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Abstract
Objection  Investigating the key genes and mechanisms that influence stemness in lung adenocarcinoma.

Methods  First, consistent clustering analysis was performed on lung adenocarcinoma patients using stemness 
scoring to classify them. Subsequently, WGCNA was utilized to identify key modules and hub genes. Then, machine 
learning methods were employed to screen and identify the key genes within these modules. Lastly, functional 
analysis of the key genes was conducted through cell scratch assays, colony formation assays, transwell migration 
assays, flow cytometry cell cycle analysis, and xenograft tumor models.

Results  First, two groups of patients with different stemness scores were obtained, where the high stemness score 
group exhibited poor prognosis and immunotherapy efficacy. Next, LASSO regression analysis and random forest 
regression were employed to identify genes (PBK, RACGAP1) associated with high stemness scores. RACGAP1 was 
significantly upregulated in the high stemness score group of lung adenocarcinoma and closely correlated with 
clinical pathological features, poor overall survival (OS), recurrence-free survival (RFS), and unfavorable prognosis in 
lung adenocarcinoma patients. Knockdown of RACGAP1 suppressed the migration, proliferation, and tumor growth 
of cancer cells.

Conclusion  RACGAP1 not only indicates poor prognosis and limited immunotherapy benefits but also serves as a 
potential targeted biomarker influencing tumor stemness.
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Introduction
The number and activity of lung adenocarcinoma (LUAD) 
stem cells play a crucial role in determining the survival 
rate of patients with this disease [1]. In addition, these 
stem cells possess the ability to resist the effects of radio-
therapy and chemotherapy, while also playing a key role 
in the generation of new cancer cells, thereby promoting 
the malignant proliferation and metastasis of tumors [2]. 
Consequently, these factors have significant implications 
for the available treatment options and the prognosis of 
patients. Furthermore, cancer stem cells (CSCs) possess 
the unique ability to self-renew and differentiate into a 
diverse range of cancer cells, making them pivotal media-
tors in processes such as cancer metastasis, drug resis-
tance, and cancer recurrence [3].

Currently, research on stem-like cells in lung cancer 
primarily focuses on exploring characteristic markers, 
investigating the role of these cells, and exploring dif-
ferentiation treatment strategies [4, 5]. Some studies 
have identified targeted therapies for EGFR (epidermal 
growth factor receptor), which exhibits abnormal muta-
tion activity in non-small cell lung cancer [6], such as 
gefitinib, erlotinib, and afatinib. These drugs have shown 
significant reductions in the proliferation and metasta-
sis of lung adenocarcinoma stem cells. Immunotherapy, 
another critical field in lung adenocarcinoma treatment, 
has also gained approval for non-small cell lung can-
cer, including lung adenocarcinoma, with PD-1/PD-L1 
inhibitors like nivolumab [7], pembrolizumab [8], atezoli-
zumab [9], and CTLA-4 inhibitors like ipilimumab [10]. 
However, these therapies are not universally effective for 
lung adenocarcinoma. Although PD-1/PD-L1 inhibitors 
and CTLA-4 inhibitors may produce long-term clinical 
responses in certain patients, many do not benefit from 
treatment, and the response rates remain relatively low. 
Moreover, these therapies can lead to severe immune-
related adverse reactions, such as autoimmune diseases 
[11] and neurotoxicity [12].

Stratifying lung adenocarcinoma patients to provide 
targeted treatments and mitigate the impact of popula-
tion differences on treatment outcomes is crucial. This 
study utilized bioinformatics methods to classify lung 
adenocarcinoma patients into high stem-like and low 
stem-like groups, exploring the prognosis and treatment 
differences between the two groups to enable precise and 
effective treatments and improve patient survival rates. 
Additionally, potential key genes in the low stem-like 
population were functionally analyzed, providing insight 
and a foundation for future related research.

The classification of patients with LUAD is crucial for 
targeted treatment, in order to avoid the impact of treat-
ment efficacy caused by population heterogeneity. In this 
study, we first utilized bioinformatics methods to divide 
patients with LUAD into high stemness and low stemness 

groups, investigating the prognosis and treatment differ-
ences between the two groups. Subsequently, consider-
ing the poorer prognosis in the low stemness group, we 
employed four machine learning algorithms to identify 
two key genes, PBK and RACGAP1. Furthermore, we 
conducted in vivo and in vitro experiments targeting the 
key gene RACGAP1. The results demonstrated that the 
downregulation of RACGAP1 inhibited the migration, 
proliferation, and tumor growth of lung cancer cells. In 
conclusion, our findings suggest that RACGAP1 contrib-
utes to tumor progression and unfavorable prognosis by 
affecting the cell cycle and tumor stemness.

Materials and methods
Collection and analysis of LUAD data
Download and combined a total of 1358 LUAD sample 
from   5 datasets, TCGA-LUAD,  GSE13213, GSE26939, 
GSE72094, and GSE31210, along with correspond-
ing clinical and survival annotations, from the Cancer 
Genome Atlas Program (TCGA) (https://www.cancer.
gov/ccg/research/genome-sequencing/tcga) and the 
Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/gds). Use the Combat function in 
the sva R package (v3.35.2) to remove batch effects.

Identification of stemness subtypes and calculation of 
stemness index (mRNAsi)
We retrieved a total of 26 gene sets related to stemness 
from the web-based tool: StemChecker (https://stem-
checker.sysbiolab.eu/). To assess the stemness levels in 
each patient with LUAD, we utilized the single sample 
gene set enrichment analysis (ssGSEA) algorithm to 
quantify these gene sets and generate a stemness score. 
Subsequently, employing the ConsensusClusterPlus R 
package, we performed unsupervised clustering of LUAD 
patients based on the 26 stemness scores in order to 
identify consistent patterns. In line with the approach 
by Malta et al., we employed a one-class logistic regres-
sion machine learning algorithm (OCLR) to calculate 
mRNAsi scores (ranging from 0 to 1) for each LUAD 
sample. This calculation was based on pluripotent stem 
cell samples that were strongly correlated with stemness 
features and can be utilized for the prediction of can-
cer stemness. We compared the differences in mRNAsi 
scores among patients belonging to different subtypes. 
To predict the response to immune therapy and estimate 
the immune therapy response of each LUAD patient, we 
employed the online algorithm Tumor Immune Dysfunc-
tion and Exclusion (TIDE) available at http://tide.dfci.
harvard.edu/login/.

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://stemchecker.sysbiolab.eu/
https://stemchecker.sysbiolab.eu/
http://tide.dfci.harvard.edu/login/
http://tide.dfci.harvard.edu/login/
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WGCNA screening of core gene modules and functional 
enrichment in C2 subtypes
The WGCNA R package (v1.68) was utilized to iden-
tify co-expression gene networks representing differ-
ent subtypes of stem cells in the dataset. To construct 
the network, the top 75% of genes with the highest 
median absolute deviation (MAD) were selected. The co-
expression similarity matrix was computed using Pear-
son correlation coefficients between any two genes. A 
soft thresholding power of β = 3 was applied to enhance 
the matrix, leading to the calculation of the weighted 
adjacency matrix. Subsequently, the topological over-
lap matrix (TOM) and the dissimilarity matrix (1-TOM) 
were constructed based on the adjacency matrix. Genes 
with high interconnectivity were clustered into different 
gene modules, with a minimum module size set at 30. 
Module eigengenes (ME) were calculated to determine 
the association between modules and various stem cell 
subtypes.

Set the hub gene parameters for specific modules as 
gene significance (GS), where the Pearson correlation 
between each gene and the C2 subtype is > 0.4, and mod-
ule membership (MM), where the correlation between 
each gene and the module is > 0.8. Subsequently, the clus-
terprofiler R package (v3.14.3) was employed to conduct 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses [13–15] on the hub genes 
within the co-expression modules.

Machine learning-based screening for identification of key 
genes in the C2 subtype
We employed four machine learning algorithms, namely 
LASSO-logistic, LASSO-cox, Random Forest, and Ran-
dom Survival Forest, to select the feature genes. LASSO 
analysis was performed using the “glmnet” package, and 
ten-fold cross-validation was implemented to prevent 
overfitting. Feature ranking was conducted using the 
“randomForest” R package, utilizing the Gini importance 
measure (20). Additionally, we utilized the “pROC” pack-
age to plot ROC curves and evaluate the diagnostic per-
formance of the key genes in identifying subtypes.

Cell culture and siRNA transfection
The normal lung epithelial cell line BEAS-2B and the 
lung cancer cell lines A549, H1975, and H1299 were 
used. All cell lines were derived from the School of Medi-
cine of Anhui University of Science and Technology. 
Si reagent kits were purchased from the GenePharma 
company. The siRNA sequences were as follows: si-RAC-
GAP1-1 (S: 5’-GCUGAAGCAUGCACGUAAUTT-3’, 
AS: 5’-AUUACGUGCAUGCUUCAGCTT-3’), si-RAC-
GAP1-2 (S: 5’-GCUCAUGUGUGACACAUCUTT-3’, 
AS: 5’-AGAUGUGUCACACAUGAGCTT-3’), si-RAC-

GAP1-3 (S: 5’-CCCUGGACCUGUAAAGAAATT-3’, AS: 
5’-UUUCUUUACAGGUCCAGGGTT-3’).

Western blot
The total cellular protein was extracted using RIPA 
lysis buffer (990  µl RIPA 10  µl PMSF). SDS-PAGE was 
employed for the separation of proteins of different 
molecular weights in equal amounts. Relative quantifica-
tion of band intensities was performed using Adobe Pho-
toshop. Antibodies against RACGAP1 (71KDa, 1:500), 
CDK2 (35KDa, 1:1000), CDK4 (34KDa, 1:1000), CDK1 
(34KDa, 1:1000), NIFK (KI-67) (39KDa, 1:1000) and 
ACTB (42KDa, 1:1000) were obtained from ABclonal. 
The antibody for Nanog (42KDa, 1:1000) was purchased 
from Cell Signaling Technology. All blots were cut 
prior to hybridization with antibodies. According to the 
required target proteins, the membrane was cut open 
and incubated in different boxes to eliminate the interfer-
ence of some impurity bands.

Wound healing assay
To investigate the logarithmic growth phase, A549, 
and H1975 cells were digested and seeded into a 6-well 
plate. Once the cells covered the bottom of the plate, 
cell scratches were created by vertically applying a 200 
µL pipette tip to each well, ensuring consistent scratch 
width. The cell culture medium was then aspirated, and 
the plate was washed three times with PBS to remove any 
cell debris resulting from the scratches. Serum-free cul-
ture medium was added, and photographs were taken for 
documentation. The culture plate was placed in an incu-
bator and removed every 6–12 h for photography. Finally, 
the experimental results were analyzed based on the col-
lected image data.

Colony formation experiment
A549 and H1975 cells in the logarithmic growth phase 
were prepared as cell suspensions and seeded into a 
6-well culture plate at a density of 3000 cells per well. 
DMEM medium was used for cell culture, with medium 
replacement every 3 days. After 12 days of continu-
ous culture, the cloning cultivation was terminated. The 
culture medium was removed, and cells were fixed with 
methanol at room temperature for 20  min. Cell clones 
were fixed by staining with 0.1% crystal violet for 20 min. 
The results of clone formation were documented and 
counted by capturing photographs.

Transwell migration assay
The migration ability of A549 and H1975 cells was evalu-
ated using the Transwell assay. A 1% BSA solution was 
prepared in a serum-free DMEM medium, and the cells 
were cultured in the upper chamber of the Transwell 
with the 1% BSA solution. The lower chamber was filled 
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with DMEM medium containing 10% fetal bovine serum. 
After incubating the cells at 37 °C for 24 h, the cells in the 
upper chamber were removed, while those in the lower 
chamber were retained. The migrated cells were fixed 
with methanol and stained with 0.1% crystal violet. Five 
random staining results were captured using a 200x mag-
nification microscope.

Cell flow cytometry for cell cycle analysis
To isolate cells, the sample was digested with pancre-
atic enzymes and prepared into a single-cell suspension. 
The cells were then collected by centrifugation. Sub-
sequently, 1 mL of pre-chilled PBS was added to resus-
pend the cells, followed by centrifugation to remove 
the supernatant. Next, 1 mL of 75% ethanol was added 
for overnight fixation at 4  °C. After centrifugation to 
remove the fixation solution, the cells were resuspended 
in 1 mL of pre-chilled PBS, centrifuged, and the super-
natant was discarded. For staining, a staining kit was 
used, and the working solution was prepared before use 
with a Rnase: PI ratio of 1:9. The cells were incubated at 
room temperature in the dark for 60 min, protected from 
light, and then analyzed using a flow cytometer. The red 
fluorescence was detected at an excitation wavelength 
of 488 nm, while the light scattering was simultaneously 
measured. Cell statistical analysis was performed using 
Modfit 5.0 software.

Heterogeneous transplantation tumor growth
C57BL/6 male mice (6–8 weeks old, weighing 20-25  g) 
were obtained from Henan Skbay Biological Technology 
Co., Ltd. (China, Henan). The animals were maintained fol-
lowing institutional policies, and all studies were conducted 
with the approval of the Medical School of Anhui Univer-
sity of Science and Technology. To generate xenografts, 
3 × 106 LA-4 cells were mixed with PBS and subcutaneously 
injected into each mouse. Tumor growth was measured 
using calipers, and the volume was calculated using the for-
mula V = (a × b2)/2, where a represented the longest diame-
ter and b represented the shortest diameter of the tumor. At 
the end of the experiment, the mice were killed by cervical 
dislocation, the tumor mass was removed and photographs 
were taken.

Statistical analysis
All statistical analyses were performed using R software 
(version 3.6.3). Wilcoxon test was used for pairwise com-
parisons between two groups, while the Kruskal-Wallis test 
was employed for multiple group comparisons. Kaplan-
Meier method and log-rank test were used for survival 
analysis. The optimal cut-off value for stemness-risk score 
was determined using the “surv_cutpoint” function from 
the survminer R package (version 0.4.6). A p-value less than 

0.05 was considered statistically significant for detecting 
differences.

Results
Genotype classification based on stemness genes
Based on the ssGSEA scores of a total of 26 gene sets, 
LUAD patients were classified into two distinct clusters 
using the Consensus Cluster Plus package for unsuper-
vised clustering (Fig.  1A-C). Subsequently, the expression 
profiles of the 26 gene sets were analyzed in the two clus-
ters, revealing a higher enrichment in the majority of gene 
sets in Cluster 2 (Fig. 1D). Furthermore, the expression of 
the gene set associated with the stemness index (mRNAsi) 
was examined in both clusters, confirming Cluster 2 as the 
high stemness group (Fig. 1E). Kaplan-Meier analysis dem-
onstrated that LUAD patients in Cluster 2 had a worse over-
all survival (Fig.  1F). Additionally, the study evaluated the 
immune therapy response of the two subtypes using the 
Exclusion algorithm and TIDE algorithm, revealing a poten-
tially lower sensitivity to immunotherapy in the C2 subtype 
(Fig. 1G). The immune response rate also supported these 
findings, showing a lower immune response rate in the C2 
subtype (Fig. 1H).

WGCNA identification of C2 cluster-related modules and 
hub genes
Due to the limited benefits and poor survival rates of C2 
subtype patients with LUAD in immunotherapy, WGCNA 
was further conducted to identify the characteristic genes of 
this subtype. Firstly, the optimal soft-thresholding power β 
was set to 3 to ensure the construction of a scale-free net-
work (Fig.  2A). Then, the minimum gene count for each 
module was set to 30, and through the hierarchical cluster-
ing dendrogram, 16 modules were identified that grouped 
genes with similar expression patterns (Fig. 2B). Among the 
16 modules, MEbrown showed the strongest positive corre-
lation with the C2 subtype (ME = 0.8, P = 9e − 307), and the 
strongest negative correlation with the C1 subtype (ME= 
-0.8, P = 9e − 307) (Fig.  2C). Therefore, the brown module 
(1220 genes) was selected as the hub module, and further 
analysis was conducted using MM > 0.8 and GS > 0.4 as fil-
tering criteria, resulting in 82 candidate hub genes that 
overlapped (Fig. 2D). In addition, to explore the biological 
functions of the hub genes in the MEbrown module, we 
performed GO and KEGG pathway enrichment analysis 
(Fig. 2E-F).

Identifying key genes for C2 subtypes based on machine 
learning
We included 82 genes with the C2 subtype as the outcome 
variable. Firstly, a Lasso regression analysis was conducted 
on the merged LUAD dataset, revealing 31 genes sig-
nificantly correlated with the C2 subtype (Fig. 3A). Subse-
quently, a random forest analysis was performed, and the 
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Fig. 1  Consensus clustering identified two stemness-based subtypes. (A-B) Delta area curves of consensus clustering; (C) Heatmap depicting consen-
sus clustering solution (k = 2) for 26 stemness scores in LUAD;(D) Heat map of the distribution of 26 stemness scores in different stemness subtypes;(E) 
Distribution of mRNAsi in different stemness subtypes;(F) Kaplan–Meier overall survival curves for patients with lung adenocarcinoma between different 
stemness subtypes; (G) The distribution of Exclusion, TIDE and Dysfunction scores in the different subtypes of stemness; (H) Distributions of responder 
and non-responder to immunotherapy predicted by the TIDE algorithm among distinct stemness clusters. (***p < 0.001; **p < 0.01; *p < 0.05; ns: not 
significant)
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Fig. 2  Identification of hub genes associated with stemness subtypes. (A) Scale independence and mean connectivity of multiple soft-thresholding 
powers (β) from 1 to 20; (B) The cluster dendrogram developed by the weighted correlation coefficients, genes with similar expression patterns were clus-
tered into co-expression modules, and each color represents a module; (C) Heatmap of the correlation between module eigengenes (MEs) and clinical 
traits as well as stemness subtypes; (D) Scatter plot displaying relationship of module membership (MM) in the brown module with gene significance (GS) 
for Cluster C2; (E) KEGG analysis of Cluster2-associated module gene; (F) Top 15 enriched biological process (BP), cellular component (CC) and molecular 
function (MF) GO terms of Cluster2-associated module genes
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Fig. 3  Machine learning was used to screen key genes. (A) Lasso regression analysis; (B) Random forest analysis; (C) Lasso-cox regression analysis; (D) 
Random survival forest analysis; (E) Venn diagram showing the overlap between the different machine learning methods; (F) The accuracy of different 
subtypes of stemness was evaluated by ROC curve; (G) Survival analysis of the high and low expression groups of PBK and RACGAP1.
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top 30 genes were selected based on accuracy and Gini 
index weights (Fig. 3B).

For survival status as the outcome variable, the analy-
sis included the same 82 genes. Lasso-Cox regression 
analysis on the merged LUAD dataset identified 21 genes 
(Fig. 3C), and the top 30 genes were selected using a ran-
dom survival forest (Fig. 3D).

Finally, the intersection of genes selected by the four 
algorithms resulted in the identification of two hub 
genes: PBK and RACGAP1 (Fig. 3E).

Subsequently, the diagnostic performance of PBK 
(AUC: 0.942) and RACGAP1 (AUC: 0.958) in diagnos-
ing the C2 subtype was demonstrated using ROC curves 
(Fig.  3F). Kaplan-Meier analysis showed that patients 
with high expression of PBK and RACGAP1 had sig-
nificantly worse prognoses compared to those with low 
expression (Fig. 3G).

RACGAP1 promotes proliferation and tumorigenicity of 
lung adenocarcinoma cells
Based on the previous research trends, there are many 
studies on PBK in non-small cell lung cancer [16–18]. 
However, there is little research on RACGAP1 in lung 
adenocarcinoma, so the role of RACGAP1 in lung adeno-
carcinoma is mainly studied.

The expression of RACGAP1 was examined using 
Western blot in both normal lung epithelial cell line 
BEAS-2B and three different lung adenocarcinoma cell 
lines (A549, H1975, H1299). The results showed that 
RACGAP1 was downregulated in H1975 cells and upreg-
ulated in A549 cells (Fig. 4A).

Subsequently, transient transfection using si-RAC-
GAP1 was performed to knock down RACGAP1 in the 
two cell lines. The clonogenic formation assay revealed 
a significant inhibition of cell colony formation and an 
impact on cell proliferation upon RACGAP1 knockdown 
when compared to the negative control group (Fig. 4B).

The study also conducted cell scratch experiments 
(Fig.  4C-D) and transwell migration assays (Fig.  4E-F), 
which yielded consistent results. Knockdown of RAC-
GAP1 significantly suppressed the migration ability of 
the cells.

RACGAP1 regulation of the cell cycle in lung 
adenocarcinoma
To further clarify the function of the RACGAP1 gene, 
GSEA analysis was conducted. Figure  5A displays the 
functional enrichment results for the top 5 genes. In the 
high-risk population, the RACGAP1 gene is primarily 
involved in encoding E2F transcription factors, which 
are related to cell cycle targets. It is also associated with 
oocyte meiosis, the G2/M checkpoint, genes regulated 
by MYC-version 1 (v1), and spindle assembly during 
mitosis.

To explore the role of RACGAP1 in the cell cycle, flow 
cytometry was performed, and the analysis showed that 
knocking down RACGAP1 arrested the cell cycle at the 
G2/M phase, affecting its progression (Fig. 5B-C).

To confirm the findings, Western blot analysis was 
conducted after knocking down RACGAP1. The specific 
siRNA successfully inhibited the expression of RAC-
GAP1 protein as well as CDK2 and CDK4, two proteins 
associated with the cell cycle, compared to the negative 
control (NC) (Fig.  5D). Additionally, the expression of 
stem cell-related markers NIFK and NANOG was found 
to be downregulated during this analysis (Fig. 5E).

Validation of RACGAP1’s role in tumors in vivo
To accurately evaluate the role of RACGAP1 in tumors, 
RACGAP1 knockdown cell lines and control cells were 
subcutaneously injected into C57BL/6 mice. After a 
30-day incubation period, the treatment of mice is shown 
in Fig. 6A-B, a significant reduction in tumor volume and 
weight was observed in the knockdown group compared 
to the control group (Fig.  6C-D). These findings were 
supported by immunofluorescence results, which showed 
a higher fluorescence signal in the negative control (NC) 
group compared to the knockdown group (Fig. 6E). These 
results provide further evidence of the close correlation 
between RACGAP1 expression and the occurrence and 
development of tumors.

Discussion
In this study, genotyping through a set of 26 stemness 
genes identified two distinct stem cell-related subtypes, 
of which the C2 subtype was highly enriched in stemness 
phenotypic features and showed higher stemness score 
“mRNAsi”, lower sensitivity to immunotherapy, and poor 
prognosis. In order to accurately identify the C2 subtype, 
we screened two genes, PBK and RACGAP1, as biomark-
ers of stemness typing through comprehensive bioinfor-
matics analysis, and the prognostic analysis showed that 
the prognosis of patients with LUAD was worse with the 
elevation of PBK and RACGAP1. We then verified that 
RACGAP1 could promote the tumor stemness pheno-
type and the rapid proliferation of tumor cells through 
cell phenotyping experiments and in vivo experiments 
in animals, which implies that RACGAP1 may serve as a 
potential therapeutic target for targeted stem cell therapy.

Patients with high expression of RACGAP1 in lung 
adenocarcinoma have a poorer prognosis, and Rac 
gTPase-activating protein 1 (RACGAP1) is a component 
of the central spindle complex, which acts as a microtu-
bule-dependent and Rho-mediated signaling cytoplas-
mic divisions during the formation of myosin contractile 
rings [19]. It has been shown that RACGAP1 is over-
expressed in a variety of cancers including breast [20], 
esophageal [21], gastric [22], hepatocellular carcinoma 
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Fig. 4  Cell phenotype experiments. (A) Western blot analysis was performed to determine the protein levels of RACGAP1 in four different lung cancer 
cell lines; (B) The cloning formation experiment was conducted after transfecting A549 and H1975 cells with si-RACGAP1; (C) A Wound healing assay 
was performed on A549 cells after transfection with si-RACGAP1; (D) A Wound healing assay was conducted on H1975 cells after transfection with si-
RACGAP1; (E) Transwell migration assay was conducted on A549 cells after transfection with si-RACGAP1; (F) Transwell migration assay was performed on 
H1975 cells after transfection with si-RACGAP1.
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(HCC) [23], and ovarian [24], and that the high expres-
sion of RACGAP1 correlates with tumor aggressiveness 
and poor prognosis, which is in agreement with the pres-
ent findings. By, cell scratch assay also further demon-
strated that decreased RACGAP1 expression resulted in 
decreased lung cancer cell migration. In addition, RAC-
GAP1 plays a role in regulating the cell cycle [25–27] and 
is involved in the progression of other types of cancer. For 
example, knockdown of RACGAP1 in the HCC cell lines 
SMMC7721 and HCCLM3 cells induces G2/M phase 
arrest and reduces cell number in G0/G1 phase [23]. In 

breast cancer, RACGAP1 promotes cancer cell metas-
tasis by regulating mitochondrial mass thereby [28]. In 
this study, after reducing RACGAP1 expression in lung 
cancer cells A549 and H1975 by using si technique, flow 
cytometry revealed that the expression of cell cycle-
related proteins CDK2 and CDK4 was reduced. Further 
in animal experiments, it was found that decreased RAC-
GAP1 expression significantly reduced tumor growth, 
suggesting that RACGAP1 plays a non-negligible role in 
the progression of lung adenocarcinoma.

Fig. 5  Flow cytometry analysis of cell cycle and WB validation of cell cycle protein and pluripotency-related protein expression. (A) GSEA analysis was 
performed on RACGAP1; (B-C) Flow cytometry analysis of cell cycle was conducted on A549 and H1975 cells after transfection with si-RACGAP1; (D) 
Compared to the negative control (NC), specific siRNA targeting RACGAP1 successfully inhibited the expression of RACGAP1 protein as well as cell 
cycle-related proteins CDK2, CDK4 and CDK1; (E) Western blot results showed that the expression of pluripotency-related markers NIFK and NANOG was 
downregulated after transfection with si-RACGAP1 (The blot has been cropped and the original blot is shown in the supplementary file.) (***p < 0.001; 
**p < 0.01; *p < 0.05; ns: not significant)
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Fig. 6  In vivo experimental validation. (A-C) Photographs showing euthanized mice and dissected tumors;(D) Line graph showing tumor volume and 
bar graph displaying tumor weight; (E) Ratio = 1 cm, immunofluorescence staining of tumor tissue and relative expression of RACGAP1 (* P < 0.05, ** 
P < 0.01, *** P < 0.001)
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Tumor stem cells are a small subpopulation of can-
cer cells with the ability to self-renew and differentiate, 
and they are thought to play an important role in tumor 
maintenance and recurrence [29–33]. Numerous stud-
ies have shown that knockdown of the cell cycle-related 
proteins CDK1, CDK2, cyclin E or B1, or the use of CDK 
inhibitors results in the loss of pluripotency and the ini-
tiation of cell differentiation; In addition, studies of cyclin 
D or E-deficient mESCs have further confirmed that the 
cell cycle can regulate cell pluripotency [34–40]. In this 
study, the reduction of RACGAP1 expression was fol-
lowed by western blot, which revealed that the stem cell 
biomarkers KI-67 and Nanog were similarly reduced in 
expression, suggesting a potential regulatory relationship 
between RACGAP1 and the tumor stemness phenotype. 
Therefore, we hypothesized that in lung adenocarcinoma, 
high expression of RACGAP1 leads to aberrant cell 
cycle regulation, which may include overactivation of 
cell cycle protein-dependent kinase (CDK) and deletion 
of CDK inhibitors, which prevents the tumor stem cells 
from being subjected to normal cell cycle regulation, thus 
increasing the activity of tumor cells.

However, there are still some limitations to our study. 
First, although multiple datasets have been used in 
this study and the datasets were processed with batch 
removal, potential bias may still exist. Second, the depth 
of research on RACGAP1 in this study is still lacking, and 
in-depth studies with the help of single-cell sequencing, 
gene editing, and other technologies are still needed.

Conclusion
In this study, two stem cell-related subtypes with differ-
ent prognoses, TME patterns and therapeutic responses 
were systematically identified for the first time by con-
sistent clustering of stem cell gene sets. Through a series 
of bioinformatics, RACGAP1, a key stemness gene, was 
screened, and it was verified that RACGAP1 affects cell 
proliferation, migration and cell cycle regulation by cell 
phenotyping, in vivo experiments in animals, and flow 
cytometry analysis, thus affecting stemness, and thus it is 
expected to be used as a therapeutic direction and target 
for lung adenocarcinoma in the future.
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