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Abstract 

Background Liver Hepatocellular carcinoma (LIHC) exhibits a high incidence of liver cancer with escalating mortality 
rates over time. Despite this, the underlying pathogenic mechanism of LIHC remains poorly understood.

Materials & methods To address this gap, we conducted a comprehensive investigation into the role of G6PD 
in LIHC using a combination of bioinformatics analysis with database data and rigorous cell experiments. LIHC 
samples were obtained from TCGA, ICGC and GEO databases, and the differences in G6PD expression in different 
tissues were investigated by differential expression analysis, followed by the establishment of Nomogram to deter-
mine the percentage of G6PD in causing LIHC by examining the relationship between G6PD and clinical features, 
and the subsequent validation of the effect of G6PD on the activity, migration, and invasive ability of hepatocellular 
carcinoma cells by using the low expression of LI-7 and SNU-449. Additionally, we employed machine learning to vali-
date and compare the predictive capacity of four algorithms for LIHC patient prognosis.

Results Our findings revealed significantly elevated G6PD expression levels in liver cancer tissues as compared 
to normal tissues. Meanwhile, Nomogram and Adaboost, Catboost, and Gbdt Regression analyses showed 
that G6PD accounted for 46%, 31%, and 49% of the multiple factors leading to LIHC. Furthermore, we observed 
that G6PD knockdown in hepatocellular carcinoma cells led to reduced proliferation, migration, and invasion abili-
ties. Remarkably, the Decision Tree C5.0 decision tree algorithm demonstrated superior discriminatory performance 
among the machine learning methods assessed.

Conclusion The potential diagnostic utility of G6PD and Decision Tree C5.0 for LIHC opens up a novel avenue 
for early detection and improved treatment strategies for hepatocellular carcinoma.

Keywords G6PD, Liver hepatocellular carcinoma, Prognostic, Machine learning, Immunology, Drug Sensitivity, Cell 
proliferation, Cell migration
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Introduction
Liver Hepatocellular carcinoma (LIHC) has a very high 
incidence of liver cancer. Meanwhile, liver cancer ranks 
third among cancer deaths [1]. In 2012, there were more 
than 700,000 confirmed cases of Hepatocellular car-
cinoma in China, and the number of death cases also 
exceeded 700,000. The incidence and mortality of LIHC 
continue to rise worldwide, including in China [1–3]. 
Because the clinical symptoms of LIHC are not eas-
ily detected, 80% of patients are not well treated. Better 
treatment options are urgently needed for patients with 
LIHC [4].

G6PD is a very important biomarker in the pentose 
phosphate pathway (PPP), which is a precursor for nic-
otinamide adenine dinucleotide phosphate (NADPH) 
production in tumor cells [5]. Research has shown that 
high expression of G6PD is strongly correlated to the 
poor clinical prognosis of bladder cancer, lung cancer, 
and breast cancer [6–8]. Animal studies have shown a 
relationship between G6PD and precancerous lesions in 
rat liver. The high expression of G6PD increased the inci-
dence of precancerous lesions, and the number and vol-
ume of LIHC cells were also higher than those in the low 
expression group of G6PD [9]. Nevertheless, the specific 
process of G6PD participating in LIHC needs to be fur-
ther studied.

In recent years, clinicians have applied machine learn-
ing to cancer diagnosis and prognosis prediction, which 
has significantly improved the survival rate of cancer 
patients [10, 11]. Through machine learning, clinicians 
can use big data analysis to analyze a large amount of 
clinical data, accurately predict the prognosis of patients, 
and facilitate the finding of feasible treatment methods 
and symptomatic treatment [12]. Therefore, a large num-
ber of Machine learning algorithms have been developed, 
such as Bayesian Classifier, Neural network algorithm, 
Support vectors machine and Decision Tree C5.0 [13–
15]. However, the application performance of machine 
learning in LIHC has not been validated.

In this study, data analysis investigated the possible 
mechanism between G6PD and LIHC. We concluded 
that the expression level of G6PD could be regarded as 
a prognostic and diagnostic criterion for LIHC patients. 
Gene correlation studies, immunoassays, and drug sensi-
tivity analysis have provided new ideas for treating LIHC. 
Finally, we compared the ability of four machine learning 
algorithms to distinguish between LIHC and para-can-
cerous tissues.

Materials and methods
Datasets acquisition
We obtained related clinical information and the 
RNA sequencing data of LIHC patients from the 

Cancer Genome Atlas (TCGA) database (https:// por-
tal. gdc. cancer. gov/ proje cts/ TCGA- LIHC, dbGaP Study 
Accession:phs000178, 26/7/2022, human), the Inter-
national Cancer Genome Consortium (ICGC-LIRI-JP 
cohort, https:// dcc. icgc. org/ proje cts/ LIRI- JP, 28/8/2022, 
human) database and the Gene Expression Omnibus 
(GEO) database (http:// www. ncbi. nlm. nih. gov/ geo/ 
,28/8/ 2022, human). The TCGA database was elected as 
a training cohort and the databases from ICGC (LIRI-JP) 
and GEO (GSE14520, GSE20140, GSE62232, GSE84005) 
as validation cohorts. It was verified that the G6PD gene 
expression level data obeyed a normal distribution, sub-
sequently, we matched the clinical data and gene expres-
sion of each patient in each database, and then classified 
those with G6PD expression above the average level as 
high expression group, and those with G6PD expression 
below the average level as low expression group. Figure 1 
is the flow chart of this experimental study.

Differential expression analysis and verification of protein 
expressions of G6PD
The Bioconductor package edgeR was employed to iden-
tify the differential expression levels of G6PD in differ-
ent cancer and normal tissues. Immunohistochemistry 
(IHC) is an approach to detecting the distribution and 
expression of relative proteins based on the specific bind-
ing of antigens to antibodies. We captured the progno-
sis-related protein expression profiles of the G6PD gene 
from the Protein Atlas (HPA, https:// www. prote inatl as. 
org/) database for hepatocellular carcinoma tissues and 
normal tissues.

Correlation analysis between G6PD expression level 
and clinical characteristics
Cox regression analyses were fulfilled to value the con-
nection between traditional clinical characteristics 
(including Age, Gender, Grade, TNM stage, and Tumor 
stage I-IV) and G6PD expression level, which provided 
the basis for the establishment of the Nomogram.

Nomogram construction and verification
A nomogram is a method to predict the clinical outcome 
of LIHC patients. R software was used to construct a 
Nomogram including Age, Gender, Grade, Stage, and 
G6PD. In addition, the receiver operating characteristic 
(ROC) curve and the calibration curves were drawn to 
score the prediction accuracy of the Nomogram.

Assessment of the importance of G6PD in LIHC
To further assess the value of G6PD as a clinical prognos-
tic indicator of hepatocellular carcinoma, three machine 
learning models, Adaboost regression, Catboost Regres-
sion, and Gbdt Regression, were utilized to appraise the 

https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://dcc.icgc.org/projects/LIRI-JP
http://www.ncbi.nlm.nih.gov/geo/,28/8/2022
http://www.ncbi.nlm.nih.gov/geo/,28/8/2022
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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importance of G6PD in the prognosis of patients with 
LIHC.

Gene correlation analysis
The R software was utilized to probe the correlation 
between CDC20, CEP55, TRIP13, MYBL2 and G6PD. 
Gene correlation analysis was used to explore the valu-
able genes that may be related to G6PD, this could point 
to the possibility that these genes may have biologically 
similar functions, participate in the same pathways, or be 
similarly regulated.

GO, KEGG, and GSEA analysis
In order to understand the cellular component, molec-
ular function, and biological processes of G6PD in 

humans, the Gene Ontology (GO) was performed by 
the R software. Meanwhile, the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis and 
Gene-set enrichment analysis (GSEA) were imple-
mented to comprehend the related signaling pathways 
of G6PD.

Drug sensitivity assessment
Drug sensitivity data for LIHC patients is available 
in the Cancer Drug Sensitivity Genomics Database 
(https:// www. cance rrxge ne. org/). the drug response 
was presented by the half-maximal inhibitory concen-
tration (IC50) which used the R software. The results 
have appeared in box plots.

Fig. 1 The flowchart of this study

https://www.cancerrxgene.org/
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Calculation of tumor mutational burden
Tumor mutation load (TMB) is an index used to reflect 
the ability and degree of the tumor to produce new anti-
gens, which can indirectly predict the effect of immu-
notherapy on all kinds of tumors. A high TMB index 
indicates a better clinical immunotherapy effect. The 
TMB values were calculated using Perl scripts, and the 
above results were displayed in a scatter diagram.

Immunological analysis
To understand the relationship between Tumor Micro-
environment (TME) and G6PD, we plotted the violin 
of Stromal score, the immune scores, and the estimate 
scores in two groups of LIHC patients with high and low 
G6PD expression. We used the CIBERSORT algorithm 
to calculate differences in 22 tumor-infiltrating immune 
cells in LIHC patients with high and low G6PD expres-
sion levels. CTLA4 and PD-1 Immune checkpoint is 
commonly used in immunotherapy. Finally, we obtained 
the immunophenotype (IPS) of LIHC from the LIHC 
project of Cancer Immunoomics Atlas (TCIA, https:// 
www. tcia. at/ home) to predict the response to immuno-
therapy in the group with high and low G6PD expression.

Survival analysis
Clinical data from TCGA database, GEO (GSE14520) 
database and ICGC database were analyzed for survival 
by Kaplan–Meier curve survival analysis using R soft-
ware. Overall survival (OS) and progression-free survival 
(PFS) were analyzed for TCGA data, and OS was ana-
lyzed for GEO (GSE14520) database and ICGC database.

Feasibility of machine learning algorithms in clinical 
prognosis of LIHC patients
In order to accurately predict a patient’s prognosis, many 
machine learning algorithms have been developed in 
recent years. We selected four machine learning algo-
rithms for comparison: Bayesian classifier, Neural net-
work algorithm, Support vectors machine and Decision 
Tree C5.0.

Cell culture and transfection
We purchased WRL68 liver normal cells from Shang-
hai Fuheng Biotechnology Co., LTD. (Fuheng, Shanghai, 
China), LI-7, SNU-398, SNU-449, SK-HEP-1 Liver cancer 
cells were acquired from Guangzhou Cellcook Biotech-
nology Co., LTD (Cellcook, Guangzhou, China). Dulbec-
co’s modified Eagle’s medium (DMEM; Gibco, Shanghai, 
China) was used to culture WRL68. RPMI 1640’s modi-
fied Eagle’s medium was used to culture SNU-398 (RPMI 
1640 modified; Gibco, Shanghai, China). Meanwhile, 
we cultured LI-7, SNU-449, SK-HEP-1 cells using RPMI 
1640 medium. siRNA-G6PD and non-targeting control 

siRNA (NC-siRNA) were purchased from Ribobio Bio-
technology Co., LTD. (Ribobio, Guangzhou, China). The 
sequence of siRNA-G6PD was TCC TCT ATG TGG AGA 
ATG A. The stareffect II transfection reagent (GenStar, 
Beijing, China) was bound to siRNA-G6PD or NC-SIR-
RNA for 10 min and transfected into LI-7 or SNU-449 
cells. The solution was changed after 6 h, and cells were 
collected after 48 h.

Quantitative real‑time PCR (qRT‑PCR)
Total RNA from WRL68, LI-7, SNU-398, SNU-449, SK-
HEP-1 cells was extracted using RNA-easy Isolation 
Reagent (Vazyme, Nanjing, China). For qRT-PCR, the 
following primers were used: human G6PD, 5′-AAG AAC 
GTG AAG CTC CCT GA-3′ (Forward) and 5′-AAT ATA 
GGG GAT GGG CTT GG-3′ (Reverse); human β-actin, 
5′-GGA AAT CGT GCG TGA CAT -3′ (Forward) and 
5′-GGT GAT GAC CTG GCC GTT -3′ (Reverse). Relative 
expression of G6PD was analyzed using the 2 − ΔΔCT 
method.

Western blots
The RIPA buffer (GenStar, Beijing, China) was used 
to lyse the cells and obtain the protein, which was then 
measured by BCA and a protein sample was made. The 
proteins were transferred into the membrane by elec-
trophoresis and membrane transfer steps. Then it was 
sealed with a sealing solution for 1h, incubated with 
primary antibody for 8h-12h, incubated with secondary 
antibody for 1h, and developed by chemiluminescence. 
Primary antibodies were: Recombinant Anti-Glucose 6 
Phosphate Dehydrogenase antibody [EPR20668] (Abcam, 
ab210702), and Anti-beta Actin [mAbcam 8226] (Abcam, 
ab8226).

Cell viability
LI-7 and SNU-449 were inoculated into 96-well plates 
with 2000 cells/well and incubated for 24 h to attach to 
the wall. 48 h after transfection with siRNA-G6PD or 
NC-siRNA, fresh medium and 10 μL cell counting Kit 8 
(CCK-8, Beyotime, China) were added to each well, and 
after incubation at 37°C for 1 h, absorbance at 450 nm 
was obtained by spectrophotometer and cell viability was 
analyzed.

Transwell invasion and migration assay
Cell chambers were placed in 24-well plates and inva-
sion and migration experiments were performed with or 
without BD Matrigel TM (BD Bioscience, USA). Migra-
tion experiment: 0.3 mL serum-free medium contain-
ing 2 × 105 cells was added to the upper part of the cell 
chamber and 0.7ml medium containing 10% serum was 
added to the lower part of the cell chamber for 12 and 24 

https://www.tcia.at/home
https://www.tcia.at/home
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h. Invasion experiment: 0.3 mL serum-free medium con-
taining 4 × 105 cells was added to the upper part of the 
cell chamber and 0.7ml medium containing 10% serum 
was added to the lower part of the cell chamber for 24 
and 48 h. First, cells were fixed with 4% paraformalde-
hyde for 10 min, then stained with 0.5% crystal violet for 
30 min, cleaned and wiped away the excess cells.

Statistical analysis
All statistical data were analyzed using R software (4.0.5). 
Univariate and multivariate Cox regression analyses were 
applied to appraise the association between G6PD and 
different clinical features. Log-rank test and Kaplan–
Meier analysis were used to assess the effect of G6PD 
expression level on the survival status of LIHC patients. 
ROC curve was applied to evaluate the performance of 
the Nomogram and the machine learning algorithm. the 
statistical significance was installed at P < 0.05.

Results
The expression level of G6PD
First of all, we analyzed the discrepancy of G6PD expres-
sion levels between different cancer tissues and normal 
tissues, and there were significant differences in G6PD in 
17 tissues. LIHC was selected as the research direction 
of this paper (Fig.  2A). Then, we contrasted the expres-
sion levels of G6PD between normal Hepatocellular tis-
sue and LIHC tissue. The expression level of G6PD in 
LIHC tissue was high, and LIHC tissues of the same per-
son tended towards higher G6PD expression levels than 
normal tissues (Fig.  2B-C). the results of the ICGC and 
GSE databases were consistent with those of the TCGA 
database (Fig. S1A-D). the HPA database showed that 
G6PD was highly expressed in LIHC tissues (Fig. S1E-F). 
Subsequently, we analyzed the G6PD gene expression in 
WRL68, LI-7, SNU-398, SNU-449, SK-HEP-1 cells, and 
showed that compared with normal liver cells, the G6PD 
expression level of liver cancer cells was significantly 
increased, and the expression level of LI-7 and SNU-449 
was the highest (Fig.  2D). the results of Western blots 
were the same as those of PCR (Fig. 2E-F).

Effect of G6PD expression levels on prognosis
The Kaplan–Meier curve plotted had been described by 
the log-rank test, which showed that the high expression 
level of G6PD patients had poor OS compared with the 
low expression level of G6PD patients (p < 0.01, Fig. 3A). 
Meanwhile, In the PFS curve, the PFS of patients with 
a high expression level of G6PD was observably lower 
than that of patients with a low expression level (p < 0.01, 
Fig. 3B). The results of GEO database and ICGC database 
were consistent with the TCGA database (Fig.  3C-D). 
Overall Survival odds ratios (OR) for the TGCA, GEO, 

and ICGC databases, respectively 2.03 (1.46–2.83), 1.56 
(1.01–2.41), 2.96 (1.50–5.86).

Establishment and evaluation of the prognostic 
nomogram
First, we explored the relationship between G6PD and 
Age, Gender, Grade, Tumor stage and TNM stage, and 
found that G6PD expression level was dramatically dif-
ferent in Grade, Tumor stage and T stage, respectively 
(Fig. S2A-G). the heatmap was described, which brings 
together a variety of factors (Fig. 4A). To establish a prog-
nostic nomogram consisting of multiple clinical features 
as a model for predicting the prognosis of LIHC, G6PD, 
Age, Gender, Grade, Tumor stage and TNM stage was 
taken into account. At the same time, univariate and 
multivariate Cox regression was carried out. Accord-
ing to univariate Cox regression, G6PD (p < 0.001), 
Stage (p < 0.001) and the difference in the T stage part 
were significant and statistically significant (Fig. 4B). As 
shown by multivariate analysis, the G6PD (HR = 1.338, 
95% CI = 1.177–1.521, p < 0.001) and Tumor stage 
(HR = 1.588, 95% CI = 1.279–1.970, p < 0.001) were con-
sidered as the critical prognostic factors that forecasted 
the OS for LIHC (Fig. 4C). Then, we built a fresh nomo-
gram to predict the one-, three-, and five-year OS rates 
of LIHC patients (Fig. 4D). Each patient corresponds to 
a score through the nomogram, and Patients with high 
scores had poorer outcomes than those with low scores. 
Survival calibration curves including one-, three- and 
five-year survival have been established. A scatter con-
verging to a 45° diagonal would indicate a better model 
fit. The calibration curves show that our model predicts 
well (Fig.  4E). Finally, we evaluated the performance 
of the nomogram, and the results showed that the area 
under the curve (AUC) values of one-, three-, and five-
year survival were 0.730, 0.635, and 0.612, respectively 
(Fig. 4F).

Evaluation of the predictive power of Adaboost regression, 
Catboost regression and Gbdt regression
The results of Adaboost regression, Catboost Regression 
and Gbdt Regression showed that the prediction results 
fitted well with the actual value, and G6PD occupied a 
significant proportion of the clinical prognosis of LIHC. 
(Fig. 5A-C), The evaluation indexes of the three machine 
learning algorithms are shown in Table 1.

G6PD knockout inhibited the proliferation, migration 
and invasion of hepatocellular carcinoma cells
To confirm the effect of G6PD on liver cancer cells, we 
transfected genOFF st-h-G6PD into LI-7 and SNU-
449 liver cancer cells using transfection reagents. PCR 
experiments showed that G6PD gene was knocked down 
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Fig. 2 The Expression level of G6PD. A The different expression level of G6PD between normal and tumor tissues in TCGA. B The different 
expression level of G6PD between normal and hepatocellular carcinoma tissues in TCGA. C The different expression level of G6PD between normal 
and hepatocellular carcinoma tissues in the same patient in TCGA. D-F PCR and WB results of the expression level of G6PD in normal hepatocytes 
and hepatoma cells. *P < 0.05, **P < 0.01, ***P < 0.001
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in both cells (Fig.  6A), and the results of western blots 
experiments were shown in Fig. (Fig.  6C). The cell pro-
liferation experiment showed that the low expression 
of G6PD significantly inhibited the activity of SNU-449 
and LI-7 cells, and the proliferation rate decreased sig-
nificantly compared with normal and NC cells (Fig. 6B). 
Cell migration and invasion experiments showed that 
the migration and invasion ability of cells with low G6PD 
expression was weakened (Fig. S3A-B, Fig. S4A-B).

Gene correlation analysis
For investigating the correlation between G6PD and 
other genes, Correlation Analysis was performed by R 
package. G6PD was positively correlated with CDC20, 
CEP55, TRIP13, MYBL2, and the correlation was sta-
tistically significant, respectively, R = 0.62, 0.61, 0.6, 0.6 
(Fig. 7A-E).

GO, KEGG and GSEA analysis
GO, KEGG and GSEA enrichment analysis were imple-
mented to comprehend the biological processes, cellular 
components, molecular function and related signaling 
pathways of G6PD. The GO analysis results showed that 
the biological processes of G6PD primarily assembled in 
immunoglobulin and B cell-mediated immune response, 
humoral immune response, immunoglobulin comple-
ment activation. The cellular component of G6PD mainly 
focused on external side of plasma membrane, neuronal 
cell body, synaptic membrane, and plasma membrane 
signaling receptor. The molecular function of G6PD 
mainly enriched in channel activity, antigen binding, 
passive transmembrane transporter activity and ion 
channel activity (Fig. S5A, Fig.  8A). The KEGG analysis 
results indicated that the signal pathway of G6PD mainly 
focused on Neuroactive ligand − receptor interaction 

Fig. 3 Effect of G6PD Expression Level on Prognosis. A Effect of G6PD expression level on the OS rate of patients with hepatocellular carcinoma 
in TCGA database. B Effect of G6PD expression level on PFS in patients with hepatocellular carcinoma in TCGA database. C Effect of G6PD expression 
level on the OS rate of patients with hepatocellular carcinoma in GEO (GSE14520) database. D Effect of G6PD expression level on the OS rate 
of patients with hepatocellular carcinoma in ICGC database
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Fig. 4 Prognostic Nomogram Establishment and Validation. A Heat map of the correlation between G6PD expression level and Age, Gender, 
Grade, Tumor stage, TNM stage. B-C Univariate and Multivariate Cox Regression. D Nomogram. E Calibration curves of nomogram on consistency 
between predicted and observed one-, three-, and five-year survival. F ROC curve analysis
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pathway, Cell adhesion molecules pathway, PI3K − Akt 
signaling pathway and Cytokine − cytokine recep-
tor interaction pathway (Fig. S5B). GSEA enrichment 

analysis shown that the pathway of the low expression 
group of G6PD was mainly enriched in Complement and 
Coagulation Cascades, Fatty Acid Metabolism, Glycine 

Fig. 5 Variable importance plot and fitted curve from different Regression models. A Adaboost regression. B Catboost regression. C Gbdt 
regression
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Serine and Threonine Metabolism, Peroxisome, Primary 
Bile Acid Biosynthesis (Fig. 8B).

The connection between G6PD expression and immune 
system
To further research the connection between the expres-
sion level of G6PD in LIHC patients and immune sta-
tus, the connection between G6PD and the TME score, 
immune cell, immune checkpoint was carried out. As 
shown, compared with the high expression level of G6PD, 
the TME score of immune score and the estimated score 
were lower in the low expression level of G6PD, and 
the difference was statistically significant, the differ-
ence in stromal cell score was not statistically significant 
(Fig. 9A). Analysis of immune cell subsets suggested that 
immune cell scores, including B cells naïve, Macrophages 
M0, Monocytes, T cells CD4 memory resting were mark-
edly different between the low- and high-expression level 
of G6PD groups, respectively, R = -0.43, 0.43, -0.23, -0.35, 
P < 0.05 (Fig. 9B, Fig. S6A-E). Then, Fig. 9C showed that 
the relationship between G6PD and tumor mutation bur-
den, R = 0.11, p < 0.05. this indicated that LIHC patients 
with high G6PD expression levels had high TMB scores 
and good immunotherapy effects. Fig. S6F showed the 
coefficient diagram of a relationship between G6PD and 
immune checkpoint. At the same time, we analyzed rou-
tine immune checkpoints including PD1 and CTLA4. 
Whether the expression level of G6PD was high or low, 
the mean IPS showed no significance. (Fig. 9D-G).

Drug sensitivity analysis
To explore the clinical significance of G6PD, the drug 
sensitivity of LIHC was predicted by R software. The con-
sequences revealed that the high expression of the G6PD 
group was more sensitive to 2 kinds of drugs, including 
Phenformin and Erlotinib (Fig.  10A-B). In comparison, 

the low expression of the G6PD group was more sensitive 
to Sorafenib (Fig. 10C).

Prediction of clinical prognosis of LIHC patients by four 
machine learning methods
To predict the clinical prognosis of patients with LIHC, 
we selected four machine learning algorithms, includ-
ing the Bayesian Classifier, Neural network algorithm, 
Support vectors machine, and Decision Tree C5.0. The 
research results showed that in the training group, the 
correct rates of the Bayesian Classifier, Neural network 
algorithm, Support vectors machine, and Decision Tree 
C5.0 were 83.04%,83.74%, 91.70%, and 93.08%, respec-
tively (Fig.  11A). In the test group, the correct rates 
were 83.33% 84.06%, 88.41% and 87.68%, respectively. 
(Fig.  11B). At the same time, we evaluated the predic-
tion performance of the four algorithms, and the evalu-
ation outcomes revealed that in the training group, the 
AUC of Bayesian Classifier, Neural network algorithm, 
Support vectors machine and Decision Tree C5.0 were 
0.845,0.773,0.941,0.987, respectively (Fig.  11C). In the 
test group, the AUC were 0.738,0.706,0.84 and 0.929, 
respectively (Fig. 11D).

Discussion
Baba et al. found that the expression levels of G6PD may 
be strongly associated with the growth of precancerous 
and neoplastic lesions [9]. Dore et  al. found that G6PD 
deficiency significantly reduced the incidence of hepato-
cellular carcinoma in a case–control study [16]. However, 
the mechanism between G6PD expression and LIHC 
remains unclear. In this study, we explored the correla-
tion between G6PD and LIHC, and the possible signal-
ing pathways leading to LIHC by bioinformatics analysis. 
We found a statistically prominent difference in G6PD 
expression level between cancer tissues and para-car-
cinoma tissues of patients with LIHC. Immunohisto-
chemical results obtained from the human protein atlas 
confirmed that G6PD expression levels were significantly 
increased in LIHC. We also confirmed this by PCR and 
WB experiments on one type of normal liver cells and 
four types of liver cancer cells.

Tumor mutation burden has long been used as a bio-
marker for tumor prediction [17]. Consequently, we 
investigated the tumor mutation burden of G6PD, and 
its prognostic impact on hepatocellular carcinoma and 
evaluated the plausibility of the impact. The expres-
sion levels of G6PD were positively related to the tumor 
mutation burden, indicating that the group with high 
G6PD expression levels had a poor immunotherapy 
outcome and a poor prognosis, which was the same as 
the research result of Cao [18]. We also found that ele-
vated G6PD expression resulted in poor OS and PFS in 

Table 1 Adaboost regression, Catboost regression, Gbdt 
regression statistical results

algorithms indexes Training set Cross‑
validation 
set

Adaboost MSE 0.036 5.323

RMSE 0.189 2.281

MAE 0.064 1.644

Catboost MSE 0.329 4.361

RMSE 0.574 2.058

MAE 0.434 1.542

Gbdt MSE 0.007 6.723

RMSE 0.086 2.571

MAE 0.041 1.963
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Fig. 6 Effect of G6PD knockout on proliferation, migration and invasion of hepatocellular carcinoma cells. A, C PCR and WB results of G6PD 
expression in knockout cells. B Effect of G6PD knockout on cell proliferation. *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 7 Gene Correlation Analysis. A Correlation of G6PD with CDC20 gene analyzed using TCGA database data. B Correlation of G6PD with CEP55 
gene analyzed using TCGA database data. C Correlation of G6PD with TRIP13 gene analyzed using TCGA database data. D Correlation of G6PD 
with MYBL2 gene analyzed using TCGA database data. E Correlation of G6PD with SMARCD1, LHFPL2, KNG1, SLC10A1, APOA5, ALDH5A1, G6PC 
genes analyzed using TCGA database data
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Fig. 8 Functional Enrichment Analyses. A GO functional enrichment analysis of G6PD using TCGA database data. B GSEA enrichment analysis 
of G6PD using TCGA database data



Page 14 of 19Li et al. BMC Cancer          (2024) 24:157 

Fig. 9 Immunity Analyses. A Effect of G6PD expression level on TME. B Relationship between G6PD expression level and immune cells. C 
Relationship between G6PD expression level and tumor mutation burden. D-G Value of risk score for immune checkpoint blockade. *P < 0.05, 
**P < 0.01, ***P < 0.001
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LIHC. We studied the influence of G6PD on the prolif-
eration, migration and invasion of LI-7 and SNU-449 by 
knockout of G6PD gene. The results showed that G6PD 
knockdown significantly reduced the proliferation rate, 
migration and invasion ability of LI-7 and SNU-449. 
Cao et  al. showed that the up-regulation of G6PD pro-
moted the survival, metastasis, and invasion of HepG2 
cells [18]. Lu et  al. showed that the high expression of 
G6PD was significantly connected to the metastasis and 
poor prognosis of LIHC, and the migration and invasion 
of LIHC cells were inhibited when the G6PD gene was 
knocked out [19]. Li et  al. showed that the low expres-
sion of G6PD observably prolonged the orthotopic tumor 
model mice’s survival time. When the high expression of 

G6PD resumed, the tumor growth, tumor size, volume, 
and weight were restored [20]. High expression of G6PD 
produces high levels of NADPH via the PPP pathway, as 
well as an increase in glutathione, which in turn counter-
acts oxidative stress and DNA damage, which promotes 
immune escape, tumor progression, and drug resistance 
[5]. Therefore, high G6PD expression is closely associ-
ated with poor LIHC prognosis, and high G6PD expres-
sion promotes the migration and invasive ability of LIHC 
cells through reorganization of the glucose metabolism 
pathway.

We found a positive connection between the expres-
sion level of G6PD and CDC20, CEP55, TRIP13, MYBL2 
in LIHC patients. Several scientists pointed out that 

Fig. 10 Drug sensitivity analysis. A-B Phenformin and Erlotinib were sensitive in the G6PD high expression group. C Sorafenib was sensitive 
in the G6PD high expression group



Page 16 of 19Li et al. BMC Cancer          (2024) 24:157 

CDC20, CEP55, TRIP13, MYBL2 were overexpressed in 
hepatocellular carcinoma, compared with adjacent nor-
mal tissues [21–24]. However, their interactions in pro-
moting hepatocellular carcinoma are not investigated. 
GO, KEGG and GSEA analysis was executed to probe 
the possible involvement of G6PD in hepatocellular car-
cinoma formation. Our study showed that G6PD was 
mainly involved in the immune system and signaling 

pathway (e.g., PI3K-Akt signaling pathway, Cell adhesion 
molecules pathway) in promoting the occurrence and 
development of LIHC. Cheng et  al. indicated that there 
was an interaction between the PI3K-Akt signaling path-
way and G6PD, which promoted the development of can-
cer [25].

By immune analysis, we discovered that the expression 
level of G6PD was positively related to Macrophages M0, 

Fig. 11 Prediction of clinical prognosis of hepatocellular carcinoma by Four Machine learning methods including Bayesian Classifier, Neural 
network algorithm, Support Vector Machine and Decision Tree C5.0. A-B The correct rate of four machine algorithms in the training group 
and Testing group. C-D The ROC curve of evaluating the prediction of the four algorithms
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and negatively correlated with B cells naive, Monocytes, 
and T cells CD4 memory resting. Tekin et  al. showed 
that macrophage M0 had anti-tumorigenic activity and 
impaired the growth of pancreatic cancer cells through 
TNF-α secretion [26]. Therefore, the increase of mac-
rophage M0 may have an inhibitory effect on LIHC. Nev-
ertheless, there is no research on the correlation between 
Macrophages M0, B cells naive, Monocytes, T cells CD4 
memory resting and hepatocellular carcinoma. Immune 
checkpoint analysis showed that G6PD was positively 
associated with most immune checkpoints. Still, the 
results of the risk score values of immune checkpoint 
blockade (ICB) suggested that G6PD may not played 
a role in predicting the risk score model of PD1 and 
CTLA4 treatment response.

The drug sensitivity test found that the group with 
high G6PD expression level was sensitive to Phenformin 
and Erlotinib, and the group with low G6PD expression 
level was sensitive to Sorafenib. Phenformin is a diabetes 
treatment but causes a fatal lactic acidosis reaction [27]. 
Recently, a study has suggested that Phenformin has an 
anti-tumor effect and can inhibit the glucose metabolism 
of tumor cells [28]. Huang et  al. found that the combi-
nation of Phenformin and Sorafenib showed a synergis-
tic ability to restrain the proliferation and migration of 
LIHC [29]. Erlotinib is a treatment for non-small cell 
lung cancer [30]. Zheng et al. indicated that the efficacy 
of Erlotinib in the treatment of hepatocellular carcinoma 
was unclear, but they found that 2-methoxy estradiol 
enhanced the inhibitory effect of Erlotinib on hepato-
cellular carcinoma [31]. Phase 3 clinical trial showed 
that the combination of sorafenib and erlotinib had little 
effect on the survival rate of patients with advanced LIHC 
[32]. Sorafenib is the gold standard for the treatment of 
advanced hepatocellular carcinoma. However, due to 
individual heterogeneity, the resistance to Sorafenib has 
gradually attracted attention [33]. High glucose metabo-
lism due to GLUT1/ALDOB/G6PD axis expression 
promotes drug resistance in pancreatic cancer, and inhi-
bition of the GLUT1/ALDOB/G6PD axis may serve as 
a target for drug resistance therapy [34]. Thus, the high 
level of G6PD may be an important reason for Sorafenib 
resistance.

The Bayesian classifier is an artificial intelligence widely 
used in medical decision-making. Junath et al. applied it 
to the prognosis diagnosis of breast cancer and consid-
ered it feasible and effective [35]. Bo et al. believed that 
using support vector machines could effectively predict 
the time and location of cancer recurrence, and the effect 
was better than that of the neural network algorithm, 
which was consistent with our research results [36]. 
Noh et  al. trained the Decision Tree C5.0 decision tree 
classifier by adding 7 histological features to predict the 

prognosis of patients with advanced gastric cancer and 
concluded that the model had a more accurate prediction 
effect [37]. In this study, TCGA database data was used to 
compare the performance of these four machine-learning 
algorithms. We believe that Decision Tree c5.0 can pre-
dict the prognosis of LIHC patients better than other 
algorithms.

Of course, there are still many shortcomings in this 
study. First, the data in this study come from a public 
database, and we don’t supervise the collection of data, so 
the reliability of the data is not clear. Second, the research 
results are only obtained through data analysis, and 
the credibility of the results needs to be demonstrated 
through experimental research.

Conclusion
In this investigation, we conducted a comprehensive 
assessment of G6PD’s clinical value as a diagnostic and 
prognostic indicator for LIHC. Our study results dem-
onstrated the potential of G6PD to enhance LIHC diag-
nosis, enabling early detection and prompt treatment for 
affected patients. Through meticulous cell experiments, 
we confirmed the substantial impact of low G6PD expres-
sion on the proliferative activity, migration, and invasion 
of liver cancer cells. Machine learning shows Decision 
Tree c5.0 has a better ability to predict the clinical prog-
nosis of LIHC patients. In conclusion, G6PD, along with 
Decision Tree c5.0, holds promise as a valuable tool for 
predicting the prognosis of LIHC patients and offering 
diagnostic insights to clinicians.
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