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Abstract
Background Previous metabolic studies in upper digestive cancer have mostly been limited to cross-sectional 
study designs, which hinders the ability to effectively predict outcomes in the early stage of cancer. This study aims 
to identify key metabolites and metabolic pathways associated with the multistage progression of epithelial cancer 
and to explore their predictive value for gastroesophageal cancer (GEC) formation and for the early screening of 
esophageal squamous cell carcinoma (ESCC).

Methods A case-cohort study within the 7-year prospective Esophageal Cancer Screening Cohort of Shandong 
Province included 77 GEC cases and 77 sub-cohort individuals. Untargeted metabolic analysis was performed in 
serum samples. Metabolites, with FDR q value < 0.05 and variable importance in projection (VIP) > 1, were selected as 
differential metabolites to predict GEC formation using Random Forest (RF) models. Subsequently, we evaluated the 
predictive performance of these differential metabolites for the early screening of ESCC.

Results We found a distinct metabolic profile alteration in GEC cases compared to the sub-cohort, and identified 
eight differential metabolites. Pathway analyses showed dysregulation in D-glutamine and D-glutamate metabolism, 
nitrogen metabolism, primary bile acid biosynthesis, and steroid hormone biosynthesis in GEC patients. A panel 
of eight differential metabolites showed good predictive performance for GEC formation, with an area under 
the receiver operating characteristic curve (AUC) of 0.893 (95% CI = 0.816–0.951). Furthermore, four of the GEC 
pathological progression-related metabolites were validated in the early screening of ESCC, with an AUC of 0.761 
(95% CI = 0.716–0.805).
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Introduction
Gastroesophageal cancer (GEC) encompasses tumors 
in the esophagus, gastroesophageal junction, and stom-
ach [1]. Its insidious presentation and rapid progres-
sion typically lead to late-stage diagnosis and treatment, 
making it a leading cause of digestive cancer mortal-
ity [2]. Esophageal squamous cell carcinoma (ESCC), 
the most common type of esophagus cancer, develops 
through multiple stages of epithelial cancer, progressing 
from normal epithelial to low- and high-grade intraepi-
thelial neoplasia, and finally to invasive carcinoma [3]. 
Esophageal squamous epithelial dysplasia is a recog-
nized precursor to ESCC [4, 5]. Hence, early detection of 
precancerous lesions is crucial for identifying high-risk 
groups, enhancing the efficacy of early screening, reduc-
ing the risk of GEC, and improving the survival time [6]. 
While endoscopy with iodine staining is an established 
technique for identifying esophageal squamous dysplasia, 
it is still limited by its invasive and costly characteristics 
[7–9].

Metabolomics has emerged a new platform for bio-
marker discovery in recent years [10–17]. In our previous 
study, using an untargeted metabolomics method, good 
discriminating performances were achieved for the early 
stage of ESCC, especially in tumor in situ (TIS), with the 
values of an area under the receiver operating character-
istic curve (AUC) 0.939 (95% CI = 0.841-1.000) [13, 14]. 
Yuan et al. highlighted the significant association of ala-
nine, aspartate, and glutamate (AAG) metabolism with 
the prevalence and progression of gastric cancer (GC) 
[18]. However, the majority of these metabolomics stud-
ies have been based on cross-sectional or retrospective 
study designs, either for early screening or cancer diag-
nosis, which hampered the effective prediction in the 
early stage of cancer. Prospective studies on pathological 
progression still need further investigation.

In the present study, we applied untargeted metabolo-
mics to explore serum metabolic profile changes during 
the GEC formation based on a prospective case-cohort 
study. We aimed to identify the key metabolites and met-
abolic pathways associated with the complex multistage 
epithelial cancer formation in the high-risk area of China. 
Finally, we explored the predictive value of these serum 
metabolic biomarkers in GEC formation, and further 
evaluated their validity in the early screening of ESCC.

Materials and methods
Study population
A total of 4558 participants aged 40–69 years were 
recruited at the Esophageal Cancer Screening Base of 
Shandong Province (City of Feicheng, Shandong, China) 
between June 2013 and September 2014 [13]. All par-
ticipants underwent esophageal cancer screening using 
endoscopy with mucosal iodine staining. Baseline ques-
tionnaires and physical evaluations were conducted 
to collect sociodemographic information and various 
health parameters. Serum samples were also collected for 
metabolomics analysis. After excluding individuals with-
out complete baseline information or those who did not 
progress beyond mild esophagitis, we established the ini-
tial cohort for the case-cohort study (n = 3514; see meth-
ods section of the Supplementary Materials and Figure 
S1).

Figure  1A shows the study design of our prospective 
case-cohort study. The initial cohort was followed up 
until January 2022. During the 7-year follow up period, 
participants who processed to esophageal TIS (n = 14), 
ESCC (n = 28), and GC (N = 35) were defined as GEC 
cases (n = 77). Sub-cohort individuals were randomly 
selected from the initial cohort in a 1:1 ratio (n = 77).

Sociodemographic characteristics and lifestyle factors
Self-reported sociodemographic characteristics included 
age, sex (male/female), body mass index (BMI), education 
status (lack of education, primary, junior, senior, college 
or above), marriage status (married/unmarried), number 
of family members (1, 2, ≥ 3), family medical history (yes/
no). Lifestyle factors included smoking status (current 
or former smokers, vs. non-smokers), alcohol drinking 
status (current or former drinkers, vs. non-drinkers), tea 
drinking status (current or former tea drinkers, vs. non-
drinkers), dairy intake (never/rarely, sometimes, usually), 
beans intake (never/rarely, sometimes, usually), salted 
food intake (never/rarely, sometimes, usually), fried food 
intake (never/rarely, sometimes, usually), and hot food 
intake (never/rarely, sometimes, usually).

Serum collection
All participants were in a state of overnight fasting, and 
5 mL of peripheral venous blood was collected in the 
morning. The serum samples were then allowed to clot 
for 30  min at 37℃ water batch, followed by centrifuga-
tion at 3,000  rpm for 15  min. Subsequently, the serum 

Conclusions These findings indicated a panel of metabolites might be an alternative approach to predict GEC 
formation, and therefore have the potential to mitigate the risk of cancer progression at the early stage of GEC.

Keywords Gastroesophageal cancer, Esophageal squamous cell carcinoma, Cancer progression, Metabolomics, 
Biomarker.
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supernatant was extracted, immediately frozen in liquid 
nitrogen, and stored at -80℃ until further analyses.

UPLC-TOF-MS analysis and data preprocessing
Prior to UPLC-TOF-MS analysis, serum samples were 
thawed at 4℃ on ice and prepared according to the pro-
cedure in the methods section of Supplementary Materi-
als. The serum samples were analyzed by UPLC-QTOF/
MS using reverse-phase liquid chromatography (RPLC) 
chromatographic column. The column parameter was 
set to 2.6 μm, 100 mm (length)× 2.1 mm, Phenomenex, 
and UHPLC Kinetex C18 chromatographic column. The 
flow rate was 0.3mL/min, every injection lasted 12 min. 
The solvent A of the chromatographic mobile phase was 
water (100%) and 0.01% acetic acid, and the solvent B was 
acetonitrile (50%) and isopropanol (50%). The gradient 
elution conditions were as follows: 0–1 min, 99% A and 

1% B; 8–9 min, 1% A and 99% B; 10–12 min, 99% A and 
1% B.

The mass spectrometry detection equipment was a 
Thermo Scientific Orbitrap Exploris 480 mass spectrom-
eter, and the ion source was a Thermo Scientific EASY-
IC ion source, whose accuracy was controlled below 1 
ppm by real-time adjustment of the m/z calibration. The 
equipment was divided into positive ion mode (POS) and 
negative ion mode (NEG). The data acquisition mode 
included MS1 using full scan mode, and MS2 using data-
dependent acquisition mode (DDA).

Following UPLC-TOF-MS analysis, the raw data was 
preprocessed and annotated (see details in the methods 
section of Supplementary Materials). Finally, 305 metab-
olites in the case-cohort study were identified for subse-
quent analysis.

Fig. 1 Differential metabolites used to predict progression of GEC in the case-cohort study. A The case-cohort study design; B PLS-DA three-dimensional 
scores plot discriminating GEC cases and sub-cohort individuals; C Volcano plot showing correlations between FDR q value and FC for all metabolites in 
GEC cases and sub-cohort individuals; D ROC curves of prediction models to predict GEC formation; E Boxplots showing levels of differential metabolites 
in serum samples of GEC cases and sub-cohort individuals
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Statistical analysis
Partial least squares discrimination analysis (PLS-DA) 
was applied to explore the separation tendency of meta-
bolic profile between cases and sub-cohort group. The 
goodness of fit for the PLS-DA models was evaluated 
by the explained variations (R2) and the predicted varia-
tions (Q2). Wilcoxon rank sum test and PLS-DA were 

then applied to identify differential metabolites for dis-
criminating GEC pathological progression individuals 
from sub-cohort. Metabolites with P value < 0.05 were 
defined as significantly altered metabolites, and with FDR 
q value < 0.05 and variable importance of the projection 
(VIP) > 1 were viewed as differential metabolites in this 
study.

Three random forest (RF) models were developed to 
evaluate the predictive value of the differential metabo-
lites for GEC progression, including a clinical mark-
ers model, a metabolites model, and a combined model 
(incorporating both clinical markers and metabolites). 
These models were then assessed using leave-one-out 
cross-validation (LOOCV). Furthermore, we utilized the 
ESCC screening cohort (n = 1104) to assess the predictive 
performance of these specific GEC progression-related 
metabolites for the early screening of ESCC. Participants 
were randomly divided into a discovery set (n = 662) and 
a validation set (n = 442). The detailed materials can be 
found in our previous publication [14]. The area under 
the receiver operating characteristic curve (AUC), net 
reclassification index (NRI), and integrated discrimina-
tion improvement (IDI) were calculated to evaluate the 
predictive performance.

Pathway enrichment analysis of differential metabo-
lites was conducted using MetaboAnalyst (https://www.
metaboanalyst.ca/) based on the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway database [19]. All 
analyses were conducted using the R platform (version 
4.3.0).

Results
Participant characteristics
Table  1 presents the baseline characteristics of partici-
pants in the case-cohort study. This study encompasses 
154 participants (mean [SD] age, 58.7 [7.1] years; 30.5% 
female; mean [SD] BMI, 23.8 [3.1] kg/m2), of which 14 
progressed to TIS, 28 progressed to ESCC and 35 pro-
gressed to GC.

In the screening study, we enrolled 1104 participants 
(discovery set, mean [SD] age, 56.1 [7.9] years, 53.6% 
female) (Fig.  2A). ESCC screening-positive subjects 
tended to be older and had higher levels of systolic blood 
pressure and education. Additionally, a greater propor-
tion of these subjects were wellspring drinkers and smok-
ers compared to health controls in the discovery set 
(Table S1).

Differential metabolites associated with GEC formation
The PLS-DA score plot demonstrated a distinct meta-
bolic profile separation between GEC cases and sub-
cohort individuals (Fig.  1B). As shown in Fig.  1C, 
univariate analysis identified 41 significantly altered 
metabolites (P value < 0.05), including 22 up-regulated 

Table 1 Baseline characteristics of the case-cohort study 
population
Variable Sub-

cohort 
(n = 77)

Case 
(n = 77)

Total 
(n = 154)

P 
value

Demographic
Age (years) 57.7 (7.6) 59.8 (6.4) 58.7 (7.1) 0.068
Female, n (%) 29 (37.7) 18 (23.4) 47 (30.5) 0.080
BMI (kg/m2) 24.1 (2.9) 23.5 (3.3) 23.8 (3.1) 0.228
Education, n (%) 0.380
 Lack of education 10 (13.0) 10 (13.0) 20 (13.0)
 Primary 18 (23.4) 27 (35.1) 45 (29.2)
 Junior 41 (53.2) 31 (40.3) 72 (46.8)
 Senior 8 (10.4) 8 (10.4) 16 (10.4)
 College or above 0 (0.0) 1 (1.3) 1 (0.6)
Married, n (%) 75 (97.4) 72 (93.5) 147 (95.5) 0.155
No. of family members, 
n (%)

0.701

 1 2 (2.6) 4 (5.2) 6 (3.9)
 2 27 (35.1) 27 (35.1) 54 (35.1)
 ≥ 3 48 (62.3) 46 (59.7) 94 (61.0)
Family medical history, 
n (%)

12 (15.6) 14 (18.2) 26 (16.9) 0.827

Lifestyle
Smokers, n (%) 21 (27.3) 27 (35.1) 48 (31.2) 0.380
Alcohol drinkers, n (%) 23 (29.9) 28 (36.4) 51 (33.1) 0.490
Tea drinkers, n (%) 50 (64.9) 50 (64.9) 100 (64.9) 1.000
Dairy intake, n (%) 0.779
 Never/rarely 0 (0.0) 0 (0.0) 0 (0.0)
 Sometimes 8 (10.4) 6 (7.8) 14 (9.1)
 Usually 69 (89.6) 71 (92.2) 140 (90.9)
Beans intake, n (%) 0.141
 Never/rarely 0 (0.0) 0 (0.0) 0 (0.0)
 Sometimes 37 (48.1) 27 (35.1) 64 (41.6)
 Usually 40 (51.9) 50 (64.9) 90 (58.4)
Salted food intake, n (%) 0.873
 Never/rarely 2 (2.6) 2 (2.6) 4 (2.6)
 Sometimes 52 (67.5) 49 (63.6) 101 (65.6)
 Usually 23 (29.9) 26 (33.8) 49 (31.8)
Fried food intake, n (%) 0.970
 Never/rarely 1 (1.3) 1 (1.3) 2 (1.3)
 Sometimes 66 (85.7) 67 (87.0) 133 (86.4)
 Usually 10 (13.0) 9 (11.7) 19 (12.3)
Hot food intake, n (%) 0.076
 Never/rarely 44 (57.1) 30 (39.0) 74 (48.1)
 Sometimes 17 (22.1) 23 (29.9) 40 (26.0)
 Usually 16 (20.8) 24 (31.2) 40 (26.0)
Data are means ± SD, or n (%). BMI = Body mass index

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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and 19 down-regulated). Of these metabolites, eight were 
classified as differential metabolites by FDR q value < 0.05 
and VIP > 1, to discriminate GEC cases from the sub-
cohort group (Table  2, Table S2). Figure  1E showed 
detailed information on the eight metabolites, where 
five metabolites were inversely associated with the risk 
of progression of GEC, including 2-(2-butoxy ethoxy) 
ethanol, caprylic acid, diethyltoluamide, hexamethylene 
glycol, and pentaethylene glycol. The other three metabo-
lites (dodecanoic acid, pelargonic acid, and undecanoic 
acid) were positively associated with the risk of GEC 
progression.

Furthermore, PLS-DA identified a clear separation ten-
dency between the sub-cohort and the TIS group, the 
sub-cohort and the ESCC group, and the sub-cohort and 

the GC group (Figure S2). We found 6 out of 14 differen-
tial metabolites in the TIS vs. sub-cohort, 5 out of 7 in the 
ESCC vs. sub-cohort, and all 4 in the GC vs. sub-cohort 
were identical to the above 8 metabolites, subsequently 
(Table S3-5 and Figure S3-5).

Prediction model to discriminate GEC formation
Figure  1D demonstrated that clinical markers (age, sex, 
body mass index [BMI], education, vegetable intake, 
fruit intake, bean intake, and hot food intake) exhibited 
poor performance in pathological processes predic-
tion (AUC = 0.599; 95% CI = 0.505–0.683). In contrast, 
the panel of eight metabolites had a robust AUC value 
of 0.893 (95% CI = 0.816–0.951), with a high sensitivity 
of 0.961 (95% CI = 0.896-1.000), specificity of 0.766 (95% 

Table 2 Detailed information of 8 differential metabolites identified in the case-cohort study
Metabolites m/z RT P value FDR FC a VIP
2-(2-butoxy ethoxy) ethanol 163.133 307.600 < 0.001 < 0.001 0.889 2.464
Caprylic acid 143.108 427.300 < 0.001 < 0.001 0.535 4.311
Diethyltoluamide 192.138 379.700 < 0.001 < 0.001 0.846 3.561
Dodecanoic acid 199.170 511.100 < 0.001 0.037 1.149 1.524
Hexamethylene glycol 283.175 221.900 < 0.001 0.030 0.663 1.823
Pelargonic acid 157.123 452.900 < 0.001 < 0.001 1.323 2.804
Pentaethylene glycol 239.149 213.300 < 0.001 0.028 0.665 1.726
Undecanoic acid 185.155 476.100 < 0.001 0.036 1.094 2.166
m/z = Mass charge ratio, RT = Retention time, FDR = P value adjusted using false discovery rate, FC = Fold change, VIP = The variable importance in projection
a Fold change was calculated as the ratio of the mean values of GEC cases to sub-cohort individuals

Fig. 2 Differential metabolites associated with progression of GEC in the screening cohort; A The screening study design; B Volcano plot showing correla-
tions between FDR q value and FC for all metabolites in ESCC screening-positive and screening-negative group;  C  Boxplots showing levels of differential 
metabolites in serum samples of screening-positive and screening-negative group
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CI = 0.662–0.857). The combined RF model, integrating 
clinical markers and eight metabolites, achieved the best 
prediction performance (AUC = 0.914; 95% CI = 0.861–
0.955). The NRI and IDI for the comparison of the com-
bined model versus the clinical markers-only model were 
0.507 (95% CI = 0.332–0.681) and 0.451 (95% CI = 0.370–
0.532), respectively. Figure S6 summarizes the predictive 
performance of the RF models across different pathologi-
cal progression (TIS, ESCC, and GC), with the combined 
models for ESCC showing particularly strong predictive 
performance (AUC = 0.907; 95% CI = 0.849–0.954).

GEC progression-related metabolites showing promising 
results for early screening of ESCC
Among the metabolites that were significantly altered 
between GEC cases and sub-cohort individuals (P 
value < 0.05), 17 metabolites were included in the 
screening study (Fig.  2B, Table S7). Subsequently, four 
metabolites, with FDR q value < 0.05 and VIP > 1, were 
identified as differential metabolites for the early screen-
ing of ESCC, of which two were positively associated 
with ESCC, including cis-9-palmitoleic acid and Hydro-
cortisone. In contrast, the other two metabolites, PC 
(17:0/0:0) and PC (18:0/0:0) were found to be inversely 
related to ESCC (Fig. 2C and Table S7).

Subsequently, we developed a RF model incorporating 
four differential metabolites for ESCC screening in the 
discovery set and evaluated this prediction performance 
in the validation set. Compared to clinical markers-only, 
the combined model of clinical markers and metabolites 
achieved an AUC value of 0.810 (95% CI = 0.779–0.843) 
in the discovery set and 0.761 (95% CI = 0.716–0.805) in 
the validation set (Table S8, Figure S6). The NRI for the 
combined model versus the clinical markers-only model 
was 0.169 (95% CI = 0.087–0.252) in the discovery set and 
0.184 (95% CI = 0.071–0.297) in the validation set, and 
IDI was 0. 097 (95% CI = 0.061, 0.132) and 0.079 (95% 
CI = 0.032, 0.125), respectively (Table S9).

Dysregulated metabolic pathways associated with GEC 
formation
Using significantly altered metabolites, we conducted 
enrichment analyses, based on the KEGG database, 
to identify the pathways dysregulated in GEC patients 
(Table S10). These analyses revealed significant disrup-
tion in D-glutamine and D-glutamate metabolism, nitro-
gen metabolism, primary bile acid biosynthesis, and 
steroid hormone biosynthesis (Fig. 3). Notably, D-gluta-
mine and D-glutamate metabolism and nitrogen metabo-
lism were also associated with ESCC (Table S11).

Fig. 3 Schematic representation of the effect of differential metabolites on GEC progression
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Discussion
GEC is the first leading cause of digestive cancer mortal-
ity, which is typically diagnosed and treated at advanced 
stages [2]. Thus, early detection of GEC provides oppor-
tunities to implement effective and timely treatment 
strategies to enhance patients outcomes. However, there 
is currently little study on pathological progression from 
esophagitis, atypical hyperplasia to GEC. In our prospec-
tive case-cohort study at the Esophageal Cancer Screen-
ing Base in Shandong Province, we observed a distinct 
separation between GEC cases and sub-cohort individu-
als and identified eight differential metabolites. Four 
metabolic pathways were also found to be influenced by 
metabolic dysregulation in GEC progression. The panel 
of the GEC pathological progression-related metabolites 
showed strong predictive performance both in GEC pro-
gression and in the early screening of ESCC.

A series of metabolites, including cortisol, lipid, and 
acid, were found to be significantly altered between GEC 
cases and sub-cohort individuals, indicating the potential 
dysregulation of steroid hormone biosynthesis and bile 
acid biosynthesis pathways during GEC progression. Ste-
roid hormone biosynthesis, including cholesterol synthe-
sis, glucocorticoid synthesis, and sex hormone synthesis, 
is a critical pathway in cancer development [20]. For 
instance, CYP19A1, a steroid synthetase, has been impli-
cated in promoting the progression of gastric cancer [21]. 
Cholesterol-rich lipid droplets and lipoprotein receptors 
were commonly observed in patients with gastric cancer, 
among which low-density lipoprotein (LDL) and high-
density lipoprotein (HDL) were the main cholesterol car-
riers [21]. Some studies indicated potential risks of LDL 
and HDL in the progression of gastric cancer [21, 22]. 
Relative research confirmed that steroid biosynthesis also 
played a crucial role in ESCC [18], with lipid biosynthesis 
and remodeling being active in cancer cells [23].

Bile acids, products of cholesterol metabolism, may 
induce oxidative stress and reactive oxygen production, 
leading to inflammation, DNA damage, and alteration in 
cell proliferation and apoptosis, all of which were suscep-
tibility factors for cancer [24]. The expression of CDX2, 
an early event in inflammation-to-carcinogenesis pro-
gression, is also triggered by bile acid reflux [25]. Recent 
studies have shown that short-term exposure to bile acids 
increased esophageal cancer risk [26], and Glycocheno-
deoxycholic acid (GCDCA) elevation, noted in ESCC 
patients [27], aligns with our findings.

Furthermore, our study identified dysregulation of glu-
tamate and glutamine in the progression of GEC, which 
was also evident in the early screening of ESCC. Gluta-
mine, crucial for nitrogen and carbon supply in biosyn-
thesis and an important energy source via TCA cycle, 
supports cancer cell growth and proliferation [28]. The 
main rate-limiting enzyme for glutamine catabolism, 

GLS1, is highly expressed in various cancers, including 
small-cell lung cancer, hepatic carcinoma, and ESCC, 
with its down-regulation impacting cancer cell prolif-
eration, invasion, and migration [29]. Elevated glutamate 
levels [30] and active amino acid metabolism [31] in 
esophageal cancer patients compared to health controls 
further corroborate our findings, suggesting glutamine as 
a sensitive metabolic marker for GEC progression.

This study had important strengths. Firstly, the imple-
mentation of a prospective case-cohort study design was 
resource-efficient, optimizing sample size and conserving 
manpower and financial resources. Secondly, different 
from current metabolic research focused primarily on 
early screening, our study explored metabolites associ-
ated with the pathological progression of GEC. Further-
more, sensitivity analyses reinforced the consistency and 
reliability of our findings. Lastly, we also evaluated the 
discrimination performance of metabolites related to 
GEC progression in the early screening of ESCC.

Our study also had several shortcomings. Firstly, as a 
single-center exploratory study with a relatively mod-
est sample size, the findings from our case-cohort study 
require validation through external datasets to confirm 
their reliability. While we have utilized an ESCC screen-
ing cohort for validation, broader verification is essen-
tial. Secondly, current studies on differential metabolites 
and their pathways were based on population, and more 
basic experiments were needed to be verified. Finally, due 
to the separation of the case-cohort study and screening 
study into two distinct batches of metabolomics experi-
ments, more precise metabolomics identification meth-
ods are needed to enhance the accuracy of metabolite 
matching.

Conclusion
In conclusion, our prospective case-cohort study suc-
cessfully identified differential metabolites between 
GEC cases and sub-cohort individuals, which had strong 
predictive performance for GEC pathological progres-
sion and for the early screening of ESCC. This finding is 
crucial for the early screening and timely intervention 
in GEC high-risk groups, potentially reducing mortality 
and disease burden. In addition, our study implied that 
specific metabolites were abnormal during GEC progres-
sion, affecting the tumor cell microenvironment and thus 
leading to the irreversible transformation of early gastro-
esophageal lesions to GEC. These insights might provide 
valuable clues for the exploration of GEC pathological 
mechanism.
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