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Abstract
Objective  (1) This study aims to identify distinct serum metabolites in gastric cancer patients compared to healthy 
individuals, providing valuable insights into postoperative efficacy evaluation and monitoring of gastric cancer 
recurrence; (2) Methods: Serum samples were collected from 15 healthy individuals, 16 gastric cancer patients before 
surgery, 3 months after surgery, 6 months after surgery, and 15 gastric cancer recurrence patients. T-test and analysis 
of variance (ANOVA) were performed to screen 489 differential metabolites between the preoperative group and 
the healthy control group. Based on the level of the above metabolites in the recurrence, preoperative, three-month 
postoperative, and six-month postoperative groups, we further selected 18 significant differential metabolites by 
ANOVA and partial least squares discriminant analysis (PLS-DA). The result of hierarchical clustering analysis about 
the above metabolites showed that the samples were regrouped into the tumor-bearing group (comprising the 
original recurrence and preoperative groups) and the tumor-free group (comprising the original three-month 
postoperative and six-month postoperative groups). Based on the results of PLS-DA, 7 differential metabolites 
(VIP > 1.0) were further selected to distinguish the tumor-bearing group and the tumor-free group. Finally, the results 
of hierarchical clustering analysis showed that these 7 metabolites could well identify gastric cancer recurrence; (3) 
Results: Lysophosphatidic acids, triglycerides, lysine, and sphingosine-1-phosphate were significantly elevated in the 
three-month postoperative, six-month postoperative, and healthy control groups, compared to the preoperative and 
recurrence groups. Conversely, phosphatidylcholine, oxidized ceramide, and phosphatidylglycerol were significantly 
reduced in the three-month postoperative, six-month postoperative, and healthy control groups compared to the 
preoperative and recurrence groups. However, these substances did not show significant differences between the 
preoperative and recurrence groups, nor between the three-month postoperative, six-month postoperative, and 
healthy control groups; (4) Conclusions: Our findings demonstrate the presence of distinct metabolites in the serum 
of gastric cancer patients compared to healthy individuals. Lysophosphatidic acid, triglycerides, lysine, sphingosine-
1-phosphate, phosphatidylcholine, oxidized ceramide, and phosphatidylglycerol hold potential as biomarkers for 
evaluating postoperative efficacy and monitoring recurrence in gastric cancer patients. These metabolites exhibit 
varying concentrations across different sample categories.
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Introduction
Gastric cancer is a major global health concern, with 
more than one million newly diagnosed cases yearly and 
approximately 800,000 deaths in 2020 [1]. Despite declin-
ing cancer incidence and mortality rates worldwide over 
the past five decades, gastric cancer remains the third 
leading cause of cancer-related deaths [2, 3]. Notably, 
epidemiological studies have revealed an alarming rise in 
gastric cancer incidence among young individuals, poten-
tially linked to factors such as autoimmune responses 
[4, 5]. Consequently, gastric cancer has become a criti-
cal subject of research. Surgical resection has demon-
strated improved survival rates for early-stage gastric 
cancer compared to endoscopic resection [6], while for 
advanced-stage cases, surgical resection remains the 
sole curative treatment option. Nevertheless, despite 
advancements in treatment outcomes [7–9], the overall 
survival rate for recurrent gastric cancer patients remains 
low [10]. Early detection of postoperative recurrence 
plays a crucial role in enhancing patient prognosis. Cur-
rent clinical methods for recurrence monitoring include 
abdominal CT, endoscopic biopsy, and serum tumor 
markers. However, these methods have limitations in 
detecting small recurrent lesions and may cause discom-
fort. Therefore, identifying specific biomarkers for assess-
ing and predicting gastric cancer occurrence, metastasis, 
and treatment response is paramount. Metabolomics, 
a post-genomic research field, holds immense poten-
tial in unraveling complex disease mechanisms by ana-
lyzing low-molecular-weight compounds in biological 
samples. It has played a vital role in diagnosing various 
cancers and other diseases, making it an ideal tool for 
this research [11]. In this study, we focused on investigat-
ing serum metabolites in gastric cancer patients, reveal-
ing significant increases in phosphatidylcholine, oxidized 
ceramide, and phosphatidylglycerol levels, while Lyso-
phosphatidic acid, triglycerides, lysine, and Sphingosine-
1-phosphate were significantly decreased [12, 13]. By 
shedding light on these differential serum metabolites, 
our research aims to contribute to evaluating gastric 
cancer surgical efficacy and postoperative recurrence 
monitoring, with the ultimate goal of improving patient 
outcomes.

Materials and methods
Patients
The study received approval from the Ethics Commit-
tee of The First Hospital of Jilin University (Changchun, 
China), and written informed consent was obtained from 
all patients. Serum samples were collected from patho-
logically confirmed gastric cancer patients who received 
treatment at the Department of Gastrointestinal and 
Colorectal Surgery, The First Hospital of Jilin Univer-
sity, between June 2021 and January 2022. We collected 

serum samples from 15 healthy individuals and 16 gastric 
cancer patients before surgery, 3 months and 6 months 
after surgery. Inclusion criteria for these 16 patients: (1) 
Patients with a single primary tumor without distant 
metastasis; (2) No history of diabetes or other major dis-
eases and good cardiac and hepatic-renal function; (3) 
Patients not receiving relevant treatments; (4) Absence of 
evident acute inflammatory diseases. Exclusion criteria 
for these 16 patients: (1) Patients with impaired hepatic-
renal-cardiac-pulmonary function; (2) Patients with 
acute inflammatory disease or major stress response in 
the past two weeks; (3) Patients with metabolic diseases 
(e.g., diabetes) or hematologic diseases; (4) Patients with 
infectious diseases (e.g., hepatitis B); (5) Pregnant or lac-
tating women; (6) Individuals with substance abuse, drug 
addiction, or prolonged use of steroids. In addition, we 
collected serum samples from 15 patients with recur-
rent gastric cancer. Recurrence criteria: (1) Histologically 
confirmed presence of cancer cells at the anastomosis 
site via endoscopic biopsy; (2) Evidence of liver metasta-
sis on contrast-enhanced abdominal CT; (3) Cancer cells 
detected in peritoneal effusion cell examination; (4) Mes-
enteric lymph node metastasis indicated by PET-CT.

Sample collection
Venous blood samples were collected in the early morn-
ing from fasting subjects and centrifuged at 3000  rpm 
for 10 min at 4  °C. The upper serum was extracted and 
stored at -80  °C until further use. For analysis, 100 µL 
of plasma was precisely aspirated into a 1.5  ml EP tube 
and mixed with a 4-fold volume of methanol: acetonitrile 
(1:1, V/V). The mixture was vortexed for 30 s, sonicated 
in an ice bath for 10 min, and kept in a -20 °C refrigera-
tor for 1  h. Afterward, the mixture was centrifuged at 
13,500 rpm for 10 min at 4 °C, and the supernatant was 
collected for injection analysis.

LC-MS
LC-MS analysis was performed using the AB Sciex Tri-
ple TOF 5600TM system (AB Sciex, America) and the 
Exion UHPLC system (Shimadzu, Japan). Sample mix-
ing was carried out using Vortex 3 from Germany (IKA), 
and centrifugation was conducted using the H165R low-
temperature centrifuge (4℃) from Xiangyi Centrifuge 
Instrument Co., Ltd. (China). The solvents used were 
acetonitrile (HPLC grade, Sigma-Aldrich, America), for-
mic acid (HPLC grade, Sigma-Aldrich, America), metha-
nol (HPLC grade, Merk, Germany), and deionized water 
(Watson, China). Positive and negative ion calibration 
solutions (POS and NEG, respectively) from AB Sciex 
were used for ion calibration. The liquid chromatography 
system employed was the Exion UHPLC System with a 
binary gradient pump. The chromatographic column was 
the ACQUITY UPLC HSS T3 (2.1 × 100  mm, 1.8  μm, 
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Waters, USA). The mobile phase comprised solvent A 
(0.1% formic acid in water) and solvent B (pure aceto-
nitrile). The column temperature was set at 35℃. The 
injection volume for both positive (POS) and negative 
(NEG) modes was 5 µL. The elution program was car-
ried out with a linear gradient. Before the formal sample 
analysis, a 5-minute equilibration with the initial mobile 
phase was performed to ensure the stability of the liquid 
phase system and chromatographic column. Ten injec-
tions of quality control (QC) samples were used to ensure 
the accuracy and reliability of the experimental data. 
The flow rate was maintained at 0.35 ml/min. The gradi-
ent time was set as follows: at 0.5 min, A phase was 98%, 
and B phase was 2%; at 1.5 min, A phase was 80%, and B 
phase was 20%; at 4 min, A phase was 35%, and B phase 
was 65%; at 11  min, A phase was 5%, and B phase was 
95%; at 15 min, A phase was 5%, and B phase was 95%; 
at 15.1  min, A phase was 98%, and B phase was 2%; at 
20 min, A phase was 98%, and B phase was 2%.

Mass spectrometry
Mass spectrometry analysis was performed using the AB 
Sciex TripleTOF 5600 system in both positive and nega-
tive ion modes with an electrospray ionization source. 
The first-level mass spectrometry parameters for the 
ion source were as follows: in positive mode, ion spray 
voltage (V) was set to 5500; temperature (℃) to 550; 
gas 1 (psi) to 55; gas 2 (psi) to 55; curtain gas (psi) to 
30; declustering potential (DP) to 100; collision energy 
(CE) to 10; in negative mode, ion spray voltage (V) was 
− 4500; temperature (℃) to 550; gas 1 (psi) to 55; gas 2 
(psi) to 55; curtain gas (psi) to 30; declustering potential 
(DP) to -100; collision energy (CE) to -10. The second-
level mass spectrometry parameters for the ion source 
were as follows: in positive mode, ion spray voltage (V) 
was set to 5500; temperature (℃) to 550; gas 1 (psi) to 
55; gas 2 (psi) to 55; curtain gas (psi) to 30; declustering 
potential (DP) to 100; collision energy (CE) to 35; colli-
sion energy spread (CES) to 15; ion release delay (IRD) 
to 67; ion release width (IRW) to 25; in negative mode, 
ion spray voltage (V) was − 4500; temperature (℃) to 550; 
gas 1 (psi) to 55; gas 2 (psi) to 55; curtain gas (psi) to 30; 
declustering potential (DP) to -100; collision energy (CE) 
to -35; collision energy spread (CES) to 15; ion release 
delay (IRD) to 67; ion release width (IRW) to 25.

Statistical analysis
The LC-MS data were collected using the Analyst TF1.7.1 
software (AB Sciex) and processed with PeakView2.2 (AB 
Sciex). The special format raw data files were imported 
into the XCMS software for relevant preprocessing. 
MetaboAnalyst 5.0 was utilized for principal component 
analysis (PCA) and T-test (P < 0.01) to initially screen 
the different metabolites between the preoperative and 

the healthy control groups. Subsequently, ANOVA 
(P < 0.01) and PLS-DA (with variable importance in pro-
jection, VIP > 1.2) were performed to further select dif-
ferent metabolites. Next, the samples were re-grouped 
into the tumor-bearing group (preoperative and recur-
rence groups) and the tumor-free group (three-month 
postoperative and six-month postoperative groups) 
using clustering analysis. A further PLS-DA (with vari-
able importance in projection, VIP > 1.0) was performed 
on the re-grouped samples to identify different metabo-
lites. To find metabolites with good discriminatory ability 
among the sample groups, ROC curves were drawn using 
the SPSS Statistics 21 software. The selected metabolites 
were subjected to hierarchical clustering analysis in the 
healthy control group, preoperative group, recurrence 
group, three-month postoperative group, and six-month 
postoperative group. Mean plots were generated using 
GraphPad Prism to observe the patterns of change in the 
different metabolites. Finally, the identified metabolites 
were cross-referenced with the HMDB to determine their 
substance structures and names.

Results
Identification of differential metabolites and distinct 
sample Ggroup separation in LC-MS analysis
The total ion chromatograms of the preoperative group 
(Fig.  1a, 1c) and the healthy control group (Fig.  1b, 1d) 
were analyzed. The results revealed significant differ-
ences in peak intensities of specific metabolites between 
the preoperative and the healthy control groups at the 
same retention time and different ion modes, indicat-
ing the presence of distinct metabolites between the two 
groups.

Unsupervised PCA was conducted to analyze the sam-
ples from the preoperative gastric cancer, healthy control, 
and quality control (QC) groups (Fig. 1e, 1f ). The findings 
demonstrated clear separations between the three groups 
in both positive and negative ion modes. Samples with 
pronounced differences in metabolites exhibited more 
considerable distances between them, while samples with 
minor differences in metabolites showed closer distances. 
The QC group, which represented a mixture of all sam-
ples, exhibited consistent metabolite profiles, confirming 
the reliability of the experimental results.

Metabolic differences between the preoperative gastric 
cancer and healthy control groups using T-test and 
variance analysis
Under different modes, gastric cancer and the healthy 
control groups underwent T-test analysis (Fig.  2a, 2b). 
Metabolites with a P-value < 0.01 were considered differ-
entially expressed metabolites between the two groups. 
In total, 194 metabolites were identified in positive ion 
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Fig. 1  Visualization of Total Ion Chromatograms and PCA Plots in Positive and Negative Ion Modes. (a) The total ion chromatogram of the preoperative 
group in positive ion mode; (b) The total ion chromatogram of the healthy control group in positive ion mode; (c) The total ion chromatogram of the 
preoperative group in negative ion mode; (d) the total ion chromatogram of the healthy control group in negative ion mode; (e) The PCA plot in positive 
ion mode; (f) The PCA plot in negative ion mode
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mode (Supplementary Table 1), and 295 were identified 
in negative ion mode (Supplementary Table 2).

Further variance analysis was performed on metabo-
lites from the recurrence, preoperative, three-month 
postoperative, and six-month postoperative groups, 
which matched those identified in the previous step 
(Fig. 2c). The F-value was utilized to evaluate inter-group 
differences, with higher F-values indicating a better equa-
tion fitting. A F-value close to 1 indicated no statistical 
significance, while values greater than 1 indicated statisti-
cally significant differences between groups. Metabolites 
with F-values > 1 and P-values < 0.01 were considered dif-
ferentially expressed, leading to the identification of 418 
metabolites (Supplementary Table 3).

Differential metabolite analysis and group classification in 
gastric cancer progression
To assess the discriminatory ability of these metabolites 
among the recurrence, preoperative, three-month post-
operative, and six-month postoperative groups, PLS-DA 
was performed on the differential metabolites selected 
from the variance analysis (Fig.  3a). The results dem-
onstrated distinct separations among the four sample 
groups, with good clustering within the same group. 
Based on the PLS-DA results, 18 metabolites with weight 
values VIP > 1.2 were identified as differential metabolites 
(Fig. 3b).

Hierarchical clustering analysis was conducted on the 
identified differential metabolites (Fig.  3c). The color 
intensity corresponds to the relative peak areas of the 

Fig. 2  Comparative T-test and Variance Analysis Plots in Positive and Negative Ion Modes. (a) The T-test analysis plot in positive ion mode; (b) T-test analy-
sis plot in negative ion mode. The y-axis represents the magnitude of P-values, where larger values indicate smaller P-values, and the x-axis represents 
the relative abundance of each metabolite. In the plot, the purple area represents the metabolites with P-values < 0.01; (c) The variance analysis plot of 
differential metabolites. The red area in the plot represents the metabolites with P-values < 0.01
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Fig. 3  PLS-DA Plot, VIP Score Plot, and Clustering Analysis of 18 Differential Metabolites. (a) PLS-DA plot; (b) VIP (Variable Importance in Projection) score 
plot for the selected differential metabolites with VIP > 1.2; (c) Hierarchical clustering analysis of the 18 differential metabolites. The color scale represents 
the relative abundance of metabolites, with red indicating higher abundance, deep blue indicating lower abundance, and light blue indicating zero 
abundance. The right side of the figure shows the mass-to-charge ratio (m/z) of each metabolite, while the dendrogram on the left and top represents 
the clustering results of the differential metabolites. The sample numbers are shown at the bottom of the figure
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metabolites, with similar colors indicating similar peak 
areas. The relative peak areas of the differential metab-
olites served as the clustering criterion. The results 
revealed the presence of differential metabolites among 
the recurrence, preoperative, three-month postoperative, 
and six-month postoperative groups. Additionally, the 
metabolites of the recurrence and preoperative groups 
might exhibit similarities, as could the metabolites of 
the three-month postoperative and six-month postop-
erative groups. The recurrence and preoperative groups 
clustered on the left side, while the three-month postop-
erative and six-month postoperative groups clustered on 
the right side. Therefore, the four sample groups could be 
divided into two main groups: the tumor-bearing group 
(comprising the original recurrence and preoperative 
groups) and the tumor-free group (comprising the origi-
nal three-month postoperative and six-month postopera-
tive groups).

Metabolomic profiling reveals distinctive markers in 
gastric cancer progression
PLS-DA was conducted on the screened differen-
tial metabolites, and the VIP score plot was obtained 
(Fig.  4a). Metabolites with VIP values greater than 1.0 
were considered important differential metabolites, and 
seven metabolites were selected. The mass-to-charge 
ratio (m/z) of these seven differential metabolites was 
imported into the HMDB to identify their structures and 
names (Tables 1 and 2).

ROC curves were generated to assess the accuracy of 
these differential metabolites (Fig.  4b). The area under 
the ROC curve (AUC) values (Table 3) were used to eval-
uate the sensitivity of these differential metabolites in dis-
tinguishing between the tumor-bearing and tumor-free 
groups. A curve closer to the top-left corner indicated 
a higher abundance of the corresponding metabolite 
in the tumor-bearing group, while a curve closer to the 
bottom-right corner indicated a higher abundance in the 
tumor-free group. Metabolites with AUC values > 0.8 or 
< 0.1 were considered potentially important differential 
metabolites. Seven differential metabolites were selected, 
including Lysophosphatidic acid, triglycerides, lysine, 
sphingosine-1-phosphate, phosphatidylcholine, oxidized 
ceramide, and phosphatidylglycerol. These metabolites 
exhibited significant differences between the tumor-
bearing and tumor-free groups, effectively distinguishing 
between the two groups.

The final seven selected differential metabolites were 
subjected to hierarchical clustering analysis in the 
recurrence, preoperative, three-month postoperative, 
six-month postoperative, and healthy control groups 
(Fig.  4c). The results indicated the presence of distinct 
differential metabolites among the five sample groups, 
with some metabolites showing similarities. The recur-
rence and preoperative groups clustered on the left side 
of the graph, while the three-month postoperative, six-
month postoperative, and healthy control groups mostly 
clustered on the right side. A small portion of the three-
month postoperative and healthy control groups samples 
were distributed within the recurrence and preoperative 
groups, possibly due to experimental variations and other 
objective factors. Overall, the recurrence and preopera-
tive groups were merged, while the three-month post-
operative, six-month postoperative, and healthy control 
groups were also grouped together.

Table 1  The structures and names of seven identified differential 
metabolites were determined
Substance 
Number

Mass-to-
charge 
ratio

Substance Academic name

Substance 1 487.3378 C25H43O7P Lysophosphatidic acid
Substance 2 983.8291 C64H120O6 Triglycerides
Substance 3 982.8279 C49H57N9O12 Lysine
Substance 4 380.1285 C18H40NO5P Sphingosine-1-phosphate
Substance 5 836.6709 C48H88NO8P Phosphatidylcholine
Substance 6 208.9362 C40H71NO4 Oxidized ceramide
Substance 7 736.7262 C37H71O12P Phosphatidylglycerol

Table 2  The sensitivity and specificity of differential metabolites 
in sample discrimination
Forecast 
result

Actual statistical 
results

In total Sensitivity Spec-
ificity

Tumor 
group

No 
tumor 
group

Tumor 
group

31 4 35 100% 87.5%

No tumor 
group

0 28 28

In total 31 32 63

Table 3  Area under the ROC curve
Test 
outcome 
variable

Area Stan-
dard 
error

Asymptotical-
ly significant

Asymptotic 95% 
confidence interval
Lower limitUpper 
limit
Lower 
limit

Upper 
limit

Substance 1 0.041 0.025 0.000 0.000 0.091
Substance 2 0.026 0.015 0.000 0.000 0.056
Substance 3 0.030 0.017 0.000 0.000 0.063
Substance 4 0.007 0.007 0.000 0.000 0.020
Substance 5 0.861 0.047 0.000 0.769 0.953
Substance 6 0.857 0.046 0.000 0.766 0.947
Substance 7 0.844 0.051 0.000 0.744 0.943
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Mean plots of seven differential metabolites among 
different groups
We plotted the mean abundance of the selected seven 
differential metabolites among the Recurrence Group, 
Preoperative Group, Three-month Postoperative Group, 
Six-month Postoperative Group, and Healthy Control 
Group (Fig.  5a-5g) to observe the changes in the abun-
dance of these metabolites across each group. The results 
showed that the abundance of Lysophosphatidic acids, 
triglycerides, lysine, and sphingosine-1-phosphate was 
significantly higher in the “Three-month Postoperative 

Group,” “Six-month Postoperative Group,” and “Healthy 
Control Group” compared to the “Preoperative Group” 
and “Recurrence Group.” On the other hand, phosphati-
dylcholine, oxidized ceramide, and phosphatidylglycerol 
had significantly lower abundances in the “Three-
month Postoperative Group,” “Six-month Postoperative 
Group,” and “Healthy Control Group” compared to the 
“Preoperative Group” and “Recurrence Group.” Addi-
tionally, there were no significant differences in the abun-
dance of these metabolites between the “Preoperative 
Group” and “Recurrence Group,” as well as between the 

Fig. 4  Discriminant Analysis VIP Scores, ROC Curves, and Hierarchical Clustering Analysis of 7 Differential Metabolites among 5 Groups. (a) Discriminant 
analysis VIP score plot of the selected differential metabolites; (b) ROC curves. The vertical axis represents sensitivity (true positive rate), and the horizontal 
axis represents 1-specificity (false positive rate). Each line represents a specific metabolite; (c) Hierarchical clustering analysis of the 7 differential metabo-
lites among the Recurrence Group, Preoperative Group, Three-month Postoperative Group, Six-month Postoperative Group, and Healthy Control Group. 
Red color indicates metabolites with higher peak intensities, deep blue color represents metabolites with lower peak intensities, and light blue color indi-
cates metabolites with zero peak intensities. The color intensity corresponds to the peak intensity of the metabolites. The right side of the figure displays 
the mass-to-charge ratios of each metabolite, while the left and upper dendrograms represent the clustering results of the differential metabolites. The 
bottom part of the figure shows the sample numbers
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Fig. 5  Mean Plots of 7 Differential Metabolites Among Five Groups. The plots depict the mean abundance of 7 differential metabolites among the five 
groups: Recurrence Group, Preoperative Group, Three-month Postoperative Group, Six-month Postoperative Group, and Healthy Control Group. The 
y-axis represents the relative abundance of the metabolites, while the x-axis shows the different groups. Panels (a) to (g) represent the following me-
tabolites: (a) Lysophosphatidic acids; (b) Triglycerides; (c) Lysine; (d) Sphingosine-1-phosphate; (e) Phosphatidylcholine; (f) Oxidized Ceramide and (g) 
Phosphatidylglycerol
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“Three-month Postoperative Group,” “Six-month Postop-
erative Group,” and “Healthy Control Group.”

Discussion
Gastric cancer ranks as the fifth most diagnosed malig-
nancy globally, with over one million new cases reported 
annually [14]. The lack of effective early diagnostic 
methods often results in late-stage diagnoses, leading 
to higher mortality rates among gastric cancer patients 
[14]. While radiotherapy and chemotherapy may improve 
outcomes, curative treatment largely relies on surgery-
based multimodal therapies [15]. Hence, enhancing 
the effectiveness of gastric cancer surgery and reducing 
postoperative recurrence have become paramount. Cur-
rently, tumor staging and prognosis evaluation methods 
have limitations [16–18]. However, recent advancements 
in metabolomics offer new opportunities for identifying 
novel cancer diagnostic markers and prognostic assess-
ments [19–21].

In this study, we investigated the serum samples col-
lected from 15 healthy individuals, 16 gastric cancer 
patients before surgery, 16 patients at 3 months after 
surgery, 16 patients at 6 months after surgery, and 15 
patients with gastric cancer recurrence using LC-MS. 
Our findings revealed significant alterations in the abun-
dance of several metabolites among the different groups. 
Specifically, lysophosphatidic acids, triglycerides, lysine, 
and sphingosine-1-phosphate showed elevated levels 
in the three-month postoperative, six-month postop-
erative, and healthy control groups compared to the 
preoperative and recurrence groups. Conversely, phos-
phatidylcholine, oxidized ceramide, and phosphatidyl-
glycerol exhibited decreased levels in the three-month 
postoperative, six-month postoperative, and healthy con-
trol groups compared to the preoperative and recurrence 
groups. Notably, no significant differences were observed 
between the preoperative and recurrence groups, nor 
between the three-month postoperative, six-month post-
operative, and healthy control groups.

Among the identified metabolites, triglycerides are 
recognized as essential blood lipids involved in energy 
storage, signaling pathways, and structural composition. 
Lipid metabolism dysregulation represents one of the 
most prominent metabolic alterations in cancer. Cancer 
cells exploit lipid metabolism to facilitate proliferation, 
survival, invasion, and metastasis and to influence the 
tumor microenvironment, providing energy, membrane 
components, and signaling molecules required for cancer 
progression and treatment [22]. Prior studies have shown 
that the preoperative ratio of triglycerides to high-density 
lipoprotein cholesterol is an effective and independent 
prognostic factor for predicting 5-year mortality and 
improving prognosis in gastric cancer patients [22, 23].

Phosphatidic acid, phosphatidylcholine, and phosphati-
dylglycerol are all glycerophospholipids, critical constitu-
ents of the cellular lipid bilayer involved in metabolism 
and signal transduction. Phosphatidic acid signaling is 
vital in tumor-induced inflammation, promoting cancer 
progression, metastasis, and fibrosis [24]. Additionally, 
inflammation and increased phosphatidic acid signaling 
contribute to immune evasion, thereby protecting cancer 
cells from immune system destruction [24].

Lysine is associated with post-translational modi-
fications, particularly lysine methylation, a common 
post-translational modification. Notably, lactate dehydro-
genase A succinylation at K222 has been shown to inhibit 
its degradation, promoting invasion and proliferation in 
gastric cancer [25]. Lysine may exert its oncogenic effects 
through other histone or non-histone substrates, or non-
enzymatic protein lysine methyltransferase activation 
may stimulate carcinogenic mechanisms in specific can-
cer types [26]. Sphingolipids comprise a series of novel 
lipid bio-regulators that play crucial roles in maintain-
ing barrier function and fluidity and regulating multiple 
signals during tumorigenesis [27]. Both sphingosine-
1-phosphate and Lysophosphatidic acids have been 
implicated in tumor immune responses [28].

Oxidized ceramides represent the oxidative form of 
ceramides, which are vital precursors of sphingolipids 
involved in cell cycle, differentiation, aging, and apopto-
sis processes. Oxidized ceramides play significant roles 
in cancer development and treatment [29]. They have 
emerged as potent tumor suppressors and garnered 
attention for their potential application in combined 
therapies for cancer treatment [24]. Various factors, 
such as chemotherapy drugs, cytotoxic agents, hypoxic 
microenvironments, malnutrition, radiation, and hyper-
thermia, promote apoptosis in tumor cells by increasing 
enzymatic activity related to the synthesis of cerami-
des [30, 31]. Recent studies have underscored the sig-
nificant impact of interfering with ceramide production 
and metabolism on cancer treatment, highlighting their 
potential as signaling molecules with antiproliferative 
and pro-apoptotic effects [32, 33].

The observed alterations in the abundance of these 
metabolites in the serum of gastric cancer patients sug-
gest their potential as diagnostic and prognostic bio-
markers, warranting further investigation to validate 
their clinical relevance. The present study provides valu-
able insights into the metabolic changes associated with 
gastric cancer and postoperative monitoring, offering 
new avenues for improved clinical management and 
patient outcomes. These findings may pave the way for 
developing targeted therapeutic strategies and personal-
ized treatment approaches, ultimately benefiting gastric 
cancer patients by facilitating early detection and more 
effective recurrence monitoring. Continued research 
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in this area has the potential to revolutionize the field 
of gastric cancer management and contribute to the 
advancement of precision medicine.

Conclusion
This study focused on identifying differential metabolites 
in serum samples between healthy individuals and gas-
tric cancer patients. Among the metabolites analyzed, 
we have identified seven potential biomarkers, namely, 
hemolytic phospholipid acid, triglycerides, lysine, Sphin-
gosine-1-phosphate, phosphatidylcholine, oxidized 
ceramide, and phosphatidylglycerol. These differential 
metabolites are promising biomarkers for evaluating the 
efficacy of postoperative treatments and monitoring can-
cer recurrence in gastric cancer patients. However, fur-
ther research is warranted to validate their roles in gastric 
cancer by conducting functional and clinical sample anal-
yses of the metabolic pathways involved. Comprehensive 
validation studies will provide more robust evidence for 
the clinical utility of these biomarkers, bringing us closer 
to their translation into clinical practice for improved 
patient care and outcomes.
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