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Abstract 

Background  Surgical sentinel lymph node biopsy (SLNB) is routinely used to reliably stage axillary lymph nodes 
in early breast cancer (BC). However, SLNB may be associated with postoperative arm morbidities. For most patients 
with BC undergoing SLNB, the findings are benign, and the procedure is currently questioned. A decision-support 
tool for the prediction of benign sentinel lymph nodes based on preoperatively available data has been developed 
using artificial neural network modelling.

Methods  This was a retrospective geographical and temporal validation study of the noninvasive lymph node stag‑
ing (NILS) model, based on preoperatively available data from 586 women consecutively diagnosed with primary 
BC at two sites. Ten preoperative clinicopathological characteristics from each patient were entered into the web-
based calculator, and the probability of benign lymph nodes was predicted. The performance of the NILS model 
was assessed in terms of discrimination with the area under the receiver operating characteristic curve (AUC) and cali‑
bration, that is, comparison of the observed and predicted event rates of benign axillary nodal status (N0) using cali‑
bration slope and intercept. The primary endpoint was axillary nodal status (discrimination, benign [N0] vs. metastatic 
axillary nodal status [N+]) determined by the NILS model compared to nodal status by definitive pathology.

Results  The mean age of the women in the cohort was 65 years, and most of them (93%) had luminal cancers. 
Approximately three-fourths of the patients had no metastases in SLNB (N0 74% and 73%, respectively). The AUC 
for the predicted probabilities for the whole cohort was 0.6741 (95% confidence interval: 0.6255–0.7227). More 
than one in four patients (n = 151, 26%) were identified as candidates for SLNB omission when applying the prede‑
fined cut-off for lymph node-negative status from the development cohort. The NILS model showed the best calibra‑
tion in patients with a predicted high probability of healthy axilla.
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Conclusion  The performance of the NILS model was satisfactory. In approximately every fourth patient, SLNB could 
potentially be omitted. Considering the shift from postoperatively to preoperatively available predictors in this valida‑
tion study, we have demonstrated the robustness of the NILS model. The clinical usability of the web interface will be 
evaluated before its clinical implementation.

Trial registration  Registered in the ISRCTN registry with study ID ISRCTN14341750.

Date of registration 23/11/2018.

Keywords  Breast neoplasm, Artificial neural network, Staging, Axillary lymph nodes, Validation, Decision support tool, 
Sentinel lymph node biopsy

Introduction
To provide breast cancer (BC) patients with optimal care, 
axillary staging, as well as the investigation of the bio-
logical and genetic features of the tumor, are of utmost 
importance [1, 2]. When diagnosed, the most intrusive 
questions are the curability of the BC and how advanced 
the disease is. Surgical sentinel lymph node biopsy 
(SLNB) is routinely used for reliable axillary staging. Axil-
lary imaging in early BC, most commonly ultrasound, is 
considered an inadequate staging modality; the inability 
to safely distinguish between no/low (1–2 involved axil-
lary nodes) and high nodal burden (≥ 3 positive nodes) 
is particularly concerning [3]. Although considered a 
minor surgical procedure, SLNB is associated with con-
siderable early and late side-effects in some patients, for 
example, postoperative swelling, arm lymphedema, par-
esthesia, and arm discomfort [4, 5]. In addition, for most 
BC patients undergoing SLNB, the findings are benign; 
hence, the procedure could have been avoided in these 
women [6, 7].

In the 1990s, the introduction of SLNB in routine clini-
cal practice [8] significantly reduced axillary lymph node 
dissection (ALND)-associated morbidity, without com-
promising the long-term prognosis of these women [9]. 
Following the findings of axillary lymph node metasta-
ses on SLNB, patients were recommended to undergo 
ALND. In the pursuit of de-escalating axillary surgery, 
the American College of Surgeons Oncology Group 
(ACOSOG) Z0011 trial investigated whether ALND 
could be avoided in patients with clinical T1–T2 and 
one or two positive sentinel lymph node(s), considering 
adjuvant treatments and breast irradiation. This practice-
changing trial showed that there was no significant differ-
ence in the locoregional recurrence rate after 10 years of 
follow-up [10, 11].

Currently, the most common standard axillary stag-
ing method for women with clinically node-negative 
(cN0) BC is SLNB, a surgical method with an estab-
lished false-negative rate of 10% [12, 13]. However, the 
routine use of SLNB has recently been disputed. The 

ongoing sentinel node vs. observation after axillary 
ultrasound (SOUND) trial is comparing SNLB vs. non 
surgical staging of the axilla in women with cN0 BC and 
tumors < 20 mm [14]. In addition, in an ongoing Dutch 
multicenter trial, the Borstkanker Onderzoek Groep 
(BOOG) 2013–08 trial, the safety of SLNB omission in 
women with cN0 T1–2 invasive BC undergoing breast-
conserving surgery was investigated [15]. In addition 
with the results from the ongoing Intergroup Sentinel 
Mamma (INSEMA) trial [7], hopefully, there will soon 
be enough data available to support SLNB omission in 
patients fulfilling the inclusion criteria for these trials 
without reducing oncological safety. Recently, patient-
reported outcomes in the INSEMA trial have been pub-
lished, showing less arm morbidity in the non-SLNB 
group than in the SLNB group [16]. Further de-esca-
lation is supported by the updated American Society 
of Clinical Oncology (ASCO) guidelines presented in 
2021, stating that SLNB could be omitted altogether 
in women ≥ 70  years with cT1N0, hormone receptor-
positive, human epidermal growth factor receptor 2 
(HER2)-negative BC, conditionally treated with adju-
vant hormonal therapy [2]. Concurrently, the indication 
for neoadjuvant chemotherapy has broadened, includ-
ing patients with triple-negative BC and HER2-positive 
BC; in patients with pathological complete response, 
the omission of SLNB after neoadjuvant chemotherapy 
is now evaluated (EUBREAST-01 ClinicalTrials.gov 
Identifier: NCT04101851) [1, 17].

We developed an artificial neural network (ANN) 
model for noninvasive lymph node staging (NILS) for 
early cN0 BC. In 2019, the original ANN model utilized 
15 clinical and postoperative pathological characteristics 
for predicting nodal status [18] and showed an estimated 
potential to reduce the fraction of SLNB by 18–27% in 
newly diagnosed BC patients. Implementing the NILS 
prediction model is cost-effective, according to health-
economy modelling; the NILS prediction model has been 
shown to be associated with cost reductions and likely 
overall health gains [19]. To provide a clinically useful 
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risk assessment of nodal involvement, 10 preoperatively 
available variables have been used in the current updated 
NILS model for which a web interface has been devel-
oped [20]. Herein, we present the results of the NILS vali-
dation study using exclusively preoperative data for risk 
assessment. The study protocol was published before the 
finalization of data collection, including sample size esti-
mation [21].

The present study aimed to validate the NILS predic-
tion model using one temporal and one geographical ret-
rospective cohort. The important development from the 
original ANN model, including preoperative and postop-
erative input characteristics, to the current NILS model, 
strictly using preoperative data only, constitutes domain 
validation.

Methods
Women, ≥18  years of age, with cN0 (clinically and by 
ultrasound) invasive BC diagnosed through core needle 
biopsy (CNB) scheduled for primary surgery and accept-
ing participation (i.e., not opting out) were included. Sur-
gical axillary staging with SLNB was a prerequisite for 
inclusion in this study. Patients previously undergoing 
ipsilateral breast/axillary surgery, scheduled for neoadju-
vant chemotherapy, or undergoing upfront axillary nodal 
dissection were not eligible for study inclusion.

In this retrospective, observational cohort study, 
retrieved patient and tumor characteristics were pro-
spectively entered into the web calculator. No interven-
tions or additional examinations were performed, and 
no results were reported to the patients or physicians. 
The patients were treated according to clinical routine 
and oncological treatment in accordance with deci-
sions made at the multidisciplinary conference, and the 
resected breast and axillary lymph nodes were patho-
logically examined. The STrengthening the Reporting 
of OBservational studies in Epidemiology (STROBE) 
checklist [22] was used for study and manuscript 
preparation.

The NILS prediction model
The study population for the development of the ANN 
model was based on a prospectively maintained patho-
logical database on consecutive breast cancer patients 
with clinically node negative status scheduled for primary 
surgery at Skåne University Hospital, Lund, Sweden. The 
original ANN model presented in 2019 was based on a 
combination of preoperatively and postoperatively avail-
able data [18]. The characteristics of the development 
cohort is thoroughly described in the provided Supple-
mentary File 1.

In short, ANN is a machine learning method that has 
the ability to explore nonlinear associations in a dataset. 

The ANN within the NILS prediction model contains 
ensembles of multilayer perceptrons (MLP). Each MLP 
contains three layers: 1) the input layer (clinicopatho-
logical variables), 2) the hidden layer, and 3) the output 
layer. To learn the association to nodal status (output), 
the MLPs were trained by a standard back-propagation 
technique. Four-fold cross-validation, repeated five 
times, was used as the internal model validation strategy 
to obtain optimal model parameters.

In this study, the NILS model for the prediction of 
nodal status in cN0 BC patients was based on 10 preop-
eratively available features: patient age at diagnosis and 
eight features that are easily and reliably accessible from 
preoperative imaging and CNBs: tumor size, multifocal-
ity, estrogen receptor (ER) status, progesterone receptor 
(PR) status, histological type, mode of detection, tumor 
localization in the breast, and Ki-67 positivity. Vascular 
invasion, the tenth feature of the NILS model, was dif-
ficult to determine preoperatively (Fig.  1). Therefore, a 
separate ANN model was developed to impute this fea-
ture, using the other nine features of the NILS model 
as predictors. The model reflects routine diagnostic BC 
workup and was trained to handle missing histopatho-
logical input variables. NILS handles combinations of 
unknown LVI status and missing values for ER/PR status 
and the proliferation index Ki67; however, the six remain-
ing variables (age, mode of detection, tumor localization 
in the breast, tumor size, multifocality, and histological 
type) were mandatory. A user-friendly web implemen-
tation of the NILS model was tested in this study. Data 
from patient records were extracted and used as inputs 
to predict the axillary nodal status. For each patient, the 
output from the calculator displays the estimated prob-
ability of healthy lymph nodes as well as the malignant or 
benign categorization of the nodes [20]. Although strictly 
preoperative variables were used for the estimation of 
the probability of healthy lymph nodes using the NILS 
web interface, supplementary postoperative variables (10 
input variables) were acquired, enabling a batch-mode 
validation of the original model (thus not using the web 
interface).

Cohort
A total of 601 patients who underwent surgery for 
primary BC at two sites were included: 401 at site 1 
(Malmö, Skane University Hospital, Sweden in 2020), 
constituting a temporal validation cohort, and 200 at 
site 2 (Helsingborg Regional Hospital, Sweden, between 
2019 and 2020), constituting a geographical validation 
cohort. Patients were identified through the national 
registry of cancer diagnoses, treatments, and outcomes 
(the Swedish National Quality Registry for Breast Can-
cer [23]). Digital medical charts were reviewed by three 
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experienced research nurses and two physicians (n = 5 
in total). The inclusion and exclusion criteria strictly 
followed the study protocol [21]. Fifteen patients were 
excluded because they did not meet the inclusion crite-
ria (Fig. 2).

cN0 was defined as no axillary nodal involvement on 
clinical or radiological examination. pN0 was defined as 
no invasive cell clusters of > 0.2 mm at the largest diame-
ter in the lymph node (i.e., the presence of isolated tumor 

cells or cell clusters that are ≤ 0.2 mm at the largest diam-
eter are considered pN0).

Data management
In this validation study, we used the Research Elec-
tronic Data Capture (REDCap) module using audit trail 
for data management [24]. Thorough data monitor-
ing was performed by an independent researcher not 
involved in data entry, according to a predefined flow 

Fig. 1  Schematic figure of included variables

Fig. 2  Flow chart
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chart and quality control plan (Supplementary Mate-
rial S1 [21]). In addition, the study statistician (POB) 
checked the entered data to identify inconsistencies not 
captured by the data entry rules, as defined in the RED-
Cap. The low number of missing data points was due to 
meticulous data management.

Statistical analysis
Prior to study initiation, sample size calculation was per-
formed as described in the study protocol [21]. Descrip-
tive statistics were presented for the whole cohort and 
split according to the study site. Chi-squared tests and 
t-tests were used, where appropriate, to test for homo-
geneity across sites. The performance of the NILS 
model was assessed in terms of discrimination with the 
area under the receiver operating characteristic (ROC) 
curve (AUC) and calibration, that is, comparison of the 
observed and predicted event rates of axillary disease 
using Hosmer–Lemeshow graphics summarized by cali-
bration slope and intercept [25]. Perfect calibration cor-
responds to a slope of 1 and an intercept of 0. Locally 
weighted scatterplot smoothing (LOWESS) was used to 
capture the calibration performance for high probabilities 
of N0, the range of interest for a de-escalation strategy.

The primary endpoint was axillary nodal status (discrim-
ination, N0 vs. N+) determined by the NILS model (test 
result) in comparison with nodal status by definitive path-
ological diagnosis after SLNB. As specified in the study 
plan, subgroup analyses were performed according to: 1) 
study site; 2) complete data on all CNB features in NILS 
(vascular invasion was excluded because of the routine 
unavailability of this variable preoperatively) or records 
with imputed values; 3) mastectomy or breast-conserving 
surgery; and 4) separately for ER-positive/HER2-nega-
tive, T1-2, and age ≥ 70 (subgroup specified by Choos-
ing Wisely and adopted by ASCO guidelines on axillary 
staging [2]). Test characteristics in terms of sensitivity, 
specificity, false positive rate (FPR), and false negative 
rate (FNR) were computed. NILS indicating nodal disease 
(N+) was defined as ”positive” [1] in coherence with N+ as 
assessed by pathology (Supplementary File 2). The FNR in 
the NILS model was calculated as the number of false N0 
cases predicted by NILS divided by the number of cases 
with pathology-verified axillary nodal metastasis. Finally, 
clinical utility was evaluated as the proportion of patients 
for whom SLNB could have been avoided and by decision 
curve analysis as a net benefit [26] for NILS compared to 
SLNB for all patients in the target population.

In addition, the original ANN model, which included 
both preoperatively and postoperatively available vari-
ables, was validated in batch-mode, thus bypassing the 
web interface (preoperative variables: patient age at diag-
nosis, mode of detection, and tumor localization in the 

breast; postoperative variables: tumor size, multifocality, 
ER status, PR status, histological type, Ki67 value, and 
vascular invasion).

All analyses were performed using the Statistical Pack-
age for the Social Sciences Statistics for Windows, ver-
sion 26 (IBM Corp., Armonk, NY, USA) and StataCorp. 
2021.  Stata Statistical Software: Release 17. Decision 
curve analysis was performed in Stata using dca.ado and 
custom-made software written in C (gcc version 7.5.0) 
and Perl (version 5.26.1).

Ethical approval
All procedures performed in this study involving human 
participants were in accordance with the ethical stand-
ards of the institutional or national research committee 
and with the 1964 Declaration of Helsinki and its later 
amendments or comparable ethical standards. This study 
was approved by the Swedish Ethical Review Authority 
(Ethical Review Board, Stockholm Department 3 Medi-
cine, committee reference number: 2021–00174). Previ-
ously treated patients received study information through 
advertisements in the local press and were allowed to opt 
out by using the provided contact information. The ethics 
committee (Ethical Review Board, Stockholm Department 
3 Medicine, committee reference number: 2021–00174) 
waived the requirement for informed consent and consent 
for publication. As per Swedish law, all patients receiv-
ing treatment for BC at hospitals are to provide consent 
for registration in a national registry of cancer. The local 
department for personal data admission at the hospital 
(KVB Samråd, Region Skåne, Sweden) granted research-
ers access, with digital logging, to patients’ digital medical 
charts. Only users authorized by the principal investigator 
had access to the NILS web calculator.

Results
Descriptive statistics
The mean age of the patients in the cohort at diagnosis 
was 65 years; thus, the majority of the women were post-
menopausal (85%) (Table 1). Most patients had unifocal 
(91% on mammography), ER-positive (93%), PR-positive 
(82%), and HER2-negative (95%) tumors (according to 
preoperative CNB). The mean tumor size on mammog-
raphy was 19  mm, with slightly larger tumors at site 2 
than at site 1 (mean 17 mm vs. 22 mm, p-value: < 0.001). 
Data on ultrasound variables are shown in Supplemen-
tary File 3. Approximately three-fourths of the patients 
had no metastases in SLNB (N0 74%). Of the patients 
with metastases on SLNB (N+), the majority had macro-
metastases (Table 2). The SLNB reduction rate was 26% 
(Table 3). A comparison between the current validation 
and original cohorts, in which the NILS model was first 
developed, is presented in Supplementary File 1.
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Discrimination, calibration, and net benefit
The discriminatory ability of the NILS model was 
assessed with ROC analysis: the AUC for the entire 
cohort was 0.6741 (95% confidence interval [CI]: 0.6255–
0.7227) (Fig. 3.) In the subset of women aged ≥ 70 years 

with ER-positive/HER2-negative tumors (n = 113), the 
AUC was 0.6006 (95% CI: 0.4888–0.7124) (Supplemen-
tary Fig. 1). The NILS model showed the best calibration 
in patients with a high estimated probability of healthy 
axilla (lower left corner of Fig. 3 B). In the entire cohort, 

Table 1  Patient and tumor characteristics at baseline, total and by study site

* For categorical variables, Chi-square test was used and for continuous variables, t-test was used
a When missing data on mammography, features from ultrasound was entered into the NILS web interface

Abbreviations BMI Body mass index, CNB Core needle biopsy, ER Estrogen receptor, PR Progesterone receptor, HER2 Human epidermal growth factor receptor 2

Total Site 1 Site 2

Count % Count % Count % p-value*

Number of patients (NB! Row percent) 586 395 67.4% 191 32.6%

Age at diagnosis, years Mean (range) 65 (29—91) 64 (30—91) 65 (29—90) 0.451

BMI Mean (range) 26.8 (16.7—48.9) 27.2 (16.7—48.9) 26.2 (18.8—42.9) 0.020

Missing 50 49 1

Postmenopausal No 85 15.4% 55 14.9% 30 16.5% 0.620

Yes 467 84.6% 315 85.1% 152 83.5%

Missing 34 25 9

Screening detected No 240 41.0% 155 39.2% 85 44.5% 0.225

Yes 346 59.0% 240 60.8% 106 55.5%

Bilateral cancer No 553 94.4% 379 95.9% 174 91.1% 0.017

Yes 33 5.6% 16 4.1% 17 8.9%

Multifocal cancer (mammography) No 531 91.1% 359 91.1% 172 91.0% 0.965

Yes 52 8.9% 35 8.9% 17 9.0%

Missinga 3 1 2

Largest tumor (long axis, mm, mammog‑
raphy)

Mean (range) 19 (3–110) 17 (3–110) 22 (5–90)  < 0.001

Missinga 55 30 25

Centrally positioned tumor (mam‑
mography, sub areolar or within 2 cm 
of the mammilla)

No 383 87.4% 251 88.1% 132 86.3% 0.589

Yes 55 12.6% 34 11.9% 21 13.7%

Missinga 148 110 38

ER status CNB Negative (< 1%) 24 7.3% 20 9.4% 4 3.4% 0.048

Positive (≥ 1%) 305 92.7% 193 90.6% 112 96.6%

Missing 257 182 75

PR status CNB Negative (< 1%) 57 18.0% 40 19.3% 17 15.6% 0.413

Positive (≥ 1%) 259 82.0% 167 80.7% 92 84.4%

Missing 270 188 82

HER2 status CNB Negative 296 95.2% 194 94.6% 102 96.2% 0.534

Positive 15 4.8% 11 5.4% 4 3.8%

Missing 275 190 85

Proliferation index Ki67 (%) CNB Mean (range) 26.6 (1.0—95.0) 28.4 (3.0—95.0) 23.1 (1.0—83.0) 0.016

Missing 274 189 85

Complete cases ER/PR/Ki67 CNB No 274 46.8% 189 47.8% 85 44.5% 0.453

Yes 312 53.2% 206 52.2% 106 55.5%

Vascular invasion CNB (only reported 
when present)

Yes 4 4 0 -

Missing 582 391 191

Histopathological type CNB NST (No 
specific type, 
ductal)

445 75.9% 301 76.2% 144 75.4% 0.705

Lobular 105 17.9% 72 18.2% 33 17.3%

Other 36 6.2% 22 5.6% 14 7.3%
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using the predefined cut-off, the sensitivity of the NILS 
model was 88% (136/154), corresponding to a FNR of 
12% (18/154). The specificity was 31% (133/432), and 
151 of the 586 patients (26%) could potentially have been 
spared SLNB if the NILS model had been used. The net 
benefit [26] of the NILS model compared to the SLNB 
strategies for all and none is shown in Fig. 4. The vertical 
line at the threshold of 20% of being N+ corresponds to 
accepting four false-positive tests for each true-positive 
test. The difference in net benefit at this cut-off between 
using the NILS model and the strategy SLNB to all was 
0.026, which should be interpreted as 2.6 more true posi-
tives in favor of the NILS model for every 100 patients 
in the target population. Furthermore, it is clear from 
the Fig. 4 that, as measured by net benefit, NILS is supe-
rior to SLNB for all patients in a wide range of cut-offs, 
approximately 20%. The cut-off value of 20% highlighted 
in Fig. 4 is a compromise between the predefined sepa-
rate thresholds for patients with and without imputed 

biomarker data, which are slightly above and below 20%, 
respectively.

The discriminatory performance was similar for sites 
1 and 2 (Fig.  5). Likewise, a similar discriminatory per-
formance was noted in patients with complete data on 
biomarkers (except for vascular invasion) and in those 
with imputed biomarkers (Supplementary Fig.  2). The 
batch-mode validation, utilizing a combination of preop-
erative and postoperative variables, showed an AUC of 
0.7362 (95% CI: 0.6917–0.7807) for discrimination of N0 
vs N+ (Fig.  6). The discrimination in terms of AUC for 
nodal prediction in the breast surgery-based prespecified 
subgroup analyses based is provided in Supplementary 
Fig. 3.

Discussion
In this temporal and geographical validation study, con-
sidering the clinically important shift from a combination 
of preoperative and postoperative variables to strictly 

Table 2  Characteristics of sentinel lymph node(s), total and by study site

* For categorical variables, Chi-squared test was used and for continuous variables, t-test was used

Abbreviations: SLN Sentinel lymph node

Total Site 1 Site 2

Count % Count % Count % p value*

Number of extracted SLN(s) 1 158 27.0% 90 22.8% 68 35.6%  < 0.001

2 198 33.8% 124 31.4% 74 38.7%

3 +  230 39.2% 181 45.8% 49 25.7%

Metastases in SLN No 432 73.7% 293 74.2% 139 72.8% 0.718

Yes 154 26.3% 102 25.8% 52 27.2%

Number of metastases in SLN(s) 1 108 70.1% 68 66.7% 40 76.9% 0.313

2 33 21.4% 25 24.5% 8 15.4%

3 10 6.5% 6 5.9% 4 7.7%

4 3 1.9% 3 2.9% 0 0.0%

Size largest SLN-metastasis (mm), mean (range) 5.2 (0.2—38.0) 5.1 (0.2—38.0) 5.3 (0.3—26.0) 0.857

SLN metastases, categorized No metastases 432 73.7% 293 74.2% 139 72.8% 0.928

Micro: > 0.2 mm, ≤ 2 mm 64 10.9% 42 10.6% 22 11.5%

Macro: > 2 mm 90 15.4% 60 15.2% 30 15.7%

Table 3  Comparison between performance measures of the noninvasive lymph node staging (NILS) model, including potential 
sentinel lymph node biopsy (SLNB) reduction rates between the original ANN model and current model

a Equivalent to the maximum FNR of 10% reflecting accepted FNR of the SLNB procedure
b The SLNB reduction rate was calculated as follows = (TN + FN)/(TN + FN + TP + FP)

Abbreviations: TP True positive, TN True negative, FP False positive, FN False negative, FNR False negative rate, SLNB Sentinel lymph node biopsy

Model TP TN FP FN Sensitivity Specificity FNRa SLNB 
reduction 
rateb

ANN Prototype (2019) 258 190 324 28 91% 37% 10% 27%

NILS (1.0) 256 177 339 28 90% 34% 10% 26%

NILS (version 0.1.0) Validation 136 133 299 18 88% 31% 12% 26%
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Fig. 3  The entire cohort. A) Area under the receiver operating characteristics curve (AUC) visualizing discriminatory performance of noninvasive 
lymph node staging (NILS) model for the estimation of axillary disease (N+). B) The Hosmer–Lemeshow calibration plot of observed proportion 
N+ versus mean predicted probability of N+ for each decile of the predictions. Locally weighted scatterplot smoothing (LOWESS), the dotted line, 
was used to capture the calibration performance for low probabilities of N+ , i.e. within the red box

Fig. 4  Decision Curve Analysis: Net benefit for noninvasive lymph node staging (NILS) model and the strategies sentinel lymph node biopsy (SLNB) 
for all and for none. The vertical grey line shows the cut-off 20% for N+ which in decision curve analysis terminology corresponds to accepting four 
false positive tests for each true positive test. The vertical red line represents the expected gain in net benefit if SLNB for all is replaced by the NILS 
model
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Fig. 5  Geographical validation – results per site. A/C) Area under the receiver operating characteristics curve (AUC) visualizing discriminatory 
performance of noninvasive lymph node staging (NILS) model for the estimation of axillary disease (N+). B/D) Hosmer–Lemeshow calibration plot 
of observed proportion N+ versus mean predicted probability of N+ for each decile of the predictions. Locally weighted scatterplot smoothing 
(LOWESS), the dotted line, was used to capture the calibration performance for low probabilities of N+ , i.e. within the red box
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preoperative variables, the NILS decision support tool 
showed a satisfactory performance. The validation study 
demonstrated the potential to abstain from axillary sur-
gery in 26% of the patients with cN0 BC using NILS, 
corresponding to the identified proportion of 27% in the 
developmental cohort. Altogether, the case-by-case pre-
operative evaluation provided by the NILS decision sup-
port tool holds clinical utility in the near future.

When developing a prediction model, the overall aim 
is that the model should be valid in the target popula-
tion outside the developmental area and in patients with 
slightly modified characteristics [27–30]. Therefore, in 
this study, we performed a thorough temporal and geo-
graphical validation study and used preoperatively avail-
able variables instead of a combination of preoperatively 
and postoperatively available variables.

We present the results of this validation study of a 
preoperative ANN model for noninvasive nodal staging 
in early breast cancer [20]. The study protocol was pre-
viously published, along with a rigorous data manage-
ment plan, thus increasing the validity of the current 
study results. In the present validation study, the NILS 
model performed best in low-risk BC patients present-
ing with the highest estimated probability of healthy 
lymph nodes (N0), and the calibration for these patients 

was considerably better than the overall calibration (indi-
cated by the red boxes in the calibration graphs). In these 
patients, the NILS decision support tool has the poten-
tial to reduce the number of SLNBs performed, with an 
SLNB reduction rate of 26%. To the best of our knowl-
edge, the NILS model is the first predictive model for 
nodal status in early BC with a user-friendly web inter-
face. This validation study is an important step towards 
making the NILS model clinically available.

The preoperative (core needle biopsy) distribution of 
immunohistochemical receptors and HER2 status dis-
played a high proportion of ER-positive/HER2-negative 
tumors, which is expected given the inclusion/exclusion 
criteria: patients with triple-negative and HER2-positive 
tumors are primarily recommended to receive neoadju-
vant chemotherapy [1] and were thus not eligible for this 
study. The majority of patients included in this study, 
therefore, presented with luminal BC eligible for upfront 
surgical treatment; in addition, these patients make up 
the population intended for the NILS clinical decision 
support tool.

Different summary measures have been suggested for 
evaluating the performance of a diagnostic test. Depend-
ing on the purpose of the test, each of these measures is 
more or less appropriate. In addition, both calibration 

Fig. 6  The entire cohort, batch-mode results using both preoperative and postoperative data. A) Area under the receiver operating characteristics 
curve (AUC) visualizing discriminatory performance of noninvasive lymph node staging (NILS) model for the estimation of axillary disease (N+). 
B) Hosmer–Lemeshow calibration plot of observed proportion N+ versus mean predicted probability of N+ for each decile of the predictions. 
Locally weighted scatterplot smoothing (LOWESS), the dotted line, was used to capture the calibration performance for low probabilities of N+ , i.e. 
within the red box
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and discrimination can be of different importance in sep-
arate patient populations. In the present validation study, 
the most important population was women presenting 
with low-risk tumors, in whom SLNB can be avoided. 
In the present study, we showed the best calibration in 
patients with the highest probability of having a healthy 
axilla, namely, the patients we aimed to identify with 
the NILS model. Furthermore, we purposely developed 
a conservative model to keep the FNR (the NILS model 
recommends abstaining from SLNB in N+ patients)  at 
an acceptable and oncologically safe rate. We consider 
the identified FNR of the NILS model of 12% in this vali-
dation study to be of the same magnitude as that of the 
reference SLNB (approximately 10% [12, 13]), and thus 
acceptable.

As for many clinical prediction models in oncology, the 
NILS prediction model aims to achieve a high sensitivity 
(90%) to avoid harms of missed malignant nodal metas-
tasis. As sensitivity and specificity are inversely propor-
tional, a high sensitivity comes at the cost of a lower 
specificity. In a clinical context, if the NILS prediction 
model is used as a clinical decision-support tool, patients 
with a healthy axilla will undergo an (unnecessary) SLNB 
in order to maintain a low false negative rate. In model 
development, the threshold at which the level of sensitiv-
ity/specificity is set, can easily be modified using a differ-
ent cut-off to balance benefits and harms. However, in 
the NILS prediction model, all decisions on thresholds 
were based on established conservative clinical cut-offs; 
as such, we presented a model with an oncologically 
safe prediction of nodal status with demonstrated cost 
effectiveness.

Geographical, temporal, and domain validation of 
a predictive model is warranted before clinical imple-
mentation. This step is often overlooked; however, as an 
example of its importance, when the Memorial Sloan-
Kettering Cancer Center nomogram for prediction of 
nodal status was externally validated, the AUC dropped 
from 0.75 to AUC 0.67 (95% CI 0.63–0.72) [31, 32].

The AUC is a global measure focused on the predictive 
performance of a given model over the full range of the 
risk spectrum. However, the consequences of the deci-
sions are not further considered. Decision curve analy-
sis estimates the “net benefit” (the clinical utility) of the 
NILS model in comparison to the default strategy, that is, 
SLNB for all patients [26]. At the predefined “exchange 
rate” 1:4 between true and false positives, NILS was 
shown to have a higher net benefit than SLNB for all 
patients.

The attained AUC in the NILS prediction model is 
comparable to previously reported models including only 
routine clinicopathological data for nodal status predic-
tion (AUC 0.67–0.79) [31–33]; however, there is a lack of 

reports on possible SLNB reduction rates and estimates 
on cost effectiveness linked to model performance.

The patients included at site 2 (the geographical vali-
dation cohort) had larger tumors than those treated at 
site 1 (the temporal validation cohort). This is explained 
by the fact that at site 2, fine needle aspiration is rou-
tinely used for cancer diagnosis of breast tumors in 
low-risk patients, including those with a suspected 
malignancy < 2  cm in size. Since data on histopatho-
logical subtypes from CNB are mandatory in the NILS 
model, these low-risk patients were excluded, shifting 
the population at site 2 to a cohort with larger tumors. 
However, the proportion of N+ was similar between the 
two sites. Interestingly, the NILS model had better dis-
crimination at site 2; however, the calibration was bet-
ter at site 1. Whether this is a consequence of the fewer 
low-risk patients at site 2 needs further elaboration.

As this is a validation study, it is important to consider 
the original cohort [18] and method. First, in the origi-
nal study, 800 patients diagnosed between 2009 and 2012 
were included, whereas the patients in the current cohort 
were diagnosed between 2019 and 2020. Fortunately, in 
Sweden and internationally, the fraction of women pre-
senting with N+ BC at diagnosis is continuously decreas-
ing [34, 35]. In addition, the criteria for recommending 
neoadjuvant chemotherapy have broadened. As a result, 
patients undergoing primary surgery in recent years 
present with a  less advanced BC stage, which explains 
some differences between the original and validation 
cohorts. The present study indicated that the proportion 
of patients presenting with N+ disease decreased from 36 
to 26%. Furthermore, the original study used a combina-
tion of preoperatively and postoperatively available data, 
whereas the current study strictly used preoperatively 
available data to mimic the clinical preoperative situation 
in which the NILS model was applicable. Despite these 
differences, the NILS model showed satisfactory perfor-
mance in this validation study, indicating the robustness 
of the model. Moreover, the batch-mode run validation 
using the same combination of preoperative and post-
operative variables as in the original cohort showed, as 
expected, better discrimination in accordance with pub-
lished data.

As the NILS prediction model is not intended to guide 
oncological treatment (with changing indications/strate-
gies over time), using clinicopathological variables to pre-
dict nodal status, the only concern with the cohort is the 
changing prevalence of pN0 over time. The NILS predic-
tion model and its web interface could easily be adjusted 
to different pN0 prevalence in different populations and 
over time, thus vastly increasing generalizability over 
time and place. Another way to circumvent the changing 
N+ BC prevalence over time is to evaluate the utility of 



Page 12 of 14Skarping et al. BMC Cancer           (2024) 24:86 

NILS in terms of the prevalence independent measures 
of positive and negative likelihood ratios. Interestingly, 
the conservative nature of the NILS decision-support 
tool reflects the greatest clinical value for women with a 
low estimated risk of nodal metastases.

Study strengths and limitations
Our model performed equally well when biomarkers 
and vascular invasion were imputed as when these data 
were available. The AUC was marginally higher when 
data were imputed; however, the calibration slope devi-
ated more for the optimal value of 1.0. This shows the 
robustness of the NILS model and broadens the area 
of application to sites in which biomarkers are not rou-
tinely analyzed. In addition, a significant advantage was 
the previously published study protocol, which includes a 
predefined data quality and statistical plan.

The NILS prediction model is based on an ANN algo-
rithm. However, there are other machine-learning mod-
els in addition to logistic regression models for the same 
purpose. In the original publication, the ANN model per-
formed slightly better than logistic regression upon inter-
nal validation with cross-validation, and thus selected 
for further application and development. Variation in 
the proportions of node positive breast cancer in differ-
ent target population may impact the performance of the 
NILS prediction model.

It is interesting to briefly consider the variable “screen-
ing-detected.” In Sweden, women aged 40–74  years are 
offered mammographic screening; thus, only women in 
this age group have the prospect of having screening-
detected BC. However, the NILS model was developed 
independently of these age conditions. In addition, 
poorer discrimination of NILS in the population of 
women aged ≥ 70 years with ER-positive/HER2-negative 
tumors was a limitation of the present study. In future 
work with the NILS decision-support tool, it is possi-
ble to adjust the screening/age discrepancy and develop 
a model specific to the target population of women 
aged ≥ 70  years with ER-positive/HER2-negative tumors 
to better cohere with plausible future clinical settings.

Future perspective
We performed a thorough retrospective validation of 
the NILS model. Concurrently, we are optimizing the 
web interface to improve its usability before clinical 
implementation.

To provide patient-centered care on the management 
of axilla in early breast cancer, the ASCO guideline states 
that patients should be evaluated on a case-by-case basis. 
We present a user-friendly decision-support tool for 
personalized pre-operative prediction of nodal status, 

with the potential to identify one-quarter of patients as 
eligible for abstaining SLNB. The adoption of prevailing 
guidelines can be enhanced by providing clinicians and 
patients with such tools. Furthermore, by conducting a 
health–economic analysis, the implementation of the 
NILS prediction model was shown to be cost-effective 
and associated with health gain [19].

Conclusion
In this retrospective validation study of an ANN model, 
we presented the results of the NILS decision-support 
tool. In the temporal and geographical validation study 
presented here, the performance of the algorithm was 
satisfactory. Considering the shift from postoperatively to 
preoperatively available predictors in this temporal, geo-
graphical, and domain validation, we showed the robust-
ness of the NILS model. Furthermore, we demonstrated 
the possibility of avoiding axillary surgery in 26% of the 
patients using the NILS decision-support tool. The clini-
cal usability of the web interface will be evaluated before 
clinical implementation of this decision-support tool for 
the prediction of benign SLN(s).

Abbreviations
ALN	� Axillary lymph node
ALND	� Axillary lymph node dissection
ANN	� Artificial neural network
AUC​	� Area under the receiver operating characteristic curve
BC	� Breast cancer
CNB	� Core needle biopsy
ER	� Estrogen receptor
HER2	� Human epidermal growth factor receptor 2
HR	� Hormone receptor
LOWESS	� Locally weighted scatterplot smoothing
MLP	� Multilayer perceptrons
NILS	� Noninvasive lymph node staging
PR	� Progesterone receptor
ROC	� Receiver operating characteristic
SLN	� Sentinel lymph node
SLNB	� Sentinel lymph node biopsy

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12885-​024-​11854-1.

Additional file 1. Supplementary File 1  

Additional file 2. Supplementary File 2 

Additional file 3. Supplementary File 3 

Additional file 4. Supplementary Figure 1 

Additional file 5. Supplementary Figure 2 

Additional file 6. Supplementary Figure 3 

Acknowledgements
We express our appreciation to the research nurses/administrators Helena 
Erixon, Eva Wahlström, and Kerstin Reistad in Malmö and Helsingborg for their 
excellent data management. We also express our gratitude to Forum Söder for 
the administration of the REDCap project.

https://doi.org/10.1186/s12885-024-11854-1
https://doi.org/10.1186/s12885-024-11854-1


Page 13 of 14Skarping et al. BMC Cancer           (2024) 24:86 	

Authors’ contributions
Conceptualization, L.R.; methodology, L.R., I.S., L.D., PO.B., and M.O.; software, 
M.O.; formal analysis, PO.B., I.S., and M.O.; data management, I.S., PO.B., J.E., and 
L.R.; writing—original draft preparation, I.S. and L.R.; writing—review and edit‑
ing, I.S., L.R., L.D., PO.B., L.H., J.E., and M.O.; funding acquisition, L.R., L.D., and I.S.. 
All authors have read and agreed to the published version of the manuscript. 
Authorship eligibility criteria according to ICMJE recommendations.

Funding
Open access funding provided by Lund University. This work was supported 
by grants from Lund University (Sweden), the South Swedish Health Care 
Region (Sweden), the Governmental Funding of Clinical Research within the 
National Health Service Sweden (ALF young researcher Ida Skarping and 
Looket Dihge), the Erling Persson Foundation (Sweden), Vetenskapsrådet 
[Swedish Research Council] (Sweden) (external review), and the Stig and 
Ragna Gorthon Foundation (LH). In this academic study, funding resources 
had no role in the study design, data collection, analyses, data interpretation, 
and writing of the manuscript, or the decision to submit the manuscript for 
publication.

Availability of data and materials
The raw datasets are available from the corresponding author upon reason‑
able request owing to privacy or ethical restrictions.

Declarations

Ethics approval consent to participate
All procedures performed in this study involving human participants were in 
accordance with the ethical standards of the institutional or national research 
committee and with the 1964 Declaration of Helsinki and its later amend‑
ments or comparable ethical standards. This study was approved by the Swed‑
ish Ethical Review Authority (Ethical Review Board, Stockholm Department 3 
Medicine, committee reference number: 2021–00174). Patients received study 
information through advertisements in the local press. By using the provided 
contact information, the patients were allowed to opt out. The ethics com‑
mittee (Ethical Review Board, Stockholm Department 3 Medicine, committee 
reference number: 2021–00174) waived the requirement for informed consent 
and consent for publication. By law, all patients receiving treatment for BC at 
hospitals are consenting to register in a national registry of cancer. The local 
department for personal data admission at the hospital (KVB Samråd, Region 
Skåne, Sweden) granted researchers access, with digital logging, to patients’ 
digital medical charts. Only authorized users from the principal investigator 
had access to the NILS web calculator.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Clinical Sciences Lund, Division of Surgery, Lund University, 
Lund, Sweden. 2 Department of Clinical Physiology and Nuclear Medicine, 
Skåne University Hospital, Lund, Sweden. 3 Department of Surgery, Skåne 
University Hospital, Malmö, Sweden. 4 Department of Plastic and Recon‑
structive Surgery, Skåne University Hospital, Malmö, Sweden. 5 Department 
of Astronomy and Theoretical Physics, Division of Computational Biology 
and Biological Physics, Lund University, Lund, Sweden. 6 Division of Surgery, 
Department of Clinical Sciences Helsingborg, Lund University, Lund, Sweden. 
7 Department of Surgery, Helsingborg General Hospital, Helsingborg, Sweden. 
8 Division of Oncology, Department of Clinical Sciences, Lund University, Lund, 
Sweden. 9 Department of Surgery and Gastroenterology, Skåne University 
Hospital, Malmö, Sweden. 

Received: 13 March 2023   Accepted: 7 January 2024

References
	1.	 Curigliano G, et al. De-escalating and escalating treatments for early-

stage breast cancer: the St. Gallen International Expert Consensus 

Conference on the Primary Therapy of Early Breast Cancer 2017. Ann 
Oncol. 2017;28:1700–12. https://​doi.​org/​10.​1093/​annonc/​mdx308.

	2.	 Brackstone M, et al. Management of the Axilla in Early-Stage Breast 
Cancer: Ontario Health (Cancer Care Ontario) and ASCO Guideline. J Clin 
Oncol. 2021;39:3056–82. https://​doi.​org/​10.​1200/​JCO.​21.​00934.

	3.	 Keelan S, et al. Breast cancer patients with a negative axillary ultrasound 
may have clinically significant nodal metastasis. Breast Cancer Res Treat. 
2021;187:303–10. https://​doi.​org/​10.​1007/​s10549-​021-​06194-8.

	4.	 Sackey H, et al. Arm lymphoedema after axillary surgery in women with 
invasive breast cancer. J Br Surg. 2014;101(4):390–7. https://​doi.​org/​10.​
1002/​bjs.​9401.

	5.	 Rao R, Euhus D, Mayo HG, Balch C. Axillary node interventions in breast 
cancer: a systematic review. JAMA. 2013;310(13):1385–94. https://​doi.​org/​
10.​1001/​jama.​2013.​277804.

	6.	 de Boniface J, et al. Survival and axillary recurrence following sentinel 
node-positive breast cancer without completion axillary lymph node 
dissection: the randomized controlled SENOMAC trial. BMC cancer. 
2017;17:1–7. https://​doi.​org/​10.​1186/​s12885-​017-​3361-y.

	7.	 Reimer T, et al. Restricted axillary staging in clinically and sonographically 
node-negative early invasive breast cancer (c/iT1–2) in the context of 
breast conserving therapy: first results following commencement of the 
Intergroup-Sentinel-Mamma (INSEMA) trial. Geburtshilfe und Frauen‑
heilkunde. 2017;77:149–57. https://​doi.​org/​10.​1055/s-​0042-​122853.

	8.	 De Cicco C, et al. Lymphoscintigraphy and radioguided biopsy of the 
sentinel axillary node in breast cancer. J Nucl Med. 1998;39:2080–4.

	9.	 Krag DN, et al. Sentinel-lymph-node resection compared with con‑
ventional axillary-lymph-node dissection in clinically node-negative 
patients with breast cancer: overall survival findings from the NSABP B-32 
randomised phase 3 trial. Lancet Oncol. 2010;11:927–33. https://​doi.​org/​
10.​1016/​S1470-​2045(10)​70207-2.

	10	 Giuliano AE, et al. Axillary dissection vs no axillary dissection in 
women with invasive breast cancer and sentinel node metastasis: a 
randomized clinical trial. JAMA. 2011;305:569–75. https://​doi.​org/​10.​
1001/​jama.​2011.​90.

	11	 Giuliano AE, et al. Effect of Axillary Dissection vs No Axillary Dissection on 
10-Year Overall Survival Among Women With Invasive Breast Cancer and 
Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized 
Clinical Trial. JAMA. 2017;318:918–26. https://​doi.​org/​10.​1001/​jama.​2017.​
11470.

	12	 Krag DN, et al. Technical outcomes of sentinel-lymph-node resection and 
conventional axillary-lymph-node dissection in patients with clinically 
node-negative breast cancer: results from the NSABP B-32 randomised 
phase III trial. Lancet Oncol. 2007;8:881–8. https://​doi.​org/​10.​1016/​S1470-​
2045(07)​70278-4.

	13	 Pesek S, Ashikaga T, Krag LE, Krag D. The false-negative rate of sentinel 
node biopsy in patients with breast cancer: a meta-analysis. World J 
Surgery. 2012;36:2239–51. https://​doi.​org/​10.​1007/​s00268-​012-​1623-z.

	14	 Gentilini O, Veronesi U. Abandoning sentinel lymph node biopsy in 
early breast cancer? A new trial in progress at the European Institute of 
Oncology of Milan (SOUND: Sentinel node vs Observation after axillary 
UltraSouND). Breast. 2012;21(5):678–81. https://​doi.​org/​10.​1016/j.​breast.​
2012.​06.​013.

	15.	 van Roozendaal LM, et al. Clinically node negative breast cancer patients 
undergoing breast conserving therapy, sentinel lymph node procedure 
versus follow-up: a Dutch randomized controlled multicentre trial (BOOG 
2013–08). BMC Cancer. 2017;17(1):1–8. https://​doi.​org/​10.​1016/j.​breast.​
2012.​06.​013.

	16.	 Reimer T, et al. Patient-reported outcomes for the Intergroup Sentinel 
Mamma study (INSEMA): A randomised trial with persistent impact of 
axillary surgery on arm and breast symptoms in patients with early breast 
cancer. EClinicalMedicine. 2023;55:101756. https://​doi.​org/​10.​1016/j.​
eclinm.​2022.​101756.

	17	 Tee SR, et al. Meta-analysis of sentinel lymph node biopsy after neoadju‑
vant chemotherapy in patients with initial biopsy-proven node-positive 
breast cancer. J Br Surg. 2018;105:1541–52. https://​doi.​org/​10.​1002/​bjs.​
10986.

	18.	 Dihge L, Ohlsson M, Edén P, Bendahl PO, Rydén L. Artificial neural network 
models to predict nodal status in clinically node-negative breast cancer. 
BMC Cancer. 2019;19:1–2. https://​doi.​org/​10.​1186/​s12885-​019-​5827-6.

	19.	 Skarping I, et al. The implementation of a noninvasive lymph node 
staging (NILS) preoperative prediction model is cost effective in primary 

https://doi.org/10.1093/annonc/mdx308
https://doi.org/10.1200/JCO.21.00934
https://doi.org/10.1007/s10549-021-06194-8
https://doi.org/10.1002/bjs.9401
https://doi.org/10.1002/bjs.9401
https://doi.org/10.1001/jama.2013.277804
https://doi.org/10.1001/jama.2013.277804
https://doi.org/10.1186/s12885-017-3361-y
https://doi.org/10.1055/s-0042-122853
https://doi.org/10.1016/S1470-2045(10)70207-2
https://doi.org/10.1016/S1470-2045(10)70207-2
https://doi.org/10.1001/jama.2011.90
https://doi.org/10.1001/jama.2011.90
https://doi.org/10.1001/jama.2017.11470
https://doi.org/10.1001/jama.2017.11470
https://doi.org/10.1016/S1470-2045(07)70278-4
https://doi.org/10.1016/S1470-2045(07)70278-4
https://doi.org/10.1007/s00268-012-1623-z
https://doi.org/10.1016/j.breast.2012.06.013
https://doi.org/10.1016/j.breast.2012.06.013
https://doi.org/10.1016/j.breast.2012.06.013
https://doi.org/10.1016/j.breast.2012.06.013
https://doi.org/10.1016/j.eclinm.2022.101756
https://doi.org/10.1016/j.eclinm.2022.101756
https://doi.org/10.1002/bjs.10986
https://doi.org/10.1002/bjs.10986
https://doi.org/10.1186/s12885-019-5827-6


Page 14 of 14Skarping et al. BMC Cancer           (2024) 24:86 

breast cancer. Breast Cancer Res Treat. 2022;194:577–86. https://​doi.​org/​
10.​1007/​s10549-​022-​06636-x.

	20.	 Dihge L, et al. The implementation of NILS: A web-based artificial neural 
network decision support tool for noninvasive lymph node staging in 
breast cancer. Front Oncol. 2023;13:1102254. https://​doi.​org/​10.​3389/​
fonc.​2023.​11022​54.

	21.	 Skarping, I. et al. The NILS Study Protocol: A Retrospective Validation 
Study of an Artificial Neural Network Based Preoperative Decision-Making 
Tool for Noninvasive Lymph Node Staging in Women with Primary Breast 
Cancer (ISRCTN14341750). Diagnostics (Basel) 12 (2022). https://​doi.​org/​
10.​3390/​diagn​ostic​s1203​0582

	22	 von Elm E, et al. The Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) statement: guidelines for reporting 
observational studies. Prev Med. 2007;45:247–51. https://​doi.​org/​10.​
1016/j.​ypmed.​2007.​08.​012.

	23.	 Lofgren L, et al. Steering group of the National Register for Breast Cancer 
Validation of data quality in the Swedish National Register for Breast 
Cancer. BMC Public Health. 2019;19:495.

	24.	 Harris PA, et al. Research electronic data capture (REDCap)–a metadata-
driven methodology and workflow process for providing translational 
research informatics support. J Biomed Inform. 2009;42:377–81. https://​
doi.​org/​10.​1016/j.​jbi.​2008.​08.​010.

	25.	 Van Calster B, et al. Calibration: the Achilles heel of predictive analytics. 
BMC Med. 2019;17:230. https://​doi.​org/​10.​1186/​s12916-​019-​1466-7.

	26.	 Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to 
interpreting decision curve analysis. Diagn progn Res. 2019;3:18. https://​
doi.​org/​10.​1186/​s41512-​019-​0064-7.

	27.	 Austin PC, et al. Validation of prediction models: examining temporal 
and geographic stability of baseline risk and estimated covariate effects. 
Diagno Progn Res. 2017;1:12. https://​doi.​org/​10.​1186/​s41512-​017-​0012-3.

	28.	 Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic 
research: validating a prognostic model. BMJ. 2009;28:338. https://​doi.​
org/​10.​1136/​bmj.​b605.

	29	 Moons KG, et al. Risk prediction models: II External validation, model 
updating, and impact assessment. Heart. 2012;98:691–8. https://​doi.​org/​
10.​1186/​s41512-​019-​0060-y.

	30.	 Cowley LE, Farewell DM, Maguire S, Kemp AM. Methodological standards 
for the development and evaluation of clinical prediction rules: a review 
of the literature. Diagn Progn Res. 2019;3:1–23. https://​doi.​org/​10.​1186/​
s41512-​019-​0060-y.

	31	 Bevilacqua JL, et al. Doctor, what are my chances of having a positive 
sentinel node? A validated nomogram for risk estimation. J Clin Oncol. 
2007;25:3670–9. https://​doi.​org/​10.​1186/​s41512-​019-​0060-y.

	32.	 van la Parra RF. Assessment of the Memorial Sloan-Kettering Cancer 
Center nomogram to predict sentinel lymph node metastases in a Dutch 
breast cancer population. Eur J Cancer. 2013;49:564–71. https://​doi.​org/​
10.​1016/j.​ejca.​2012.​04.​025.

	33.	 Chen K, Liu J, Li S, Jacobs L. Development of nomograms to predict 
axillary lymph node status in breast cancer patients. BMC cancer. 
2017;17:561. https://​doi.​org/​10.​1186/​s12885-​017-​3535-7.

	34.	 Fredriksson, I. Årsrapport 2021 från Nationellt Kvalitetsregister för Bröst‑
cancer (NKBC). (Cancercentrum, https://​cance​rcent​rum.​se/​conte​ntass​
ets/​c36b5​80a94​ab4c3​794aa​9d41b​b9548​71/​ett-​urval-​av-​data-​fran-​nkbc-​
rappo​rten-​for20​21.​pdf, 2021).

	35	 Giaquinto AN, et al. Breast Cancer Statistics, 2022. CA Cancer J Clin. 
2022;72:524–41. https://​doi.​org/​10.​3322/​caac.​21754.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1007/s10549-022-06636-x
https://doi.org/10.1007/s10549-022-06636-x
https://doi.org/10.3389/fonc.2023.1102254
https://doi.org/10.3389/fonc.2023.1102254
https://doi.org/10.3390/diagnostics12030582
https://doi.org/10.3390/diagnostics12030582
https://doi.org/10.1016/j.ypmed.2007.08.012
https://doi.org/10.1016/j.ypmed.2007.08.012
https://doi.org/10.1016/j.jbi.2008.08.010
https://doi.org/10.1016/j.jbi.2008.08.010
https://doi.org/10.1186/s12916-019-1466-7
https://doi.org/10.1186/s41512-019-0064-7
https://doi.org/10.1186/s41512-019-0064-7
https://doi.org/10.1186/s41512-017-0012-3
https://doi.org/10.1136/bmj.b605
https://doi.org/10.1136/bmj.b605
https://doi.org/10.1186/s41512-019-0060-y
https://doi.org/10.1186/s41512-019-0060-y
https://doi.org/10.1186/s41512-019-0060-y
https://doi.org/10.1186/s41512-019-0060-y
https://doi.org/10.1186/s41512-019-0060-y
https://doi.org/10.1016/j.ejca.2012.04.025
https://doi.org/10.1016/j.ejca.2012.04.025
https://doi.org/10.1186/s12885-017-3535-7
https://cancercentrum.se/contentassets/c36b580a94ab4c3794aa9d41bb954871/ett-urval-av-data-fran-nkbc-rapporten-for2021.pdf
https://cancercentrum.se/contentassets/c36b580a94ab4c3794aa9d41bb954871/ett-urval-av-data-fran-nkbc-rapporten-for2021.pdf
https://cancercentrum.se/contentassets/c36b580a94ab4c3794aa9d41bb954871/ett-urval-av-data-fran-nkbc-rapporten-for2021.pdf
https://doi.org/10.3322/caac.21754

	Retrospective validation study of an artificial neural network-based preoperative decision-support tool for noninvasive lymph node staging (NILS) in women with primary breast cancer (ISRCTN14341750)
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 
	Trial registration 

	Introduction
	Methods
	The NILS prediction model
	Cohort
	Data management
	Statistical analysis
	Ethical approval

	Results
	Descriptive statistics
	Discrimination, calibration, and net benefit

	Discussion
	Study strengths and limitations
	Future perspective

	Conclusion
	Acknowledgements
	References


