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Abstract 

Background  HBV infection is the leading risk factor for HCC. HBV infection has been confirmed to be associated 
with the exhaustion status of CD8+ T cells and immunotherapeutic efficacy in HCC. In this study, we aimed to investi-
gate the prognostic value of the CD8+ T-cell exhaustion signature and immunotherapy response in patients with HBV-
related HCC.

Methods  We identified different clusters of HBV-related HCC cells by single-cell RNA sequencing (scRNA-seq) 
and identified CD8+ T-cell exhaustion-related genes (TERGs) by pseudotime analysis. We conducted differential 
expression analysis and LASSO Cox regression to detect genes and construct a CD8+ T-cell exhaustion index (TEI). We 
next combined the TEI with other clinicopathological factors to design a prognostic nomogram for HCC patients. We 
also analysed the difference in the TEI between the non-responder and responder groups during anti-PD-L1 therapy. 
In addition, we investigated how HBV induces CD8+ T lymphocyte exhaustion through the inhibition of tyrosine 
metabolism in HCC using gene set enrichment analysis and RT‒qPCR.

Results  A CD8+ T-cell exhaustion index (TEI) was established with 5 TERGs (EEF1E1, GAGE1, CHORDC1, IKBIP 
and MAGOH). An AFP level > 500 ng, vascular invasion, histologic grade (G3-G4), advanced TNM stage and poor five-
year prognosis were related to a higher TEI score, while HBV infection was related to a lower TEI score. Among those 
receiving anti-PD-L1 therapy, responders had lower TEIs than non-responders did. The TEI also serves as an independ-
ent prognostic factor for HCC, and the nomogram incorporating the TEI, TNM stage, and vascular invasion exhibited 
excellent predictive value for the prognosis in HCC patients. RT‒qPCR revealed that among the tyrosine metabolism-
associated genes, TAT (tyrosine aminotransferase) and HGD (homogentisate 1,2 dioxygenase) were expressed at lower 
levels in HBV-HCC than in non-HBV HCC.

Conclusion  Generally, we established a novel TEI model by comprehensively analysing the progression of CD8+ T-cell 
exhaustion, which shows promise for predicting the clinical prognosis and potential immunotherapeutic efficacy 
in HBV-related HCC patients.
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Introduction
Hepatocellular carcinoma (HCC) is one of the most com-
mon cancers and is the fourth leading cause of cancer 
death worldwide [1]. Chronic infections with hepatitis B 
virus (HBV) or hepatitis C virus (HCV) are the foremost 
risk factors for the emergence of HCC [2]. At present, 
the primary treatment modalities for HCC are surgical 
resection and percutaneous ethanol injection [3]. Recent 
immunotherapies, such as immune checkpoint inhibi-
tors, have demonstrated promising clinical outcomes in 
patients with HCC [4]. However, patient response rates 
vary, with only approximately 20% of patients achieving 
positive treatment outcomes [5, 6]. Despite significant 
efforts devoted to the treatment and management of 
HCC, the 5-year overall survival (OS) rate has remained 
low [1]. This poor prognosis has been linked to late-stage 
diagnosis, tumor recurrence, and inadequate treatment 
options [7]. Thus, there is an urgent need to develop 
potent prognostic predictors and novel therapeutic strat-
egies to improve the diagnosis and treatment of HBV-
related HCC.

The tumor microenvironment (TME) comprises an 
array of immune cells that infiltrate the liver and estab-
lish distinct immune niches, with interactions with stro-
mal cells affecting the differentiation, tumorigenesis, and 
development of HCC [8–11]. Furthermore, since HCC 
is an inflammation-driven disease, the severity, status, 
and dynamic interplay of immune cells can significantly 
impact the prognosis and effectiveness of immunother-
apy [12–14]. For example, CD8+ T effector cells (Teffs) 
play a critical role in tumor control and contribute to a 
better prognosis in HCC. As the main cause of HCC, 
HBV infection has been confirmed to be associated with 

the infiltration and exhaustion status of CD8+ T cells 
[15]. Continuous antigen stimulation may lead to CD8+ 
Teff cells exhaustion, resulting in impaired antitumor 
immunity in HBV-related HCC [16]. The advent of sin-
gle-cell RNA-sequencing (scRNA-seq) has revolution-
ized the comprehensive profiling of the immune system, 
enabling a deeper understanding of immune cell het-
erogeneity and diversity [17]. A recent study generated 
a single-cell atlas of the multicellular ecosystem of HCC 
while also characterizing the heterogeneous subpopula-
tions of malignant cells and their multifaceted functions 
in shaping the immune microenvironment of HCC [18]. 
Additionally, the present study evaluated the relation-
ship between HBV infection and T-cell infiltration and 
exhaustion [18]. Nonetheless, the prognostic value and 
mechanisms of exhaustion of CD8+ T cells and their sub-
sets in HBV-related HCC are unclear.

In this study, we combined scRNA-seq and Bulk 
RNA-Seq to investigate the ability of the CD8+ T-cell 
exhaustion signature to predict the prognosis and 
immunotherapy response in HBV-related HCC patients 
(Fig.  1). First, we annotated HCC cell types based on 
marker genes. Subsequently, differential expression 
analysis was performed to compare the proportions of 
cell types between HBV-positive and negative HCC sam-
ples. We observed an increase in the proportion of CD8+ 
memory T cells (Tem) and exhausted T cells (Tex), and a 
decrease in the proportion of Teff cells in HBV-positive 
HCC samples. To further explore the underlying mecha-
nisms, we employed pseudotime analysis to identify key 
genes involved in the transition between different func-
tional states of CD8+ T cells. Differential analysis and 
univariate Cox regression were also conducted on genes 

Fig. 1  Flowchart for comprehensive analysis of CD8+ T cell exhaustion in HBV-related HCC
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related to exhaustion of CD8+ T cells (TERGs) to detect 
genes that exhibited differential expression in HBV-asso-
ciated HCC and were significantly linked to HCC prog-
nosis. We established the CD8+ T-cell exhaustion index 
(TEI) by utilizing least absolute shrinkage and selection 
operator (LASSO) regression. We then integrated the 
TEI with other clinicopathological factors to design a 
prognostic nomogram for HCC patients. Additionally, we 
explored the potential mechanism underlying the promo-
tion of CD8+ T-cell exhaustion due to HBV infection via 
the modulation of tyrosine metabolism. In summary, our 
study provides novel insights into the immunology of 
HBV-related HCC and offers valuable guidance for prog-
nosis assessment and immunotherapy selection in the 
management of HCC.

Materials and methods
Data source and preprocessing
The HCC scRNA-seq dataset GSE149614, containing 
10 primary tumor (PT) patients, was downloaded from 
the Gene Expression Omnibus (GEO) database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/) [18]. From these samples, 
we selected five HBV-positive and two HBV-negative 
samples for downstream analysis. The original dataset 
comprised 24,859 cells and 25,479 genes. Quality control 
procedures were performed using the PercentageFeature-
Set function to assess the percentage of mitochondrial 
and rRNA content in each cell. Cells expressing between 
200 and 6000 genes and with less than 20% mitochondrial 
content were retained, while cells with a minimum of 500 
Unique Molecular Identifiers (UMIs) were included in 
subsequent analyses.

Public clinical data and gene expression information 
were obtained from the TCGA (https://​portal.​gdc.​can-
cer.​gov/) and International Cancer Genome Consortium 
(ICGC) databases (https://​xena.​ucsc.​edu/). A total of 
367 samples from the TCGA-LIHC cohort and 232 sam-
ples from the ICGC-JP cohort were included for further 
analysis.

Data integration, clustering and cell type identification
First, we normalize the merged data through log-nor-
malization and find the first 2000 highly variable genes 
through the FindVariableFeatures function. All genes 
were scaled using the ScaleData function, and the Run-
PCA function was applied to reduce the dimensionality 
of PCA for the top 2000 highly variable genes selected 
earlier. Subsequently, we used the RunHarmony func-
tion to remove batch effects between different samples. 
We choose dim = 20 and clustered the cells through the 
“FindNeighbors” and “FindClusters” functions (reso-
lution = 0.6) to find the cell clusters. Next, we selected 
the top 20 principal components to further reduce 

dimensionality using the UMAP (Uniform Manifold 
Approximation and Projection) method. Next, through 
the function FindAllMarkers, groups of over expressed 
genes were identified to find subclusters. All UMAP 
visualizations, violin plots, and feature plots in the paper 
were produced using Seurat [19] functions in conjunc-
tion with the ggplot2, and pheatmap R packages. Finally, 
Cellmarker2.0 was employed to extract markers for dif-
ferent cell types, and the resulting annotation was used as 
a reference for subsequent analyses.

Trajectory analysis
To investigate the developmental trajectory of CD8+ T 
cells during tumor development and progression, we 
conducted pseudotime analysis using Monocle (version 
3.14.0) on the gene expression matrix annotated with 
Seurat [20]. We identified differentially expressed genes 
between HBV-positive and HBV-negative HCC in CD8+ 
T cells and arranged the cells along a pseudotime trajec-
tory. Heatmaps were generated based on genes expressed 
at each branch of the trajectory, and the cells were clus-
tered into four groups based on their gene expression 
patterns.

Identification and validation of TEI
Twenty TERGs were LASSO Cox regression model to 
construct the powerful prognostic signature. Finally, five 
regulators and their coefficients were selected and use to 
construct a prediction model. The risk score was calcu-
lated using the following formula:

where, Coefi is the coefficient and xi is the mRNA expres-
sion value of five regulators. This formula was used to 
calculate the TEI for every patient in both the training 
(TCGA) and validation (ICGC) datasets. The predictive 
ability of the TEI on five-year prognosis in HCC patients 
was evaluated by calculating the time-dependent area 
under the curves (AUC).

GO and KEGG pathway functional enrichment analysis
GO annotation and KEGG pathway enrichment analyses 
were executed utilizing R package - clusterProfiler (ver-
sion 3.14.3) on the basis of hypergeometric distribution 
[21–23]. The adjusted p-value was estimated through 
the Benjamini and Hochberg approach, where P.adjust 
value < 0.05 was recognized as statistically substantial. 
Display of the outcomes was achieved by invoking the 
dotplot utility in clusterProfiler.

Risk score =

n

i=1

Coefi ∗ xi

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
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Samples collection
This study conducted experimental validation on fresh 
postoperative tumor tissues from three HCC patients, 
including three HBV-negative and HBV-positive indi-
viduals, who were admitted to West China Hospital from 
January to September 2023.These patients did not receive 
prior radiotherapy or chemotherapy and underwent 
HCC surgery confirmed by pathological examination.

Quantitative polymerase chain reaction
Total RNA was extracted from these samples using TRI-
zol reagent (Life Technologies, CA, United States) and 
cDNA was generated by utilizing the SuperScript III 
First-Strand Synthesis System. qRT-PCR was executed 
on the six System (ABI, Foster City, CA, United States) 
employing the PowerUp SYBR Green kit (ABI, Fos-
ter City, CA, United States). The 2^-ΔΔCt method was 
employed to estimate relative gene expression. Supple-
mentary Table S1 presents the primer sequences imple-
mented in this study.

Statistical analysis
Unless specified otherwise, all statistical analyses were 
executed employing R (version 4.0.4). Student’s t-test 
(two-tailed, unpaired) was invoked to distinguish differ-
ences between two independent groups. To scrutinize 
the correlation between TEI and clinical features, the 
Chi-square test was employed. The median TEI value was 
used to conduct Kaplan-Meier analyses for OS, applying 
the log-rank test. Univariate and multivariate Cox regres-
sion analyses were executed to identify the relation-
ships between different variables and clinical outcome. 
P-value < 0.05 was regarded as statistically significant.

Result
Identification of clusters of HBV‑related HCC cells using 
scRNA‑seq data exhibiting high cell heterogeneity
Initially, we determined the available dimensions and 
screened related genes using principal component analy-
sis (PCA). We selected 20 initial principal components, 
followed by UMAP (Figure S1A and B). After quality con-
trol and batch effect correction, we normalized the HCC 
scRNA-seq data, which included 25,479 genes and 24,859 
cells from the HCC samples (Figure S1C and D). Next, we 
conducted a cluster classification analysis of all the cells, 
identifying 21 separate clusters in the HCC cell popula-
tion (Fig. 2A). These clusters were then annotated by cell 
type based on marker gene expression according to the 
CellMarker database and the literature (Figure S1E, F and 
Figure S2). The HCC cells were classified as myeloid cells, 
hepatocyte cells, B cells, T/NK cells, endothelial cells, or 
fibroblasts (Fig.  2B, C). Given the critical role of T/NK 
cells in the progression and prognosis of HCC, we further 

analysed T/NK cells and identified 13 separate clusters 
(Fig. 2D), which were subsequently annotated as CD8+ T 
cells, CD4+ T cells, NK cells, cycling cells, and unknown 
cells (Fig.  2E, F). Furthermore, we performed a subtype 
analysis of CD8+ T cells by categorizing them into effec-
tor, memory, and exhausted CD8+ T cells (Fig. 2G-I). Dif-
ferential analysis of cell proportions revealed a significant 
decrease in the proportion of CD8+ Teff cells in HBV-
positive HCC (Fig.  2J and Table S2). These results are 
consistent with previous literature suggesting that HBV 
infection might promote exhaustion of CD8+ T cells in 
HCC. Therefore, our subsequent studies will focus on 
examining the mechanisms of CD8+ T-cell exhaustion.

Identification of genes associated with CD8+ T‑cell 
exhaustion
Given the crucial role of CD8+ T-cell exhaustion in the 
development and progression of HBV-related HCC, we 
conducted a pseudotime analysis to simulate the trajec-
tory of CD8+ T-cell exhaustion (Fig. 3A-C). Individual 
cells were sorted according to their marker genes, and 
the tree-like structure of the entire lineage differen-
tiation trajectory was constructed using the R pack-
age ‘monocle’ (Fig.  3B). CD8+ Tem cells were found 
to be located at the initiation of trajectory branch 1, 
while Teff cells emerged towards the end. Teff cells 
appeared at the commencement of trajectory branch 
2, whereas Tex cells were observed towards this con-
clusion (Fig. 3C). Furthermore, changes in the expres-
sion of marker genes in different states of CD8+ T 
cells were analysed. At the initial stage, the expression 
of the marker genes was upregulated in CD8+ Tem 
cells (GZMK and KLRB1) (Fig. 3D). Later, the expres-
sion levels of CD8+ Tem cell marker genes decreased, 
whereas the expression of marker genes of CD8+ 
Teff cells (GZMH and GNLY) significantly increased 
(Fig.  3D, E). Eventually, CTLA4 and CXCL13, both of 
which are marker genes for CD8+ Tex cells, were sig-
nificantly upregulated at the terminal stage (Fig.  3E). 
These results demonstrated how CD8+ T cells trans-
form from memory cells to effector cells and eventually 
become exhausted. Additionally, clustering of the top 
50 genes according to pseudotemporal expression pat-
terns was performed. According to the heatmap of tra-
jectory branch 1, genes in Cluster 1 were significantly 
enriched in the process of converting memory cells to 
effector cells in cell fate 2 (Fig. 3F). Moreover, genes in 
Clusters 3 and 4 were significantly enriched in the pro-
cess of converting effector cells to memory cells in cell 
fate 2, as observed in the heatmap of trajectory branch 
2 (Fig.  3G). These results demonstrated the genetic 
characteristics of CD8+ T-cell exhaustion, and a total 
of 3,172 total T-cell exhaustion-related genes (TERGs) 
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were identified. Therefore, further analysis was per-
formed to examine the clinical value of genes whose 
expression changed during the conversion of CD8+ 
Tem cells to Teff cells and of those that changed from 
CD8+ Teff cells to Tex cells in the two trajectories.

The TEI was established based on five TERGs
Considering the significant role of CD8-positive T-cell 
exhaustion in the prognosis and immunotherapy effi-
cacy of HBV-related HCC, we screened prognosis-related 
TERGs in HCC and constructed a prognostic model. A 

Fig. 2  ScRNA-seq Landscape of HBV-related HCC Tumor Microenvironment. A, B UMAP plot of cells colour-coded for the indicated cell types 
in the microenvironment of HBV-related HCC, displaying 6 major cell types and a total of 21 subtypes. C UMAP plot showing cell origins by colour, 
the origin of HBV types. D, E UMAP plot showing the subtypes and corresponding annotations of T/NK cells in HCC patient. F UMAP plot of T/NK 
cells from the two groups of melanoma samples of HBV infection. G, H UMAP plot showing the subtypes and corresponding annotations of CD8+ T 
cells in HCC patient. I UMAP plot of CD8+ T cells from the two groups of melanoma samples of HBV infection. J The fold changes of the percentages 
of each of the  cell types comparing the HBV positive to the negative HCC
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volcano plot of the TCGA cohort showed that 183 genes 
were significantly downregulated and 32 genes were signifi-
cantly upregulated in HBV-related HCC tissues (Fig. 4A). 
Subsequently, we proceeded with further analysis by 
selecting 20 TERGs that exhibited differential expres-
sion between HBV-positive and -negative HCC patients 
and could impact the prognosis of HCC patients (Fig. 4B). 

Univariate Cox analysis revealed that CYP2A7 may play 
a protective role, while the remaining genes were iden-
tified as potential risk factors for the prognosis of HCC 
(Fig.  4C). To accurately evaluate the prognostic value of 
CD8+ T-cell exhaustion in individual HCC patients, the 
CD8+ T-cell exhaustion indices (TEIs), which included 
EEF1E1, GAGE1, CHORDC1, IKBIP and MAGOH, were 

Fig. 3  Simulation of the development trajectory of CD8+T cells and the analysis of gene expression pattern. A cell cluster transition. 
B pseudo-trajectory of CD8+ T cells. C cell type transition. D, E Expression patterns of some marker genes related to CD8+ T exhaustion under three 
types. F, G Heatmap shows the gene expression dynamics of CD8+ T cell types. Genes (rows) are clustered and cells (columns) are ordered 
according to the pseudotime development
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calculated via the LASSO Cox regression model based on 
the minimum criterion (Fig. 4D, E). We calculated the TEIs 
using the following equation: TEIs = (0.211 × expression 
of EEF1E1) + (0.082 × expression of GAGE1) + (0.141 × 
expression of CHORDC1) + (0.045 × expression of IKBIP) 
+ (0.078 × expression of MAGOH) in the TCGA (training) 
and the ICGC (validation) cohorts. To further explore the 
prognostic value of TEIs, HCC patients were divided into 
high- and low-TEI groups based on the median values in 
the TCGA and the International Cancer Genome Consor-
tium (ICGC) cohorts. Survival analysis of patients in the 

TCGA and ICGC cohorts demonstrated that high TEAD 
gene expression was closely associated with poor OS 
(Fig. 5A, B). Additionally, analyses showed that, compared 
with those in the high-TEI subgroup, the low-TEI sub-
group had a lower number of deaths (Fig. 5C, D). In sum-
mary, TEIs can potentially predict patient prognosis.

Correlation of TEIs with clinical characteristics and its 
predictive value in immunotherapy
We subsequently tested the correlation between clini-
cal characteristics and TEIs. The expression of genes 

Fig. 4  Construction of the TEI of CD8+T cell exhaustion-related genes (TERGs). A The volcano diagram depicting the differential expression of genes 
between HBV-negative and HBV-positive HCC samples. B 20 TERGs that exhibit differential expression between HBV-positive and HBV-negative 
HCC patients, and have the potential to impact the prognosis of HCC. C Univariate Cox analysis of OS in HCC. D Selection of the optimal parameter 
(lambda) in the LASSO model. E LASSO coefficients of the 20 TERGs in TCGA cohort
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and clinical characteristics of patients with low- and 
high-TEIs are represented via heatmaps (Fig.  6A). We 
found that high AFP levels, high vascular invasion, high 
histologic grade (G3-G4), advanced TNM stage and 
poor five-year prognosis were closely associated with 
high-TEI HCC patients (Table S3). Subsequently, we 
evaluated the differences between the TEIs and each 
clinical feature. We found that high TEAD1 expression 
was closely associated with tumor progression, 5-year 
survival, TNM stage III-IV, pathological T3-4 stage, 
vascular invasion and HBV infection (Fig.  6B-G). Fur-
thermore, we analysed the relationship between TEIs 
and immunotherapy response. We used the TIDE algo-
rithm to predict the likelihood of response to immu-
notherapy based on the TCGA and ICGC cohorts. We 
were very delighted to see that patients with low TEIs 
had a more promising response to immunotherapy 
among all HCC patients and HBV-positive patients. 
Moreover, patients who responded to immunotherapy 
had lower TEIs (Fig. 7A-D). Overall, our study indicates 
that TEIs might be potential biomarkers for evaluat-
ing immunotherapy efficacy and clinical progress in 
patients with HBV-related HCC.

Establishment and assessment of TEIs‑correlated 
clinicopathologic nomogram
To elucidate whether the TEI was an independent 
prognostic indicator of HCC, univariate and multi-
variate Cox regression analyses were conducted, and 
the results showed that vascular invasion, TNM stage 
and TEI were closely linked to the OS of HCC patients 
according to univariate Cox analysis. Multivariate anal-
ysis also indicated that TEIs were still an independent 
prognostic factor in HCC patients (Fig. 8A, B). A nom-
ogram model was constructed with the TCGA cohort 
utilizing multivariate Cox and stepwise regression anal-
yses to evaluate 1-, 2-, 3-, 4-, and 5-year overall survival 
(OS). The model incorporated vascular invasion, TNM 
stage, and the TEI as significant variables (Fig.  8C). A 
substantial difference in survival between the high-
grade and low-grade groups was observed based on the 
nomogram score (Fig. 8D). The accuracy of this model 
in estimating the 1-, 3-, and 5-year survival rates was 
confirmed by calibration curves (Fig.  8E). Decision 
curve analysis (DCA) revealed that the nomogram 
model was superior to any other predictor utilized in 
our study (Fig.  8F). Furthermore, the area under the 

Fig. 5  Internal training and external validation of the TEI. A, B Overall survival in the low- and high-TEI group patients in TCGA and ICGC cohorts. 
C, D Overall survival analysis for high-risk and low-risk groups in the training (TCGA) cohort and validation (ICGC) cohort, respectively
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curve (AUC) values for the TCGA and ICGC cohorts 
were evaluated, and the results indicated that the nom-
ogram has remarkable precision in predicting 5-year 
survival in HCC patients (Fig.  8G). In conclusion, 
based on the above findings, our prognostic nomogram 
for OS prediction is reliable and suitable for application 
in HCC patients.

Mechanism analysis of HBV‑induced exhaustion of CD8+ T 
cells
To investigate the potential mechanisms by which HBV 
promotes immune suppression, we performed path-
way enrichment analysis on different cell types. First, we 
extracted marker genes of different cell types from HBV-
positive and -negative HCC samples and performed 

Fig. 6  The relationship between the TEI and clinical characteristics in HCC patients. A Heat map of five TERGs expression and corresponding 
clinicopathological features of low- and high-TEI group. B The relationships between the TEI and clinical characteristics including tumor recurrence, 
Five-year survival status, TNM, histologic grade, vascular invasion and HBV infection
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enrichment analysis. The results were as follows: in B 
cells, the “Th17 cell differentiation” pathway was sig-
nificantly enriched in HBV-negative samples; in myeloid 
cells, the “human immunodeficiency virus 1 infection” 
pathway was significantly enriched in HBV-positive sam-
ples; and in T/NK cells, the “haematopoietic cell lineage” 
pathway was significantly enriched in HBV-negative cells. 
In fibroblasts, the “human cytomegalovirus infection” 
pathway was significantly enriched in HBV-positive HCC 
samples, while the “complement and coagulation cas-
cades” and “prion disease” pathways were significantly 
enriched in HBV-negative samples. In hepatocytes, 
the “tyrosine metabolism” pathway was significantly 
enriched in HBV-negative samples. Previous literature 
suggests that the accumulation of tyrosine in the tumor 
microenvironment can suppress the antitumor immune 
response. Therefore, we further explored the underlying 
mechanisms involved (Figure S3). GSEA confirmed that 
the tyrosine metabolism pathway was significantly sup-
pressed in HBV-positive HCC samples (Fig.  9A). The 
bulk data showed that tyrosine metabolism was also 

reduced when the TEI score was high (Fig. 9B). Accord-
ing to our correlation analysis, TEIs were found to be 
significantly negatively correlated with the key enzymes 
involved in tyrosine catabolism (Fig.  9C). Further qRT‒
PCR experiments demonstrated that the mRNA levels 
of key enzymes involved in tyrosine catabolism were 
significantly reduced in HBV-positive HCC samples and 
cell line (Fig. 9D and E). Single-cell data analysis showed 
that TAT and HPD were most significantly decreased in 
HBV-positive HCC samples (Fig.  9F). Therefore, HBV 
may promote CD8+ T-cell exhaustion by inhibiting the 
catabolism of tyrosine and promoting its accumulation.

Discussion
Over the past two decades, clinical trials investigating 
HCC therapies have demonstrated that immune check-
point inhibitor (ICI) therapy is more effective in patients 
with HBV-positive HCC than in those with HBV-nega-
tive HCC [24, 25]. These findings underscore the impor-
tance of obtaining a deeper understanding of the TME in 
HBV-related HCC. Single-cell sequencing has provided 

Fig. 7  The immunotherapy value of TEI. The proportion of patients with response to immunotherapy in low or high TEI groups and the differential 
analysis of TEI between immunotherapy responders and non-responders were evaluated in HCC (A, C) and HBV-positive HCC (B, D) using 
both TCGA and ICGC datasets
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us with opportunities to gain deeper insights into the 
immune microenvironment of HCC. Recent studies on 
the immune microenvironment of HCC have shown 
that this tumor highly immunosuppressive and enriched 

with CD8+ Tex cells [16]. Notably, HBV-positive HCC 
displayed increased infiltration of CD8+ T cells, albeit 
with heightened CD8+ Tex cell numbers [18]. Previous 
research has confirmed that the extent of exhaustion of 

Fig. 8  Establishment and assessment of the nomogram survival model. A, B Univariate and multivariate Cox analysis for the clinicopathologic 
characteristics and TEI in TCGA and ICGC cohort. C A nomogram was established to predict the prognostic of HCC patients. D Kaplan-Meier 
analyses for the two HCC groups based on the nomogram score. E Calibration plots showing the probability of 1-, 3-, and 5-year overall survival 
in TCGA cohort. F Decision curve analysis (DCA) of nomogram predicting 5-year overall survival. G Receiver operator characteristic (ROC) analysis 
of nomogram predicting 5-year overall survival in TCGA​
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Fig. 9  Mechanism analysis of HBV-induced exhaustion of CD8+T lymphocytes. A, B KEGG enrichment pathways analysis of tyrosine metabolism 
in TEI high and HBV-positive HCC patients. C Correlation analysis of TEI and tyrosine metabolism related molecules. D PCR experiments of tyrosine 
catabolism related enzymes in HBV-positive and HBV-negative HCC tissues. E PCR experiments of tyrosine catabolism related enzymes in HepG2 
and HepG2.2.15. F UMAP plot displays differential expression of TAT and HPD in HBV-negative and positive HCC
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CD8+ T cells plays a pivotal role in determining the effi-
cacy of immunotherapies and patient prognosis in HCC 
[26]. However, reliable and effective models for prognosis 
assessment and biomarker identification in HBV-related 
HCC are still lacking. A dependable prediction model is 
crucial for accurate selection of treatment options and 
prognosis evaluation in patients with HCC.

In this study, we observed a decrease in CD8+ Teff cell 
infiltration and an increase in Tem and Tex cell infiltra-
tion in HBV-positive HCC tissues. We then extracted 
TERGs related to the CD8+ T-cell exhaustion process 
using pseudotime analysis. By further integrating bulk 
RNA-Seq data, we identified TERGs that were differen-
tially expressed between HBV-negative and -positive 
HCC and significantly affected HCC prognosis. Using 
LASSO regression, we constructed a TEI and divided 
HCC patients into high- and low-TEI groups based on 
the median value. The TEI demonstrated good predictive 
ability for the prognosis of HCC patients. Subsequently, 
univariate and multivariate Cox regression analyses 
revealed that the TEI was an independent prognostic risk 
factor in HCC patients. Additionally, the high-TEI group 
was associated with advanced clinicopathological char-
acteristics and immunotherapy nonresponse. Finally, we 
constructed a nomogram incorporating clinical charac-
teristics and the TEI, which performed well. Overall, our 
study developed a clinically applicable model that facili-
tates the selection of treatment options and prognostic 
assessment for patients with HBV-related HCC.

As a major component of the tumor microenviron-
ment, metabolic reprogramming of tumor cells plays 
a crucial role in tumor progression and the response to 
immune therapy [27–29]. Therefore, in our mechanis-
tic exploration, we focused on investigating the impact 
of changes in intrinsic tumor cell metabolism on the 
response to immunotherapy in different subgroups. 
Subsequent mechanistic explorations revealed sig-
nificant enrichment of tyrosine metabolism in patients 
with HBV-negative HCC and patients with lower TEI 
scores. Further correlational analysis revealed a signifi-
cant negative correlation between the TEI and tyrosine 
catabolic enzyme expression. Tyrosine catabolism pri-
marily occurs in the liver, and to a lesser extent, in the 
kidney. In this process, tyrosine is metabolized to gen-
erate intermediates or precursors for the tricarboxylic 
acid (TCA) cycle and ketogenesis [30]. Subsequently, 
tyrosine undergoes several enzymatic reactions to be cat-
abolized to fumarate and acetoacetate (AcAc) [31], with 
the aid of enzymes such as tyrosine aminotransferase 
(TAT), 4-hydroxyphenylpyruvate dioxygenase (HPD), 
homogentisate 1,2-dioxygenase (HGD), maleylacetoace-
tate isomerase (GSTZ1), and fumarylacetoacetase (FAH). 
A reduction in the expression levels and loss of function 

of the aforementioned enzymes can result in tyrosinemia 
[32, 33]. Studies have indicated that during the progres-
sion of chronic liver disease, there is a gradual increase 
in blood tyrosine levels [34]. Furthermore, high tyros-
ine levels in HCC patients are closely associated with 
poor prognosis [35]. Metabolomic studies have demon-
strated that HBV-positive HCC patients exhibit signifi-
cantly higher serum tyrosine levels than HBV-negative 
HCC patients [36, 37]. Research on tumor immuno-
therapy has shown that consuming a diet low in tyrosine 
and phenylalanine can improve the body’s anti-tumor 
immune response [38]. A decrease in the serum tyros-
ine concentration may facilitate T-cell proliferation and 
activation [39]. In melanoma, reducing the serum levels 
of tyrosine and phenylalanine can inhibit tumor growth 
and metastasis. Moreover, targeting tyrosine metabolism 
can enhance the efficacy of PD-1 monoclonal antibody 
therapy for melanoma [40]. Animal models indicate that 
lowering the serum concentration of tyrosine enhances 
the sensitivity of HCC, lung cancer, and leukaemia to 
chemotherapy [41]. Although several studies have estab-
lished that tyrosine metabolism plays a crucial role in the 
immune microenvironment of HCC, the specific mecha-
nisms involved are yet to be fully understood.

In this study, we performed qRT-PCR validation on 
HBV-positive and negative HCC tissues. Our find-
ings demonstrated that the expression of key enzymes 
involved in the catabolic metabolism of tyrosine, namely, 
TAT, HPD, HGD and GSTZ1, was notably reduced 
in HBV-positive HCC tissues. Subsequent single-cell 
analysis revealed significantly decreased TAT and HPD 
expression in hepatocytes from HBV-positive HCC 
patients. As a result, we propose that HBV infection may 
promote CD8+ T-cell exhaustion by inhibiting the cata-
bolic metabolism of tyrosine. Monitoring the levels of 
tyrosine in the body and adopting a low phenylalanine 
and tyrosine diet during immunotherapy for HBV-related 
HCC patients may help predict the prognosis of immu-
notherapy and enhance its efficacy [42]. To sum up, the 
CD8+ T-cell exhaustion signature proposed in this study 
can be a useful prognostic predictor for HBV-related 
HCC patients. These findings can significantly improve 
the assessment of clinical outcomes in these patients.

Conclusion
To conclude, this study proposes the TEI as a valuable 
prognostic predictor for patients diagnosed with HBV-
positive HCC, as it significantly improves outcome 
assessment and predicts immunotherapy effectiveness. 
Additionally, our findings suggest that HBV infection 
may induce CD8+ T-cell exhaustion via the inhibition of 
tyrosine catabolism, offering novel insights into thera-
peutic strategies for HBV-HCC.
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