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Abstract
Objective To evaluate the value of an integrated model incorporating deep learning (DL), hand-crafted radiomics 
and clinical and US imaging features for diagnosing central lymph node metastasis (CLNM) in patients with papillary 
thyroid cancer (PTC).

Methods This retrospective study reviewed 613 patients with clinicopathologically confirmed PTC from two 
institutions. The DL model and hand-crafted radiomics model were developed using primary lesion images and 
then integrated with clinical and US features selected by multivariate analysis to generate an integrated model. 
The performance was compared with junior and senior radiologists on the independent test set. SHapley Additive 
exPlanations (SHAP) plot and Gradient-weighted Class Activation Mapping (Grad-CAM) were used for the visualized 
explanation of the model.

Results The integrated model yielded the best performance with an AUC of 0.841. surpassing that of the hand-
crafted radiomics model (0.706, p < 0.001) and the DL model (0.819, p = 0.26). Compared to junior and senior 
radiologists, the integrated model reduced the missed CLNM rate from 57.89% and 44.74–27.63%, and decreased 
the rate of unnecessary central lymph node dissection (CLND) from 29.87% and 27.27–18.18%, respectively. SHAP 
analysis revealed that the DL features played a primary role in the diagnosis of CLNM, while clinical and US features 
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Introduction
In recent years, the incidence of thyroid cancer has 
increased significantly worldwide, with papillary thyroid 
carcinoma (PTC) accounting for most cases [1]. PTC is 
characterized by early metastasis to cervical lymph nodes 
(LNs), particularly in the central region [2]. The reported 
rate of central LN metastasis (CLNM) in patients is 
approximately 50% [3], which is a known risk factor 
for recurrence and adversely affects overall survival [4, 
5]. The necessity of prophylactic central LN dissection 
(pCLND) remains a subject of debate in thyroid cancer 
treatment. In China, the latest guidelines recommend 
routine pCLND at least ipsilateral to the lesion [6]. While 
pCLND can effectively reduce the need for reoperation 
in cases of recurrence, it also leads to unnecessary CLND 
procedures. US is the most commonly used method for 
preoperative LN assessment in PTC [7]. However, its sen-
sitivity in identifying CLNM ranges from only 26–47%, 
which is insufficient for accurate assessment [8]. Hence, a 
more sensitive preoperative assessment of CLNM is cru-
cial for patients with PTC to reduce unnecessary CLND.

Radiomics represents a high-throughput data mining 
approach for the discovery of novel imaging biomarkers 
and uses two main approaches: hand-crafted radiomics 
and deep learning [9]. In recent years, both hand-crafted 
radiomics and deep learning, have shown powerful ana-
lytical capabilities in extracting intricate and multi-lay-
ered features from medical images [10, 11]. Hand-crafted 
radiomics focuses on the mathematical manipulation 
of images to produce traditional features of texture and 
shape, etc. whereas the DL approaches can generate high-
dimensional features to represent the deep image infor-
mation of the tumour through end-to-end learning [12]. 
We previously reported a preliminary small sample study 
of CLNM using hand-crafted radiomics, which acquired 
good performance [13]. To date, most studies have inde-
pendently employed DL and hand-crafted radiomics 
features, and far fewer studies have attempted to fuse 
these two features from US images. It is worth noting 
that features extracted by DL models may be sensitive 
to global translation, rotation, and scaling while hand-
crafted radiomics features such as intensity features are 
not [14, 15], Therefore, we hypothesize that hand-crafted 
radiomics features and DL features extracted from US 
images could be complementary, and their combination 
may yield improved prediction outcomes.

However, unlike radiologists who incorporate clinical 
and US information to make diagnoses, most AI mod-
els only provide output results without revealing their 
decision-making process. This lack of transparency is 
considered one of the reasons why radiologists are skep-
tical about the clinical application of AI models. Previous 
studies have highlighted the significance of clinical and 
US characteristics (e.g., age, gender, and tumour size) 
in distinguishing CLNM [16]. Nevertheless, the lack of 
information such as age and gender in the images, and 
data pre-processing such as resizing and normalisa-
tion, makes detecting these information challenging in 
machine learning [17]. By integrating clinical and US fea-
tures into AI models, it may be possible to improve the 
predictive efficacy of the models as well as the acceptance 
from radiologists.

Hence, this study aimed to develop and validate 
whether an integrated model incorporating DL, hand-
crafted radiomics and clinical and US features can 
improve the performance to diagnose CLNM in patients 
with PTC, in order to reduce the miss rate of CLNM, 
unnecessary CLND and improve the acceptance of AI-
assisted US diagnosis for radiologists.

Patients and methods
Patients
The Ethics Committees of Nanfang Hospital of South 
Medical University and the First People’s Hospital of 
Foshan (NFEC-202,008-K6) approved this retrospective 
study. The requirement for informed consent was waived. 
The checklist for Artificial Intelligence in Medical Imag-
ing (CLAIM) and EvaluAtion of Radiomics research 
(CLEAR) were applied as step-by-step reporting guide-
line for this study, which is presented in a Supplementary 
Material 1 and 2 [18, 19]. The inclusion and exclusion cri-
teria were as follows:

Inclusion criteria
Patients were enrolled if they satisfied all the following 
inclusion criteria: (1) were confirmed to have PTC after 
lobectomy or total thyroidectomy; (2) underwent CLND 
with a pathological examination; (3) the thyroid US 
examination was performed at our hospital within one 
month before the operation.

(such as extrathyroidal extension, tumour size, age, gender, and multifocality) provided additional support. Grad-CAM 
indicated that the model exhibited a stronger focus on thyroid capsule in patients with CLNM.

Conclusion Integrated model can effectively decrease the incidence of missed CLNM and unnecessary CLND. The 
application of the integrated model can help improve the acceptance of AI-assisted US diagnosis among radiologists.

Keywords Ultrasonography, Papillary thyroid carcinoma, Lymph node metastasis, Deep learning
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Exclusion criteria
(1) had other malignancies or distant metastases at diag-
nosis; (2) received preoperative head and neck therapies 
such as radiotherapy, chemotherapy, or radiofrequency 
ablation; (3) with missing data; (4) with poor image 
quality.

After undergoing a rigorous inclusion and exclusion 
process, datasets of 613 patients treated in our clinical 
centres from March 2019 to July 2020 were included. The 
participant recruitment flow is shown in Fig. 1. The par-
ticipants were randomly divided into training and inde-
pendent test cohorts for further analysis.

Acquisition and selection of clinical and ultrasound 
features
The choice of US machine was not limited, and most data 
was obtained using devices such as Siemens Sequoia, 
Supersonic Aixplorer, and Toshiba Aplio 500, stored in 
the DICOM format. The risk factors for CLNM were 
identified by the following variables: gender, age, and 
US features of thyroid tumours following the C-TIRADS 
and ATA guidelines [7, 20]. These features encompassed 
tumour size, hypoechoic solid composition, multifocal-
ity, aspect ratio, posterior acoustic attenuation, tumour 
location, extrathyroidal extension (ETE), acoustic halo, 
microcalcification, and the internal tumour vascular-
ity. Age was dichotomized at 55 years following the 8th 
American Joint Commission on Cancer staging system. 
In cases with multifocality, the largest nodule was chosen 

as the representative. The tumour vascularity was graded 
from 0 to 3 by colour Doppler flow imaging (CDFI) fol-
lowing the Adler standard [21]. The US features were re-
evaluated by two radiologists with four and seven years 
of experience in thyroid US diagnosis. Both radiologists 
were blinded to clinical information and pathological 
diagnosis. The agreement between them was assessed, 
and in case of any disagreement, a senior radiologist with 
over 20 years of experience made the final decision. Sub-
sequently, multivariate logistic regression analysis and 
likelihood ratio tests for positive selection were used in 
the training cohort to screen for the above mentioned 
clinical and US features that can effectively differentiate 
the presence of CLNM.

Evaluation of lymph node metastases by radiologists
The preoperative examination of LNs was conducted 
on all patients by a team of five radiologists, comprising 
two senior radiologists with 15 and 17 years of experi-
ence, and three junior radiologists with 3, 5, and 6 years 
of experience, respectively. The diagnostic accuracy of 
the two groups of radiologists, differing in seniority, was 
determined by comparing the LNs status reported by 
US with the corresponding postoperative pathological 
results. Based on the ACR TI-RADS [22], LNs exhibiting 
one or more suspicious US features (roundness, loss of 
the normal echogenic hilum, internal microcalcifications, 
cystic changes, hyperechogenicity, or presence of periph-
eral flow) were classified as US-reported CLNM.

Fig. 1 Flow Chart of participants recruitment. CLND, central lymph node dissection; PTC, papillary thyroid carcinoma
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Region of interest segmentation and development of the 
hand-crafted radiomics model
The manual segmentation of regions of interest (ROI) 
was independently performed using ITK-SNAP (version 
3.8) by a radiologist with five years of experience, fol-
lowed by another radiologist with seven years of experi-
ence reviewing the ROI and reaching a consensus. Before 
formally drawing ROIs, we randomly selected 30 images 
for consistency analysis, and the two radiologists have 
excellent consistency, with a dice coefficient of 0.946.

Radiomic features were extracted using the open-
source Python package “pyradiomics” (version 3.1.0) [23]. 
A total of 783 features including 18 first-order statistics, 
68 texture features, 9 shape features, 344 wavelet decom-
positions, and 344 Laplacian of Gaussian features were 
extracted from the US images by the delineated ROI. The 
definitions of each feature group are listed in Supple-
mentary Material 3 S1. The least absolute shrinkage and 
selection operator (LASSO) logistic regression analysis 
method was employed to select the radiomics feature 
on the training dataset. The selected radiomics features 
are listed in Supplementary Material 3 S2. We followed 
a support vector machine (SVM) to establish the predic-
tion model, with the regularization parameter and kernel 
type tuning conducted by 10-fold cross-validation in the 
training set. The LASSO and SVM were performed by 
the “scikit-learn” package (version 0.24.2).

Development of the deep learning model
A convolution neural network (CNN) was built to uti-
lize deep features of US images to predict central lymph 
node metastasis. The US images of the patient in the 
training cohort were randomly divided into training 
and validation datasets with a ratio of 2:1. These images 
were cropped based on the delineated ROIs, resized to 
224 × 224, and then normalized the grayscale to [0, 1] 
in the pre-processing stage. To improve the generaliza-
tion performance of the model, we developed the model 
using the transfer learning technique. The constructed 
CNN was initialized by the pre-trained parameters on 
ImageNet-21k [24]. Supplementary Material 3 S3 shows 

the result of four tested backbones. The best-performing 
ResNet50 was adopted to develop the prediction model. 
Following the tricks proposed in big data transfer [25], 
we used group normalization and weight standardiza-
tion instead of batch normalization in the ResNet50. 
The detailed structure of the network is presented in 
Supplementary Material 3 S4. During the training stage, 
we adopted the cross-entropy as the loss function, Adam 
optimizer with the initial learning rate of 0.003, and the 
learning rate multiplied by 0.1 every 100 epochs with the 
total epoch number: 500. Image augmentation was also 
used to alleviate overfitting. The images were randomly 
cropped, horizontally flipped and rotated in the range of 
[-20, 20] degrees.

Development and explanation of the integrated prediction 
model
The integrated prediction model mainly includes three 
branches, the deep learning branch, the hand-crafted 
radiomics branch, and the clinical and US feature branch. 
The flowchart outlining the integrated prediction model 
can be seen in Fig. 2. The deep learning branch was used 
to obtain the score value predicted by the ResNet50 with 
frozen parameters. In the hand-crafted radiomics branch, 
we adopted the predicted malignancy probability of the 
hand-crafted radiomics model for further integration. 
The already filtered clinical and US features were then 
used to create the final prediction model along with 
the predicted malignancy probabilities from the hand-
crafted radiomics model and the deep learning model. 
We also employed a multivariable logistic regression for 
the integrated prediction model, with 10-fold cross-val-
idation in the training set. To assess the performance of 
the integrated model, the performance of the model was 
compared with that of the hand-crafted radiomics model, 
DL model, and junior and senior radiologists on the inde-
pendent test set.

In addition, the visualized explanation methods named 
SHapley Additive exPlanations (SHAP) plot and Gradi-
ent-weighted Class Activation Mapping (Grad-CAM) 
were applied to improve the clinical explanation of our 

Fig. 2 The flow chart of the artificial intelligence integrated model
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model. We used Grad-CAM to extract the areas of inter-
est and generate saliency maps for the DL model, while 
the SHAP plot was used to calculate the contribution 
value of each variable to the integrated model. These 
visualization methods aim to improve the clinical under-
standing and explanation of our model’s predictions.

Statistical analysis
Statistical analysis was performed using IBM SPSS Statis-
tics for Windows, Version 20.0 (IBM Corp.).

Categorical variables are presented as numbers and 
percentages and analyzed using the chi-squared or 
Fisher’s exact test. The Mann-Whitney U test analyzed 
continuous variables, and Kappa statistics analyzed the 
inter-observer agreement. The performance of predictive 
models was evaluated by the receiver operating charac-
teristic (ROC) curve analysis and the area under curve 
(AUC). DeLong’s test compared the combined prediction 
model and other methods in predicting CLNM. Other 
performance measures, including accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV), were also assessed. The two-
sided statistical significance was set at 0.05.

Results
Patient demographics and feature selection
Patient characteristics and US features of the thyroid 
nodules in the training and test cohorts were shown in 
Table  1. The training cohort included 460 patients (136 
males, 324 females) with a mean age of 40.70 ± 11.16 
years (range, 11–73 years). The independent test cohort 
included 153 patients (45 males and 108 females) with 
a mean age of 42.59 ± 11.33 years (range, 13–69 years). 
These two datasets were comparable as there were no sig-
nificant differences. The inter-observer consistency was 
satisfactory, with Kappa coefficients between 0.82 and 
0.92 (Supplementary Material 3 S5).

To better understand the relationship between CLNM 
and clinical and US features, a multivariate analysis was 
performed in the training cohort. The results showed 
that age, sex, tumour size, multifocality, and ETE were 
independent risk factors for CLNM (Table 2).

Table 1 Demographic comparison between training and 
independent test cohorts
Characteristics
and US features

Training 
cohort
(n = 460)

Indepen-
dent test 
cohort
(n = 153)

p 
value

Size (mean ± SD) 1.24 ± 0.92 1.16 ± 0.69 0.433
Sex 0.971
Male 136(75.1%) 45(24.9%)
Female 324(75.0%) 108(25.0%)
Age 0.484
≤ 55 415(75.5%) 135(24.5%)
≤55 45(71.4%) 18(28.6%)
Tumour location 0.711
Right lobe 228(73.8%) 81(26.2%)
Left lobe 213(76.6%) 65(23.4%)
Isthmus 19(73.1%) 7(26.9%)
Tumour position 0.095
Upper 152(81.7%) 34(18.3%)
Mid 164(71.9%) 64(28.1%)
Lower 125(72.3%) 48(27.7%)
Isthmus 19(73.1%) 7(26.9%)
Solid composition with hy-
poechoic echo

0.110

Present 417(74.2%) 145(25.8%)
Absent 43(84.3%) 8(15.7%)
Tumour multifocality 0.769
Present 83(76.1%) 26(23.9%)
Absent 377(74.8%) 127(25.2%)
Aspect ratio 0.198
Present 201(726%) 76(27.4%)
Absent 259(77.1%) 77(22.9%)
Microcalcification 0.769
Present 360(75.3%) 118(24.7%)
Absent 100(74.1%) 35(25.9%)
Tumour vascularity 0.320
0–1 401(74.4%) 138(25.6%)
2–3 59(79.7%) 15(20.3%)
Acoustic halo 0.804
Present 42(73.7%) 15(26.3%)
Absent 418(75.2%) 138(24.8%)
ETE 0.947
Present 119(74.8%) 40(25.2%)
Absent 341(75.1%) 113(24.9%)
Posterior acoustic attenuation 0.282
Present 67(79.8%) 17(20.2%)
Absent 393(74.3%) 136(25.7%)
CLNM in the pathology outcomes 0.982
Present 228 (75.0%) 76 (25.0%)
Absent 232 (75.1%) 77 (24.9%)
Abbreviations: US, ultrasound; ETE, extrathyroidal extension; CLNM, central 
lymph node metastasis

Table 2 Independent risk factors after multiple logistic 
regression analysis
Ultrasound features β Odds ratio (95% CI) p 

value
Prediction of CLNM status
Size 0.533 1.704 (1.225–2.370) 0.002
Age -1.301 0.272 (0.125–0.595) 0.001
Sex -0.598 0.550 (0.353–0.857) 0.008
Tumour multifocality 0.738 2.092 (1.224–3.577) 0.007
ETE 1.418 4.130 (2.434–7.008) < 0.001
Abbreviations: CLNM, central lymph node metastasis; US, ultrasound; CI: 
confidence interval; ETE, extrathyroidal extension
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Diagnostic performance of CLNM-predicting model
We successfully built a hand-crafted radiomics model, a 
DL model, and an integrated model. In the testing set, 
our result showed that the DL model exhibited higher 
sensitivity (75.00% vs. 52.63%) but slightly lower speci-
ficity (71.43% vs. 74.03%) compared to the hand-crafted 
radiomics model (Table  3). By combining hand-crafted 
radiomics, DL and clinical features, the integrated model 
showed good predictive efficacy (the specificity and sen-
sitivity were 81.82% and 72.37%, and the PPV and NPV 
were 79.71% and 75.00%). Meanwhile, the integrated 
model had most outstanding performance with the 
AUC of 0.841, which was superior to the hand-crafted 
radiomics model (0.841 vs. 0.706, p < 0.001) as well as the 
DL model (0.841 vs. 0.819, p = 0.26) (Fig. 3). These find-
ings highlight the superior performance of the integrated 
model over the individual models.

Performance comparison among integrated model and 
radiologists
The results indicated that the integrated model exhibited 
a significantly higher AUC compared to both junior and 
senior radiologists (0.841 vs. 0.561 and 0.640, p < 0.001). 
In comparison to the junior and senior radiologists, the 

integrated model demonstrated a decrease in the missed 
CLNM rate by 30.26% and 17.11% respectively. Addition-
ally, the rate of unnecessary CLND decreased by 11.69% 
and 9.09%. A detailed comparison of the integrated 
model and radiologists were summarized in Table  4. 
These results indicated that integrated model could 
improve the efficiency of metastatic LNs detection and 
reduce the rate of unnecessary CLND.

Explanation of the integrated model
To better compensate for the problem of “cognitive opac-
ity” of AI models, we utilized SHAP plots to illustrate 
the contribution of each key parameter in the integrated 
model. The result showed that the DL model contributed 
the most to CLNM prediction, followed by ETE, tumour 
size, age, gender, and multifocality. The hand-crafted 
radiomics model played a relatively minor role within 
the integrated model (Fig.  4). In Fig.  5, two representa-
tive examples were presented to demonstrate how each 
key parameter contributed to the personalized decision-
making process in the integrated model. Furthermore, 
we employed Grad-CAM to identify the areas of inter-
est for the DL model. Figure 6 showcased several repre-
sentative cases, indicating that the areas of interest were 

Table 3 Performance comparison of different AI models in prediction of CLNM
Test cohort AUC 95%CI ACC (%) SEN (%) SPE (%) PPV (%) NPV 

(%)
ResNet 0.8189 [0.7542, 0.8835] 73.20 75.00 71.43 72.15 74.32
SVM 0.7061* [0.6246, 0.7875] 63.40 52.63 74.03 66.67 61.29
Integrated Model 0.8406 [0.7792, 0.9020] 77.12 72.37 81.82 79.71 75.00
Abbreviations: CLNM, central lymph node metastasis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; 
AUC, area under the receiver operating curve; CI, confidence interval *Compared with integrated model, p < 0.05

Fig. 3 Diagnostic performance comparison among artificial intelligence models and radiologists in the independent testing cohort
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predominantly located around the thyroid capsule, con-
sistent with the radiologists focusing on areas signifi-
cantly associated with CLNM.

Discussion
In this study, we developed an integrated model for pre-
dicting CLNM that incorporated deep learning, hand-
crafted radiomics, and clinical and US features. Our 
integrated model outperformed models based solely on 
hand-crafted radiomics or DL features, as well as junior 
and senior radiologists. The integrated model decreased 
the rate of missed CLNM and unnecessary CLND, thus 
improving preoperative CLND decision-making. Fur-
thermore, the integrated model’s visual explanation 
aligned with radiologists’ typical judgments, which con-
tributed to the acceptance of AI-assisted US diagnosis.

Currently, one of the primary objectives of US in 
patients with PTC is to provide preoperative guidance for 
CLND by detecting the presence of CLNM. However, the 
presence of air interference in the trachea and esophagus, 
along with the small size of LNs, leads to unsatisfactory 

diagnostic accuracy [26]. Encouragingly, hand-crafted 
radiomics and DL methods can effectively reveal infor-
mation that is imperceptible to the human eye, thereby 
enhancing diagnostic capabilities. Previous studies 
focusing solely on either hand-crafted radiomics or DL 
methods in diagnosing CLNM have yielded favourable 
results [27, 28]. However, our findings indicated limita-
tions in the diagnostic efficacy of standalone DL and 
hand-crafted radiomics models. The DL model exhib-
ited higher sensitivity, while the hand-crafted radiomics 
model showed higher specificity, indicating a distinction 
between traditional image features extracted by hand-
crafted radiomics and the high-dimensional features 
extracted by DL. These observations motivated us to 
develop an integrated model that combines both types 
of features, resulting in superior performance compared 
to models based solely on hand-crafted radiomics or DL 
features. Furthermore, when compared with junior and 
senior radiologists, the integrated model significantly 
reduced the missed rate of CLNM by 30.26% and 17.11%, 
respectively, and decreased the rate of unnecessary 

Table 4 Performance comparison of radiologists and integrated model in prediction of CLNM
Test cohort AUC 95%CI Undetected 

CLNM (%)
Unnecessary 
CLND (%)

ACC (%) SEN (%) SPE (%) PPV (%) NPV 
(%)

Junior Radiologists 0.5612* [0.4852, 
0.6371]

57.89
(44/76)

29.87
(23/77)

56.21 42.11 70.13 58.18 55.10

Senior Radiologists 0.6400* [0.5646, 
0.7153]

44.74
(34/76)

27.27
(21/77)

64.05 55.26 72.73 66.67 62.22

Integrated Model 0.8406 [0.7792, 
0.9020]

27.63
(21/76)

18.18
(14/77)

77.12 72.37 81.82 79.71 75.00

Abbreviations: CLNM, central lymph node metastasis; CLND, central lymph node dissection; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive 
value; NPV, negative predictive value; AUC, area under the receiver operating curve; CI, confidence interval *Compared with integrated model, p < 0.05

Fig. 4 The SHAP plot reflected the contribution of each parameter to diagnose central lymph node metastasis in the integrated model
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CLND by 11.69% and 9.09%. Our findings indicate that 
the utilization of this model in clinical practice can be 
beneficial for PTC patients. Radiologists also can benefit 
from the integrated model, as it can serve as a valuable 
second opinion during the diagnosis of CLNM, assisting 
them in making more precise judgments and boosting 
their diagnostic confidence.

Consistent with the results of previous studies [29], we 
conducted a screening of clinical and US factors associ-
ated with CLNM during routine diagnostic work. These 
factors were then integrated into our AI model, result-
ing in improved efficacy. Upon further analysis using 
the SHAP plot, the integrated model demonstrated that 
the clinical and US factors provided valuable additional 

information. Among these crucial factors, ETE had the 
highest contribution, indicating that tumour cells could 
breach the thyroid capsule and enter the lymphatic sys-
tem, leading to the development of metastatic LNs [30]. 
Additionally, tumour size, gender, age, and multifocality 
were also found to be associated with CLNM [31]. Inter-
estingly, our findings revealed that the integrated model 
focused primarily on the thyroid capsule, which aligns 
with the areas of emphasis for radiologists when assess-
ing CLNM. These results suggest that the clinical and 
US factors incorporated into the integrated model, as 
well as the regions of the model’s interest, are generally 
consistent with radiologists’ judgments, thereby provid-
ing the model with some clinical explainability. Overall, 

Fig. 5 Two representative cases for the real output of the integrated model. (a). A 31-year-old female suffering from PTC with CLNM. The hand-crafted 
radiomics model outputs a probability of 48.30% for CLNM. The deep learning model outputs a probability of 81.77%, and the integrated model fuses the 
risk factors and gives a final probability of 94.32%. The result is inconsistent with the radiologist’s diagnosis, so the radiologist is recommended to conduct 
a second scan and then consult the classification provided by the integrated model. (b) A 28-year-old female suffering from PTC without CLNM. The 
hand-crafted radiomics model represented a probability of 46.20% for CLNM. The deep learning model and the integrated model output probabilities 
of 15.10% and 5.91%, respectively. The result is consistent with the diagnosis of the radiologist. CLNM, central lymph node metastasis; ETE, extrathyroidal 
extension; PTC, papillary thyroid carcinoma
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the visual explanation provided by the integrated model 
not only aligns with radiologists’ usual judgments but 
also the integrated model demonstrates higher diagnos-
tic efficacy compared to radiologists. This enhances the 
clinical acceptance of AI-assisted US diagnosis among 
radiologists.

In contrast to the integrated models derived from CT 
or MRI images, where hand-crafted radiomics features 
played a prominent role [32, 33], our findings indicated 
that the contribution of hand-crafted radiomics features 
to our integrated model was relatively modest. This dis-
crepancy may arise from the fact that some of the fea-
tures extracted from US images through hand-crafted 
radiomics, such as shape, grayscale, and texture, can also 
be obtained through DL methods. Additionally, during 
US imaging, noise can be generated due to variations in 
signal intensity, which can degrade image quality and 
affect the extraction of certain hand-crafted radiomics 
features. Consequently, these circumstances may account 
for the relatively limited contribution of hand-crafted 
radiomics to the model.

Several limitations should be acknowledged in this 
study. Firstly, due to the interference of anatomical 

structures and the small size of the central LNs, US 
images of central LNs were not included in the analy-
sis. Secondly, although the incorporation of clinical and 
US features enhances the acceptance of AI-assisted US 
diagnosis by radiologists, the interpretability of features 
learned by the DL and radiomics model remains limited. 
Future advancements in the field of interpretable AI will 
inspire further exploration. Finally, the results obtained 
may be influenced by the limited amount of data utilized. 
Further investigation of the value of integrated models in 
prospective studies with larger sample sizes is warranted.

In conclusion, the integrated model demonstrated 
superior performance compared to models relying solely 
on hand-crafted radiomics or DL features, exceeding the 
diagnostic capabilities of both junior and senior radiolo-
gists. The application of integrated models can signifi-
cantly reduce missed CLNMs and unnecessary CLNDs 
along with increasing radiologists’ acceptance of AI-
assisted US diagnoses.
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