation 

between gene expression and patient outcomes was ana-
lyzed by classifying patients into high and low expres-
sion groups based on the expression levels of these 13 
genes. The results (Supplementary Fig. 4) indicated that 
only three genes (SLC5A1, NT5DC4, and MTHFD2) 
from the green module were significantly associated with 
prognosis.

Expression levels of MTHFD2, SLC5A1 and NT5DC4 in ESCA
Based on the obtained results above, ESCA tissue and 
adjacent normal tissues were retrieved from ESCA 
patients perioperatively, and the expression levels of the 
three promising genes were assessed, which were then 
further validated in ESCA cell lines. qRT-PCR analy-
sis revealed distinct gene expression patterns in differ-
ent comparisons. In the ESCA group, the MTHFD2 
expression was found to be significantly increased, while 
SLC5A1 and NT5DC4 showed a slight but nonsignificant 
increase compared to the Adjacent tissue group (Supple-
mentary Fig. 5A-C). In the cell lines, TE-1 cells exhibited 
significantly higher MTHFD2 expression compared to 
the Het-1A group, indicating upregulation in TE-1 cells 
(Fig.  6A), which was validated in western blot experi-
ments (Fig.  6B). These findings suggest that MTHFD2 
may be a potential target for ESCA and are worth further 
exploration.

MTHFD2 knockdown inhibited the proliferation 
and invasion of ESCA cells
In order to explore the effect of MTHFD2 on ESCA, we 
conducted transfection experiments to knock down the 
expression of MTHFD2. The results showed that after 
transfection, the expression of MTHFD2 in the cells 
of the si-MTHFD2 knocking group was significantly 
reduced compared with that in the siNC group (Fig. 7A). 
The transfection efficiency was further verified by West-
ern blot analysis (Fig. 7B).

Subsequently, the viability of si-MTHFD2 group cells 
was assessed using the CCK-8 assay to evaluate the 
impact of MTHFD2 downregulation on cell survival 
and proliferation. The results demonstrated a significant 
decrease in cell viability in the si-MTHFD2 group com-
pared to the siNC group (Fig.  7C). The reduced viabil-
ity of si-MTHFD2 group cells suggests the involvement 

Fig. 4 Weighted gene co‑expression network analysis (WGCNA) of metabolic subtype characteristic index‑related genes in the three ESCA 
subtypes in the TCGA cohort. Analysis of network topology for various soft thresholding powers (A‑C). D Hierarchical cluster tree displaying 12 
modules of co‑expressed genes. E The distribution of eigenvectors of 13 modules in the 3 metabolic subtypes. F Heatmap showing the correlations 
of each module with Age, Gender, T Stage, N Stage, M Stage, MC1, MC2 and MC3 subtypes. G Scatter diagram for module membership vs. gene 
significance for MC2 in the green module. H Scatter diagram for module membership vs. gene significance for MC2 in the yellow module. I Scatter 
diagram for module membership vs. gene significance for MC3 in the turquoise module

(See figure on next page.)
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of MTHFD2 in promoting cell growth and survival in 
ESCA.

To investigate the effect of MTHFD2 downregulation 
on cell proliferation and clonogenic potential, the colony 
formation assay was conducted. The results revealed a 
significant reduction in the number of cell colonies in 
the si-MTHFD2 group compared to the siNC group 
(Fig. 7D). The results indicate that MTHFD2 downregu-
lation impairs the ability of ESCA cells to form colonies.

In addition, the invasive ability of si-MTHFD2 group 
cells was evaluated using the Transwell assay, which 
assesses cell migration and invasion. The results showed 
a significant decrease in the invasive ability of si-
MTHFD2 group cells compared to the siNC group. This 
reduced invasiveness of si-MTHFD2 group cells sug-
gests that MTHFD2 plays a crucial role in promoting 
cell invasion in ESCA (Fig. 7E). Overall, these functional 
assays provide valuable insights into the functional role 
of MTHFD2 and highlight its potential as a promising 
therapeutic target in ESCA.

Discussion
Metabolic reprogramming is a well-established hall-
mark in cancer [36], closely related to ESCA prolifera-
tion, migration, and invasion by interacting with immune 
cells, stromal cells, as well as immune cell interactions 
and stromal crosstalk [37, 38]. It has been suggested that 
metabolic reprogramming reduces immune responses 
by starving T cells and secreting suppressive metabolites 
[39, 40]. A pan-cancer study revealed that the expression 
profiles of genes associated with the metabolic pathway 
may indicate the actual metabolic activity of patients [41]. 
Therefore, it is important to identify metabolic subtypes 
and associated immune landscapes to discover metabolic 
heterogeneities and analyze survival differences in ESCA 
cases. Additionally, constructing metabolic characteris-
tic indicators can help evaluate and stratify patient out-
comes and provide novel targets for treatment strategies.

In this study, we used bioinformatics to identify three 
metabolic subtypes (MC1-MC3) with different metabolic 
profiles. Among the subtypes, MC3 showed an increased 
proportion of immune cells and immune pathways, 
along with improved prognosis. However, further analy-
ses suggest that MC3 increases the TIDE score, indicat-
ing a decrease in response to immunotherapy, and these 

findings were validated as signatures of immunosuppres-
sion. The MC3 subtype had increased stromal scores, 
which have been related to tumor development through 
the remodeling of anticancer immunity and immuno-
therapy response [42, 43]. Overall, combining immu-
notherapy with anti-metabolites targeting metabolic 
pathways, such as glycosaminoglycan metabolism, may 
suppress immune dysfunction in MC3 subtype patients. 
On the other hand, the MC1 subtype samples had the 
poorest prognosis, with the second-highest immunosup-
pression score and immune cell infiltration level and the 
lowest TIDE score but the strongest response to immu-
notherapy. These results suggest that the tumor micro-
environment in this subtype exhibits distinct immune 
activation status, emphasize the need for tailored treat-
ment strategies and highlight the potential of combining 
metabolic and immunotherapeutic approaches for ESCA 
patients.

The present study employed WGCNA and the LDA 
algorithm to identify key metabolic genes across the 
three ESCA sample subtypes using a typical characteris-
tic index. The results revealed that the genes associated 
with the typical index were clustered into 13 distinct 
modules. Notably, the yellow, green, and turquoise mod-
ules exhibited significant correlations with the typical 
metabolic indices. From these modules, 13 characteristic 
genes (SLC40A1, GSTP1, MTHFD2, NT5DC4, ABCF2, 
SLC5A1, CDS1, SLC37A1, IVD, DPEP2, TAP2, PDE1A, 
and FAR1) were selected as key metabolic genes for 
ESCA cases, their potential in predicting patient progno-
sis was assessed, and the results indicated that SLC5A1, 
NT5DC4 and MTHFD2 showed significant associations 
with ESCA prognosis. The robustness and reproducibil-
ity of the metabolic index across diverse datasets enhance 
its clinical potential for assisting in prognosis assessment 
and guiding personalized treatment decisions.

Two of the three genes mentioned above have been 
implicated in cancer-related processes. SLC5A1, also 
known as sodium/glucose transporter 1 (SGLT1), is 
highly expressed in various tumors and contributes to 
the uptake of glucose by tumor cells, supporting their 
glycolytic metabolism. It has been associated with cancer 
cell growth, metastasis, and poor survival outcomes [44]. 
Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) 
is a key enzyme involved in the m1C cycle, which plays 

(See figure on next page.)
Fig. 5 Mining hub gene‑related metabolic subtype characteristic indices. A Correlation analysis of module feature vector and metabolic 
subtype characteristic index. B The relationship between the eigenvector of the green module and the characteristic index. C The relationship 
between the eigenvector of the yellow module and the characteristic index. D Co‑expression network of hub genes associated with metabolic 
subtype characteristic index. E GO‑BP and KEGG enrichment analysis of genes in the green module. F GO‑BP and KEGG enrichment analysis 
of genes in the yellow module. G GO‑BP and KEGG enrichment analysis of genes in the turquoise module
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a role in metabolic reprogramming, immune evasion, 
and disease progression in multiple cancers, including 
prostate cancer, lung adenocarcinoma, and ESCA [45–
49]. However, the association of NT5DC4 with patient 

survival has not been previously reported, and its specific 
role in regulating the biological functions of tumor cells 
needs to be further investigated in in  vivo and in  vitro 
studies.

Fig. 6 The expression of MTHFD2 is up‑regulated in ESCA. The expression level of MTHFD2 in ESCA cell lines was detected by qRT‑PCR (A) 
and western blot (B). **p < 0.01

Fig. 7 MTHFD2 knockdown inhibited the proliferation and invasion of ESCA cells. A qRT‑PCR assay to evaluate the transfection effect of MTHFD2 
in TE‑1 cells. B Western blot assay confirmed the transfection efficiency of MTHFD2 in TE‑1 cells. C‑E Functional experiments demonstrating 
the effects of downregulating MTHFD2 on (C) cell viability via CCK‑8 assay, (D) the ability of ESCA cells to form colonies via clonogenic assay, and (E) 
promoting ESCA cell invasion via Transwell assay. **p < 0.01
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The gene expression analysis conducted in ESCA sam-
ples and cell lines revealed distinct expression patterns 
of the three promising genes (MTHFD2, SLC5A1, and 
NT5DC4) compared to normal tissues and control cell 
lines. Specifically, MTHFD2 expression was significantly 
increased in ESCA samples, indicating its upregulation 
in the disease context, suggesting its potential involve-
ment in promoting tumor growth and progression. The 
subsequent protein expression analysis validated the 
gene expression findings of MTHFD2, reinforcing its 
relevance in ESCA and demonstrating its potential as a 
biomarker for the disease. To evaluate the functional 
impact of MTHFD2 downregulation, functional assays 
were performed. Overall, the functional characterization 
assays provide important insights into the functional role 
of MTHFD2 in ESCA, demonstrating its involvement in 
cell viability, proliferation, colony formation and inva-
sion. These findings are in light with previous literature 
[50], support the significance of MTHFD2 as a poten-
tial therapeutic target in ESCA and suggest that target-
ing MTHFD2 could be a promising approach to inhibit 
tumor growth and progression, as well as a link between 
the identified metabolic subtypes and their associated 
molecular mechanisms, adding to the overall understand-
ing of ESCA heterogeneity and its clinical implications.

Overall, the findings of this study have potential clini-
cal impacts. The identification of metabolic subtypes and 
their associated metabolic profiles can aid in refining 
prognosis assessment and personalizing treatment strate-
gies for ESCA patients [51]. The differential immune cell 
infiltration observed among the subtypes suggests the 
potential for tailored immunotherapeutic approaches. 
The construction of a metabolic index with high accu-
racy in classifying ESCA cases can assist in clinical deci-
sion-making and contribute to precision medicine [52]. 
Moreover, the identification of prognostic metabolic 
genes, such as MTHFD2, provides potential targets for 
therapeutic interventions and opens avenues for devel-
oping novel treatment strategies. To further advance the 
field, future studies could explore the functional mecha-
nisms through which the identified metabolic genes, 
including MTHFD2, contribute to ESCA progression 
and treatment response. Additionally, investigations into 
the crosstalk between metabolic reprogramming and 
immune modulation within the tumor microenviron-
ment could provide deeper insights into the interplay 
between metabolism and the immune system in ESCA. 
Longitudinal studies involving larger patient cohorts and 
prospective clinical trials are needed to validate the clini-
cal utility of the identified metabolic subtypes, metabolic 
index, and prognostic genes, ultimately translating these 
findings into improved patient outcomes and more effec-
tive therapeutic interventions for ESCA.

Despite the interesting findings reported, there were 
several limitations that should be acknowledged. Firstly, 
although the inclusion of 150 cases from RNA-seq and 
microarray platforms enhances the reliability and robust-
ness of the findings, prospective studies are necessary to 
validate whether the identified key metabolic genes can 
serve as prognostic indicators and predictors of response 
to immunotherapy in patients with ESCA. Secondly, this 
study relied on bioinformatic analysis of publicly acces-
sible cancer databases, and further studies involving 
clinical samples are warranted to validate the identified 
hallmarks. Thirdly, additional investigations are needed 
to elucidate the underlying mechanisms linking meta-
bolic modulation and ESCA prognosis for the identified 
metabolic genes. Lastly, exploring whether intratumoral 
metabolic features undergo changes following treatment 
in ESCA patients and whether such changes influence 
patient response to immunotherapy is important.

Conclusion
In conclusion, this study successfully identified three 
distinct metabolic subtypes in ESCA and characterized 
the immune networks and metabolic pathways associ-
ated with each subtype. The findings enhance our under-
standing of the interplay between tumor metabolism and 
immunity and suggest the potential benefits of combin-
ing immunotherapy with anti-metabolite treatments to 
enhance anticancer immunity. Additionally, the identi-
fied metabolic genes MTHFD2 exhibited strong predic-
tive ability, and may be potential therapeutic targets for 
ESCA. Overall, these findings contribute to our knowl-
edge of ESCA heterogeneity and provide potential targets 
for personalized therapeutic approaches.
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tion in the three ESCA subtypes in the GEO‑ESCA cohort. (H) Gender ratio 
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metabolic subtypes. (A) Differences in TIDE scores among 3 subtypes of 
samples from the TCGA‑ESCA cohort. (B) Differences in response status to 
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3 subtypes of samples from the GEO‑ESCA cohort. (E) Submap analysis 
showed that MC3 was not sensitive to the PD‑1 inhibitor (Bonferroni‑
corrected P < 0.05) in the TCGA cohort. (F) Submap analysis manifested 
that MC1 could be sensitive to the PD‑1 inhibitor in the GSE19417 
cohort. (G) The box plots of the estimated IC50 for gemcitabine, Cisplatin, 
paclitaxel and docetaxel on samples in 3 subtypes from the TCGA‑ESCA 
cohort. Supplementary Figure 3. Construction of the metabolic subtype 
characteristic index model. (A) The first 2 characteristics of the model were 
able to distinctly classify the TCGA‑ESCA samples into 3 different subtypes. 
(B) The characteristic index of samples in three ESCA subtypes from the 
TCGA cohort. (C) The ROC curve of metabolic subtype characteristic index 
in TCGA‑ESCA cohort. (D) The first 2 characteristics of the model were able 
to distinctly classify the GEO‑ESCA samples into 3 different subtypes. (E) 
The characteristic index of samples in three ESCA subtypes from the GEO 
cohort. (F) The ROC curve of metabolic subtype characteristic index in 
GEO‑ESCA cohort. Supplementary Figure 4. Kaplan–Meier curves show‑
ing the distinct outcomes of ESCA patients with different expression levels 
of SLC40A1, GSTP1, MTHFD2, NT5DC4, ABCF2, SLC5A, CDS1, SLC37A1, 
IVD, DPEP2, TAP2, PDE1A and FAR1. Supplementary Figure 5. Expres‑
sion levels of MTHFD2, SLC5A1 and NT5DC4 in ESCA. qRT‑PCR analysis for 
validating the expresion of (A) MTHFD2, (B) SLC5A1 and (C) NT5DC4 in 
ESCA. **p < 0.01.

Additional file 3: Figure 6B. The original Western Blot images of MTHFD2 
in Figure 6B. From left to right: Het‑1A, TE‑1. The original Western Blot 
images of GAPDH in Figure 6B. From left to right: Het‑1A, TE‑1. Figure 7B. 
The original Western Blot images of MTHFD2 in Figure 7B. From left to 
right: siNC, si‑MTHFD2. The original Western Blot images of GAPDH in 
Figure 7B. From left to right: siNC, si‑MTHFD2.
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