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Abstract

Background Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac
tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study
investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important
qguestions.

Methods Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles with-
out any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardio-
genesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes.

Results The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-
related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene
expression of differentiation regulators including Tox5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations
switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating
IsIT, Baf60 complex, Wnt, FGF, Notch, Mef2c and others.

The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells
(CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumo-
rigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control
over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling
the tumorigenesis and regenerative potential.

Conclusion The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long
periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that inter-

act with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible

for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis.
But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a con-
sequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM.
The CM development in carney complex also signifies the role of TS in cardiac cells.
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Background

Primary tumors of the heart are exceedingly rare,
with nearly 90% of them classified as benign [1]. This
study focuses on a particular subtype of benign car-
diac tumors known as cardiac myxomas (CM), pri-
marily because they are the most prevalent among
primary benign cardiac tumors [1]. Cardiac myxomas,
despite their benign nature, hold significant relevance
in cardiac research and clinical practice. CM are benign
tumors of the heart. They are multipotent with mesen-
chymal stem cell-like nature. To comprehend the sig-
nificance of CM and their potential implications for
cardiomyocyte biology and cardiac regeneration, it is
crucial to first understand the general concepts sur-
rounding cardiac regeneration. The adult human heart
has limited regenerative capacity, a characteristic that
poses significant challenges in addressing cardiac dis-
eases [2]. This limited regenerative potential of cardi-
omyocytes has sparked interest in understanding the
mechanisms governing cardiac cell fate and the factors
that might influence their regenerative and proliferative
abilities [3].

Histopathological features of CM often reveal areas
of hypercellularity, necrosis, and atypia [1, 3, 4]. It is
within these intricate patterns that the transformation
of cardiomyocytes into cardiac progenitor-like cells, a
distinctive hallmark of cardiac myxoma, becomes evi-
dent [5, 6]. These areas of hypercellularity suggest the
presence of cells in various stages of differentiation,
reminiscent of cardiac progenitors [7, 8]. Furthermore,
the presence of atypia hints at the dynamic reprogram-
ming of cardiac cells, as they shift from their terminally
differentiated state toward a more primitive, progen-
itor-like phenotype. The histopathological landscape
of CM serves as a visual representation of the intrigu-
ing process by which cardiomyocytes seem to undergo
transformation into progenitor-like cells, hallmark of
CM [9, 10].

Current challenges and gaps
The precise etiology of CM remains elusive, and despite
some studies hinting at the possible role of transcrip-
tion factor Nkx2-5 in CM development, our under-
standing of CM’s origin and the factors involved is far
from comprehensive [11-15].

The possible role of limited regenerative and prolif-
erative potential of cardiomyocytes in the development

of primary cardiac tumors such as CM is not yet fully
understood [4, 5], and how this is related to the benign
nature of CM [6, 8].

Objectives of the study

CM are benign tumors of the heart. They are multi-
potent with mesenchymal stem cell-like nature [9, 10,
16-18]. This study intends to contribute to a deeper
understanding of cardiomyocyte biology and the fac-
tors that possibly influence their resistance to neoplastic
transformations [19]. It investigates how the resistance to
malignant transformation of CM may possibly be related
to the limited proliferative and regenerative potential of
cardiomyocytes [7].

Our aim is to explore the relationship between CM and
the limited regenerative potential of cardiomyocytes. By
investigating key cardiac transcription factors, genes,
signaling pathways, and other mechanisms, we seek to
shed light on the development of CM and its potential
implications for cardiac regeneration [20-24].

Methods

Article screening and inclusion

The process of article screening and inclusion was
meticulously conducted to ensure that only relevant
and high-quality literature was incorporated into this
study. The aim was to identify and evaluate articles that
provided insight into the roles of cardiac genes, tran-
scription factors (TFs), and signaling pathways in car-
diogenesis, cardiomyocyte development, proliferation,
differentiation, tumorigenesis, and their connection
to Cardiac Myxoma (CM). The literature search and
data collection commenced in January 2019 and con-
cluded in February 2022. During the revision process,
additional literature searches were conducted and ref-
erenced up to October 2022. The study’s timeline facili-
tated a significant focus on genes, TFs, and pathways
that are fundamental to the regulation of cardiac devel-
opment, lineage commitment, and the maintenance of
cardiac identity. The extensive duration enabled a thor-
ough search across various databases and resources,
ensuring that no relevant information was overlooked.
Understanding the roles of these pivotal cardiac genes
and TFs is crucial for unraveling the complexities of
CM development. Their participation in balancing pro-
liferation and differentiation processes is particularly
intriguing and necessitated a wide search horizon to
encompass the evolving body of knowledge in this field.
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This endeavor involved a comprehensive exploration
of key cardiac genes, transcription factors (TFs), and
signaling pathways, each of which plays multifaceted
roles in cardiogenesis, cardiomyocyte development,
proliferation, differentiation, tumor suppression or
tumorigenesis.

1. Database selection and search strategy: The search
process commenced with a thorough selection of
databases renowned for their comprehensive cover-
age in the field of biomedical research. Three primary
databases were: PubMed, MEDLINE, and Google
Scholar. These platforms were selected due to their
accessibility and comprehensive indexing, allowing
us to obtain a broad spectrum of literature.

2. Multi-step screening process: A multi-step screen-
ing process was systematically implemented to iden-
tify articles aligning with our predefined inclusion
and exclusion criteria. This process aimed at meticu-
lously filtering through a large pool of potentially rel-
evant studies to ensure that only the most pertinent
articles were considered for inclusion in our study.

Title and abstract screening

Initially, articles were screened based on their titles
and abstracts. This preliminary step served as an effec-
tive means of identifying articles that exhibited direct
relevance to the research objectives of this study. Arti-
cles that clearly did not pertain to cardiac genes, TFs,
signaling pathways, or cardiomyocyte biology were
eliminated.

Full-text review

Articles that passed the title and abstract screening phase
underwent a comprehensive full-text review. During
this in-depth assessment, we scrutinized each article to
determine its relevance to the study’s focus areas. Those
that did not offer valuable insights into the roles of car-
diac genes, TFs, and signaling pathways in the context of
cardiogenesis, cardiomyocyte development, proliferation,
differentiation, tumorigenesis, or CM were excluded.

3. Data extraction: Following the final selection of
articles, relevant data was extracted from each arti-
cle, encompassing key findings and outcomes that
were significant to our study objectives. This process
aimed to ensure that the data extracted was relevant
and provided valuable insights into the complex
interplay of cardiac genes, TFs, and signaling path-
ways.
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Inclusion criteria, selection of genes, transcription factors,
and signaling pathways

To be deemed eligible for inclusion in our study, articles
had to be directly related to key cardiac transcription
factors/genes and signaling pathways involved in cardio-
genesis, with a specific emphasis on the developmental
biology of cardiomyocytes and cardiomyocyte differen-
tiation. Articles that did not meet these specific criteria
were excluded. The choice of specific cardiac genes, TFs,
and signaling pathways for investigation was guided by
their well-established roles in cardiogenesis, cardiomyo-
cyte development, proliferation, and differentiation. Fur-
thermore, these factors were also examined in the context
of tumor suppression, tumorigenesis, and their relevance
to CM. While the factors we selected are indeed signifi-
cant contributors to cardiac biology and pathology, it is
essential to acknowledge that other factors may also play
a role in the processes under investigation. However,
due to the defined scope of our study, these factors were
beyond the current study’s scope.

The following genes/TFs and signaling pathways were
investigated for their role in cardiogenesis/cardiomyo-
cyte development, proliferation, differentiation, tumor
suppression, tumorigenesis and in CM: Isl1, Brgl/Baf60
— Smarcd3 complex, Nkx2-5, GATA4, Tbx5, Mef2c,
HANDI1/2, MYOCD, MSX2, HOPX, Wht-signaling path-
way, Notch, FGE BMPs.

These key cardiac genes/TFs play pivotal roles in car-
diac development by guiding lineage commitment,
balancing proliferation and differentiation, regulating
essential processes, and maintaining cardiac identity.

This study adheres to relevant PRISMA guidelines
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses).

Rationale for screening and inclusion

It is deeply rooted in the pivotal significance of certain
cardiac genes, transcription factors (TFs), and signal-
ing pathways in unraveling the complex process of car-
diac tumorigenesis, with a primary focus on cardiac
myxomas (CM). The selection of these specific factors
is driven by their unique and critical roles, which have
the potential to shed light on CM development. These
include Isl1, a key controller of cardiomyocyte cell fate,
highly expressed in multipotent cardiac progenitor cells
(CPCs), which not only specifies cardiac lineage and dif-
ferentiation but also exhibits interactions with Nkx2-5
and Estrogen Receptor Alpha, suggesting its potential
involvement in CM. The Brgl/Baf60 — Smarcd3 Com-
plex acts as a crucial transcriptional regulator, inducing
CPC proliferation, and its defects are linked to differen-
tiation anomalies, potentially collaborating with the Wnt
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signaling pathway in promoting tumorigenesis. Nkx2-5,
among the earliest cardiac-specific patterning genes,
plays a central role in inducing cardiac programming in
CPCs, enhancing differentiation, and interacting with
Tbx5 and GATAA4, especially with its upregulated expres-
sion in CM, possibly contributing to CM heterogeneity.
GATA4, a master regulator of genes pivotal for cardio-
genesis, significantly influences cardiac morphogenesis,
survival, and differentiation, with decreased expression
leading to cardiomyocyte reversion to a progenitor-like
state. Inclusion of Tbx5 is essential due to its ability to
boost the expression of other cardiogenic TFs, thereby
guiding CPC differentiation while suppressing non-car-
diac gene expression and potentially contributing to CM
heterogeneity. The Mef2c gene is incorporated as it con-
tributes to CPC proliferation and forms complexes with
key cardiac TFs, participating in cardiac morphogenesis
and enhancing differentiation, potentially collaborating
with the Wnt pathway and Isll in generating CPC-like
states. The HAND1/2, with regulatory roles in cardio-
genesis, including the enhancement of both proliferation
with Nkx2-5 and differentiation with GATAA4, is of par-
ticular interest as it may act as a tumor suppressor and
possibly becomes downregulated in CM development,
making it crucial to understand the multifaceted roles of
these TFs in both normal cardiac development and CM
tumorigenesis. The MYOCD gene is another crucial fac-
tor under investigation, as it regulates CPC growth arrest
and governs CPC stemness. Understanding the role of
MYOCD can offer insights into the factors that main-
tain the unique characteristics of CM. MSX2, included
for its interactions with HAND1/2 in regulating gene
expression and its role in enhancing CPC proliferation,
is of particular interest due to its potential involvement
in promoting progenitor-like states in advanced CM.
HOPX, expressed as CPCs commit to the cardiomyocyte
fate, is essential for enhancing cardiomyocyte differentia-
tion and acting as a tumor suppressor. The investigation
of HOPX provides insights into how its downregulation
may contribute to CM development. The inclusion of the
Wnt Signaling Pathway is vital as it is involved in CPC
renewal and maintenance, processes that are essential in
understanding the regenerative potential of cardiac cells.
Its role in enhancing CPC stemness and contributing to
cardiomyocyte dedifferentiation in CM development is
central to this research. The FGF Signaling Pathway is
included as it drives stem cell differentiation into CPCs
and forms complexes that regulate differentiation and
proliferation. The potential for its dysregulation to lead
to the reversion of cardiomyocytes toward progenitor-
like states in CM development highlights its significance
in this study. BMPs, through their role in downregulating
progenitor genes in CPCs and enhancing cardiomyocyte
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differentiation, are vital in understanding the control of
cardiac cell fate and its impact on CM development. The
Notch Signaling Pathway, participating in cardiac mor-
phogenesis and regulating cardiomyocyte proliferation
and differentiation, is included to uncover its potential
collaboration with Isll and Mef2c in CM development.
The comprehensive exploration of these key genes, TFs,
and signaling pathways is essential to provide valuable
insights into their roles in cardiogenesis, proliferation,
differentiation, and their potential contributions to the
development of cardiac myxomas.

Assessment of article quality and potential biases

During the article screening and inclusion process, the
quality of the selected articles and the assessment of
potential biases were pivotal aspects to ensure the rigor
and reliability of the research findings.

1. Quality assessment: The first step in quality assess-
ment involved evaluating the methodological rigor
of the selected articles. This entailed a careful exami-
nation of the study design, data collection methods,
and analyses conducted in those studies. The quality
of evidence was considered when determining the
significance of the study’s findings. Articles that dem-
onstrated sound methodology, such as well-designed
studies/experiments, controlled variables, and appro-
priate scientifically sound data, were considered of
higher quality. The fact that the selected articles had
undergone a peer-review process was also a signifi-
cant indicator of quality. Peer-reviewed articles are
subject to scrutiny by experts in the field, ensuring
the validity and credibility of the research. The qual-
ity of evidence presented in the selected articles was
also a focus of the assessment. High-quality evidence
often comes from properly conducted reviews or
well-designed studies with rigorous data collection
methods and robust analyses.

2. Potential biases assessment:

Publication bias: The potential for publication bias was
addressed. This bias can occur when only studies with
positive or significant results are published, leading to an
overestimation of effects. To minimize this bias, studies
that provided a balanced representation of both positive
and negative results were actively sought. A compre-
hensive search strategy, including databases like Google
Scholar, was adopted to include a wide range of pub-
lished articles.

Selection bias: To assess selection bias, predefined
and transparent inclusion criteria was applied to mini-
mize subjectivity. Articles were selected based on their
relevance to this study’s objectives, and this process
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adhered to predefined criteria. This approach reduced
the risk of subjectivity in article selection.

Reporting bias: Reporting bias occurs when stud-
ies selectively report certain outcomes while omit-
ting others. Articles were checked for inconsistencies
or missing data to make sure that such studies do not
mislead the findings of this study. To identify and
address reporting bias, multiple detailed reviews of the
methodologies and results were conducted for all the
selected articles.

By ensuring that high-quality, peer-reviewed studies
were included and potential biases were assessed, this
study aimed to provide a robust foundation for results
and conclusions presented in the study. This enhanced
the reliability and credibility of the study, making it a
valuable contribution to the field of cardiac genetics
and its role in tumorigenesis.

Genes/TFs including Isl1, Baf60 complex, Wnt,
FGF, Notch, Mef2c maintain CPCs and their
dysregulation may play essential roles in CM

development.
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Language and publication restrictions

We restricted our selection to publications in the English
language. There were no limitations imposed on the date
of publication. Unpublished studies were not included in
our analysis.

Results

A total of 2610 articles were identified using database
searching, and 2277 were recorded after duplicates
removal. One thousand seven hundred eighty-five (1785)
were excluded after screening of title/abstract, 215 arti-
cles were further excluded from consideration based on
a more detailed review of the full texts. These exclusions
were primarily due to factors such as non-conformity
with the study focus, insufficient methodological rigor, or
data that did not align with our research questions. and
3 articles were excluded during data extraction. Finally,
274 articles were included (79 were review articles, 1 was
clinical trial, 105 were in vivo studies and 89 were in vitro

Dysregulations in the gene ex ion of differentiation regulators
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in cardiac myxoma development. Roles of
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In CM, upregulation may result in progenitor-like stake, hallmark of CM
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Indicates genes/tfs/signaling pathways with roles in both proliferation and differentiation processes
In CM development, their role depends on the timing and microenvironment

pathways with
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In CM development, their downregulation may contribute to tumorigenesis
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By unraveling the genetic programming of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX and BMPs in cardiomyocytes, new

therapeutic options may be developed to halt the progression of CM. And regulating their gene expression in cardiomyocytes may help in harnessing cardiac

regenerative potential

Fig. 1 Landscape of genes/tfs/signaling pathways involved in cardiac development and their possible roles in CM
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PUBMED database, MEDLINE database and
Google Scholar

Limits: English language articles only

2610 Citation(s)

¥

2277 Non-Duplicate
Citations Screened

A 4

Inclusion/Exclusion
Criteria Applied

Only those articles were eligible to be included which mainly focused on the
TF Isl1, Brg1/Baf60 — Smarcd3 complex, Nkx2-5, GATA4, Tbx5, Mef2c,
HAND1/2, MYOCD, MSX2, HOPX, wnt-signaling pathway, Notch, FGF, BMPs
for their roles in cardiogenesis/cardiomyocyte development, proliferation,

1785 Articles Excluded
‘ After Title/Abstract Screen

differentiation, tumor suppressors, tumorigenesis and cardiac myxoma.

4

492 Articles Retrieved

2 4

Inclusion/Exclusion
Criteria Applied

274 Articles Included

» based on the limitations of the study

N 3 Articles Excluded
During Data Extraction

215 Articles Further Excluded

Fig. 2 PRISMA flow diagram: This figure only highlights the methodology of the study in relation to its limitations. This figure represents graphically

the flow of citations in the study

studies). Ultimately, 2 duplicate references were also
deleted during the final checks. Figure 1 illustrates the
landscape of genes/transcription factors/signaling path-
ways involved in cardiac development and their potential
roles in Cardiac Myxoma. The flow of citations is repre-
sented in Fig. 2.

Significance of cardiac genes/TFs in investigating cardiac
tumorigenesis: an overview of the study

1. Isll: Controls cardiomyocyte cell fate, strongly
expressed in multipotent cardiac progenitor cells
(CPCs). Specifies cardiac lineage and differen-
tiation. Interactions with Nkx2-5 and Estrogen
Receptor Alpha suggest potential involvement.

2. Brgl/Baf60 — Smarcd3 Complex: Acts as a tran-
scriptional regulator. Induces CPC proliferation;
defects in this complex lead to differentiation
defects. May collaborate with the Wnt signaling
pathway to promote tumorigenesis.

3. Nkx2-5: Among the earliest cardiac-specific pat-
terning genes, induces cardiac programming in
CPCs. Enhances differentiation; interacts with
Tbx5 and GATA4. Upregulated expression in CM;
potential contribution to CM heterogeneity.

4. GATAA4: Regulates genes crucial for cardiogenesis.
Influences morphogenesis, survival, and differen-
tiation. Reduced expression leads to cardiomyocyte
reversion to a progenitor-like state.
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5. Tbx5: Boosts expression of other cardiogenic TFs.
Enhances CPC differentiation; suppresses non-car-
diac gene expression. May contribute to CM het-
erogeneity.

6. Mef2c: Contributes to CPC proliferation; forms
complexes with key cardiac TFs. Involved in car-
diac morphogenesis; enhances differentiation. May
collaborate with Wnt and Isll in generating CPC-
like states.

7. HAND1/2: Regulates cardiogenesis; enhances pro-
liferation with Nkx2-5 and differentiation with
GATA4. May act as a tumor suppressor; possibly
downregulated in CM development.

8. MYOCD: Regulates CPC growth arrest. Governs
CPC stemness. May contribute to CM’s benign
nature and rarity.

9. MSX2: Interacts with HAND1/2 to regulate gene
expression. Enhances CPC proliferation. May pro-
mote progenitor-like states in advanced CM.

10. HOPX: Expressed as CPCs commit to cardiomyo-
cyte fate. Enhances cardiomyocyte differentiation;
acts as a tumor suppressor. Downregulation may
contribute to CM development.

11. Wnt Signaling Pathway: Involved in CPC renewal
and maintenance. Enhances CPC stemness; con-
tributes to cardiomyocyte dedifferentiation in CM
development.

12. FGF Signaling Pathway: Drives stem cell differen-
tiation into CPCs. Forms complexes regulating dif-
ferentiation and proliferation; dysregulation may
reverse cardiomyocytes toward progenitor-like
states in CM development.

13. BMPs: Downregulates progenitor genes in CPCs.
Enhances cardiomyocyte differentiation. Downreg-
ulation may contribute to CM.

14. Notch Signaling Pathway: Participates in cardiac
morphogenesis. Regulates cardiomyocyte prolifera-
tion and differentiation. May collaborate with Isl1
and Mef2c in CM development.

Based on the objectives of the study, the comprehensive
exploration of key genes, TFs, and signaling pathways is
given below. It is capable of offering valuable insights into
their roles in cardiogenesis, proliferation, differentiation,
and their potential contributions to the development of
cardiac myxomas.

Table 1 presents an overview of cardiac genes, tran-
scription factors, and signaling pathways, shedding light
on their pivotal roles in cardiogenesis, proliferation/ dif-
ferentiation, and their possible role in involvement in
Cardiac Myxoma (CM) development.

Table 2 shows a classification of the cited references,
offering insights into the topics covered by each study,
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their categorization in terms of histopathology, human
samples, or clinical details, and their relevance to this
study.

Key cardiac transcription factors/genes

In this section, this study investigates cardiac myxoma
through the lens of developmental biology [152, 153].
The CPCs are multi-lineage cells with major expression
of Nkx2-5 and IslI [154, 155]. By increasing the gene
expressions of BMP signaling pathway and downregu-
lating Wnt pathway, the CPCs begin to differentiate into
cardiomyocytes [156]. The Is/1 and Nkx2-5 TFs act via
activating cascade of downstream cardiac genes in time
specific manner [58].

It is important to note that Is/I is a pioneering Tran-
scription factor (PTF) of cardiomyocyte cell fate. As Is/I
expression begins to decline, the HOPX becomes upregu-
lated [157]. The Nkx2-5 has very strong interactions with
HOPX as it acts as a downstream regulator of HOPX and
governs its gene expression. The HOPX is expressed in
cardiomyoblast and is very important in the process of
differentiation as it is also expressed in pre-cardiac meso-
derm. HOPX positively interacts with BMPs, SMADs and
negatively with Wnt-signaling and Axin2 signaling path-
way. The Wnt-pathway and Axin2 oppose differentiation
of CPCs [158].

In CPCs, the Nkx2-5 expression continuously increases
over the duration of differentiation. When HOPX is
defective, Wnt-pathway becomes upregulated and this
downregulates Nkx2-5. Normally, the BMP-SMAD com-
plex is activated by HOPX. This downregulates WNT-
signaling pathway and promotes differentiation of CPCs
towards cardiomyocyte development. This BMP-SMAD
complex increases MSX1 expression to promote differen-
tiation and downregulates Axin2 [159].

Islet1

Role in cardiogenesis

Islet1 (Isl1) plays the role of a PTF in epigenetic control of
cardiomyocyte cell fate [25]. This also governs epigenetic
programming and shapes chromatin landscape. It works
with additional regulatory factors to specify cell lineage
and cardiac differentiation [26]. Is/1 governs a regulatory
network of genes that is involved in unfolding cardiac lin-
eage [27]. It is transiently expressed in CPCs including
atrial area and is involved in their proliferation, survival
and migration [28]. When Is/I is defective, cardiac devel-
opment gets disrupted. s/ expression is greater before
progenitor cells differentiate into heart tube [29].

Proliferation-related roles
Isl1 is one of the earliest genes expressed in the cardiac
progenitors. Is/] interacts strongly with Thx1 and both
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are strongly expressed in multipotent CPCs [30, 31]. It
also has major interaction with Waut-signaling pathway.
Isl1 also works with FGFIO to promote proliferation of
progenitor cells [32]. IslI expression also plays impor-
tant roles in the neural crest cells, and in heart, in which
the progenitor cells expressing Is/1 are capable of differ-
entiating into cardiomyocytes, endothelial and smooth
muscle lineage [33]. The CPCs also maintain expression
of Is/1 in postnatal state. The Is/1 expression is essential
in renewal of cardiac progenitors. Prior to differentiation,
the gene expression of Is/1 contributes to proliferation of
CPCs [34, 35].

Key interactions with tumor suppressors/
differentiation-related genes

IslI sets in motion the gene expression of Brgl- Baf60
which contributes to commit CPCs towards cardio-
myocyte fate. The cardiac differentiation-related genes
downregulate the expression of genes involved in the
maintenance of progenitor-like state in CPCs. Nkx2-5
promotes the process of differentiation, and downregu-
lates the gene expression of Isl/1 [36]. GATA4 activates
Isl1 enhancer. The BMPs downregulate the gene expres-
sion of IslI and ThxI to increase myocardial differentia-
tion [37].

Contributions to combinatorial code/ cell type specific
genetic-programming

The induction of cell type specific genetic-programming
needs PTFs such as Is/I which works with other special
TFs to form combinations which determine the final cell
type and regulate the process of cardiomyocyte develop-
ment [38, 39].

Presence in other tumors

Upregulated expression of IslI is present in many can-
cers including pheochromocytoma, pancreatic, gastroin-
testinal, lung tumors, bile duct carcinoma, prostate and
breast cancers. Isll expression is also present in insu-
linoma cells, bladder cancer, Non-Hodgkin lymphoma,
glioma, melanoma and others [160-163]. Is/I is a novel
regulator of cyclins and c-myc gene. This also emphasizes
the role of Isl1 in tumor development [164].

Possible role in cardiac myxoma

Despite being very similar to multipotent CPCs, CM
are c-kit positive but very rarely Is/I positive [40]. As the
Nkx2-5 has been found to be involved in CM develop-
ment, its role in interacting with Is/I is very significant.
Possibly, the influence of Nkx2—5 over the genetic land-
scape in cardiac myxoma prevents the progression of car-
diac myxoma cells towards malignant state [41, 42].
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Isl] and GATA4 also interact with Estrogen Receptor
alpha. This may be a contributing factor in the develop-
ment of more cardiac myxoma cases in female patients
[43-45].

Summary: unraveling the multifaceted roles of Isl1

Isll is a pivotal player in cardiogenesis, orchestrating
cardiomyocyte cell fate by shaping the epigenetic land-
scape and interacting with regulatory factors. It forms a
network of genes that guide cardiac lineage development,
with transient expression in cardiac progenitor cells,
influencing proliferation, survival, and migration. Mal-
functions in Isll disrupt cardiac development. It inter-
acts strongly with Tbx1, the Wnt pathway, and FGF10 to
promote progenitor cell proliferation and differentiation
into various cardiac cell types. Isll also influences car-
diomyocyte commitment by partnering with Brgl-Baf60.
Its interactions with differentiation-related genes such as
Nkx2-5, GATA4, and BMPs, drive myocardial differenti-
ation. Isl1 collaborates with other transcription factors to
determine final cell types, and its upregulated expression
is found in various cancers. Despite its presence in multi-
potent cardiac progenitor cells, Isll is rarely expressed
in cardiac myxomas, possibly influenced by Nkx2-5,
GATAA4, and Estrogen Receptor alpha interactions.

Brg1/Baf60 - Smarcd3 complex

Role in cardiogenesis

It is massively expressed in early stage of cardiac devel-
opment [46]. Its defects exhibit cardiac morphogenetic
defects as it acts as transcriptional regulator. It promotes
progenitors towards cardiomyocytes, whereas its over-
expression has been found to accelerate the activation of
cardiac lineage-related target genes [47, 48].

Proliferation-related roles

When this complex is under the influence of Waut-sign-
aling, it contributes to epithelial-mesenchymal transition
(EMT). The Baf60 is capable of inducing proliferation in
progenitor cells, but with SMARCD3 complex its func-
tion becomes so much different and it contributes to
cardiac differentiation. In neural progenitors, it interacts
with notch to promote proliferation [49, 50].

Key interactions with tumor suppressors/
differentiation-related genes

It mediates interactions with core cardiac TFs including
Tbx5, Nkx2-5 and GATA4. Specifically, it promotes the
binding of GATA4 and Tbx5 to cardiac specific genes,
thus inducing downstream regulatory networks. The pro-
cess of cardiac differentiation becomes defective when
there are defects in this complex [51]. SMARCDS3 is also
considered to play a TS role [52, 53].
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Contributions to combinatorial code/ cell type specific
genetic-programming

This complex when combined with GATA4 and ThxS5, is
capable of switching on the cardiac gene expression in
non-cardiac regions. It is capable of driving mesenchy-
mal cells to develop into cardiomyocytes. This complex
has major interactions with GATA4 to turn on cardiac-
specific gene expression [54] Then it combines with Thx5
to repress the gene expression of non-cardiac genes. This
complex has considerable control over cardiac differen-
tiation and may have fundamental influence over cardiac
regeneration potential, as it is one of the key parts of car-
diac-specific cell programming [55].

Presence in other tumors

Brgl/Baf60 — Smarcd3 complex plays multiple roles in
different cancers depending on the microenvironment
and also influenced of predominant signaling pathways
such as Wnt, TGE- beta and MAPK. In colorectal cancer,
it works with Wnt-pathway to promote metastasis. On
the contrary, it acts as a possible TS in breast cancer [56,
57,165, 166].

Possible role in cardiac myxoma

There is not much data about the role of this complex
in CM. The role that this gene complex plays is variable
and is also dependent on the gene expression of other key
regulatory genes/TFs and signaling pathways. Waut-sign-
aling is involved in the proliferation of progenitor cells,
but in the presence of GATA4 and Thx5 it promotes the
differentiation of cardiomyocytes. Baf60 complex works
by interacting with genes/TFs involved in governing the
gene expression of CPCs. Similarly, in CM development
the expression of Baf60 complex may promote tumori-
genesis because of the dysregulated expression of genes/
TFs involved in progenitor-like state, that is hallmark of
CM.

Summary: unraveling the multifaceted roles of Brg1/
Baf60-Smarcd3 complex

The Brgl/Baf60-Smarcd3 complex plays a pivotal role
in cardiogenesis by acting as a transcriptional regula-
tor expressed early in cardiac development. It promotes
progenitors’ transition to cardiomyocytes, and its over-
expression accelerates the activation of cardiac lineage-
related genes. When influenced by Wnt-signaling, it
contributes to epithelial-mesenchymal transition (EMT)
and cardiac differentiation, interacting with key regula-
tors like Tbx5, Nkx2-5, and GATA4. This complex can
reprogram non-cardiac regions into cardiac gene expres-
sion, affecting cardiac-specific cell programming. In
various cancers, its roles vary depending on microenvi-
ronment and signaling pathways. While little is known
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about its role in cardiac myxoma, its interactions with
regulatory genes and signaling pathways may influence
tumorigenesis by affecting progenitor-like states, a hall-
mark of CM.

Nkx2-5

Role in cardiogenesis

The TF Nkx2-5 is among the very first cardiac specific
patterning genes in cardiac development. The site of its
expression, the heart forming region plays key roles in
cardiac specification, differentiation and proliferation
[56]. It is one of the four key regulators of cardiac cell
type. It is expressed in precursor cardiac cells and leads
to proper cardiac development. It decides atrial and ven-
tricular fate and defects in the gene can lead to congenital
heart defects [57].

Proliferation-related roles

This gene is of key significance as it results in a cascade
of downstream signaling and induces the cardiac pro-
gramming in pluripotent mesenchymal stem cells. It is
dependent on JAK-STAT pathway. The TF Nkx2-5 con-
trols cardiomyocyte differentiation by working with
Mef2c, which is a key enhancer of Nkx2-5 [58]. The most
significant aspect of this TF related to the etiology of car-
diac myxomas is that Nkx2-5 is first expressed in CPCs
and its gene expression is downregulated temporarily
during cardiomyocyte differentiation [167]. However,
a constant low level of Nkx2—5 gene expression persists
throughout life. It is involved in the induction of initial
but not late phases of cardiomyocyte development [59].
Moreover, it interacts with notch signaling pathway to
promote proliferation of CPCs. The final determination
of cardiovascular lineages is regulated by Nkx2-5 in the
earliest specified multipotent cardiac progenitors. Early
multipotent cardiovascular progenitor cells expressing
Nkx2-5 give rise to endothelial lineages, smooth muscles
cells and cardiomyocytes [60].

Key interactions with tumor suppressors/
differentiation-related genes

Nkx2-5 has major interactions with GATA4 and Thx5.
It establishes a positive feedback loop with GATA4 and
interacts with Thx5 to enhance the differentiation of
CPCs into cardiomyocytes. It directs cardiac looping by
working with MEF2c, Handl and Hand2 [61]. Working
with Nkx2—-7, Nkx2-5 is involved in maintenance of car-
diomyocyte cellular identity. The expression of Nkx2-5 is
very significant during cardiomyocyte differentiation, as
it acts as a repressor of FGF10 and Isl1 to enhance dif-
ferentiation [62]. Nkx2-5 enhances cardiac phenotype
by antagonizing TBX1I which is involved in the prolifera-
tion of CPCs [63]. Nkx2-S5 interacts with BMP signaling
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pathway to enhance differentiation. As Nkx2-5 is a car-
diac-specific patterning TF, its expression represses non-
cardiac genes while inducing the gene expression of
cardiogenic genes. The presence of Nkx2-5 expression
sets controls in cardiac cells that give them cell type-
specific features such as the permanent nature of cardiac
cell type. TF Nkx2-5, working as master regulator of car-
diac development, induces a cascade of regulatory and
developmental genes [64]. This sets in motion the cell
type-specific combinatorial code that governs cardiomy-
ogenesis. In post-natal cardiomyocytes, it is needed for
proper functioning. NPCEDRG is a novel tumor suppres-
sive gene and has potential binding sites for Nkx2-5, thus
inducing cell differentiation, controlling cell growth and
regulating the cell cycle. Nkx2-S5 influences and regulates
gene activity of HOPX to modulate cardiac gene expres-
sion. HOPX has a potential tumor suppressive activity
[65].

Contributions to combinatorial code/ cell type specific
genetic-programming

Nkx2-5 sets in motion a cascade of combinatorial genetic
interactions that govern the genetic programming of car-
diogenesis. The Nkx2-5 based early patterning sets stage
for BMP and Notch based gene expression. The defects
in Nkx2-5 expression down-regulate BAMPs and Notch
signaling pathway, resulting in the disruption of cardio-
genesis [66]. TF Nkx2-5 auto-regulates itself and is fur-
ther mainly regulated by GATA4 and SMAD proteins.
Its expression is also dependent on Is/I. In the induction
of the TF Nkx2-5, the expression of BMP2/4 is required
and the activity of Wnt-pathway is inhibited. The Want-
signaling negatively impacts the TF Nkx2-5 gene expres-
sion, hence must be inhibited. The BMPs induces the
FGF8 signaling to promote the development of car-
diac proteins. Nkx2-S5 is involved in the upregulation of
HANDI and HAND?2, resulting in the differentiation and
proliferation of cardiac cells [67]. The TF Nkx2-5 also has
major interactions with p53, FGF16 and FGF10. Through
its interactions, it controls proliferation and differentia-
tion [68].

Presence in other tumors

The role of Nkx2-5 varies in different microenviron-
ments; it may promote both proliferation and differen-
tiation in different situations. Nkx2-5 is dysregulated
in acute lymphoblastic leukemia (ALL), hepatocellular
carcinoma (HCC), and T cell neoplasias, methylated
in prostate adenocarcinoma, hyper-methylated in sali-
vary gland adenoid cystic carcinoma [168]. Some other
significant roles of Nkx2-5 in other tumors include
its interactions with Mef2c¢ in ALL, with Notch3 in T
cell leukemias, dysregulated Nkx2-5 expression in

Page 25 of 46

sarcomas and hypermethylation of Nkx2-5 in breast,
prostate and colon cancer [169]. It is expressed in
papillary thyroid carcinoma (PTC) and reduces the
expression of thyroid differentiation markers. There is
age-related Nkx2—5 methylation in normal prostate tis-
sues and may predispose to prostate adenocarcinoma
[170, 171]. In ALL, Nkx2-5 has direct interactions with
GATA genes and Mef2c oncogenic expression is influ-
enced by Nkx2-5. The Mef2c expression inhibits apop-
tosis promoting NR4A1/NUR77 expression. Nkx2-5 is
not expressed in hematopoietic stem cells, but in ALL
it contributes to oncogenesis and interacts with BCL11
[172, 173] [174]. ,Importantly, Nkx2-5 deletions cause
thyroid hypoplasia and this signifies its role in survival
and proliferation as well as its various roles in different
microenvironments.

Possible role in cardiac myxoma

Some studies have hinted towards the possible role of
Nkx2-5 in this tumor development [69]. Nkx2.5/Csx,
GATA-4, MEF2, and eHAND are key involved genes in
CMs. Defects in Nkx2-5 cause abnormalities in atrial
growth and development [70]. Nkx2-5, Oct-4, Isl1, and
c-kit are upregulated and this produces cardiac progeni-
tor stem cell-like state.

This study postulates that deviation of cardiomyocyes
from cell type-specific well-differentiated state results in
turning back of the cells into progenitor-like cardiac stem
cells. The hallmark of this process is the upregulation of
Nkx2-5 gene expression. Nkx2—5 has major interactions
with p53 TS gene that also prevents this tumor from
becoming malignant. Cardiomyocytes have very limited
proliferation potential in adult life [71]. This nature of
cardiomyocytes is governed by the cell type-specific pro-
gramming that also restricts the proliferative potential of
this cell type after completion of cardiogenesis. Nkx2—5
exerts vast control over proliferation. It has been found
that it has wide range of functions depending on where it
is expressed, as it enhances the gene expression of Mes-
enchymal Stem Cells (MSCs) in transplant patients and
controls CPC proliferation [72].

The heterogeneity that exists in CM may be a conse-
quence of the multitude of roles that Nkx2-5 and other
key genes/TFs and signaling pathways play in differ-
ent microenvironments and in different cell types. Their
dysregulations result in the deviation of cells away from
cell type-specific gene expression. As the cardiac-specific
combinatorial code based functioning of TFs gets dys-
regulated, the direction of lineages deviates from one to
multiple cell types suggesting a significant role of these key
genes/TFs and signaling pathways in the developmental
process.
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Summary: unraveling the multifaceted roles of Nkx2-5
Nkx2-5, a pivotal player in cardiogenesis, orchestrates
the early patterning of cardiac development, decid-
ing atrial and ventricular fate. It controls cardiomyo-
cyte differentiation through the JAK-STAT pathway
and interacts with Mef2c to induce downstream signal-
ing. Nkx2-5 promotes proliferation in cardiac progeni-
tor cells (CPCs) by interacting with the Notch signaling
pathway. In various tumors, Nkx2-5’s role varies, con-
tributing to both proliferation and differentiation. This
transcription factor’s presence in cardiac myxomas may
relate to reprogramming cardiomyocytes into progeni-
tor-like stem cells. Nkx2—5’s control over proliferation
is vital in governing the limited proliferative potential of
cardiomyocytes. Dysregulation of Nkx2-5 and other key
genes/TFs and signaling pathways contributes to the het-
erogeneity in cardiac myxomas and their deviation from
well-differentiated states, emphasizing their significance
in cardiac tumor development.

GATA4

Role in cardiogenesis

GATA4 is a very important regulator of genes in the pro-
cess of development. It plays a key role in the process
of myocardial differentiation. The GATA4 also plays an
essential role in testicular development. The key inter-
actions include Nkx2-5, TBX5, SRE HAND?2, HDAC?2,
Erbb3, FOG-1 and FOG-2 [73, 74].

Proliferation-related roles

GATA4 plays a significant role in morphogenesis and
promotes cardiomyocyte survival. When GATA4 is
deleted or defective, Erb and Erk expression is down-reg-
ulated. They both normally play key role in EMT. GATA4
down-regulates the c-myc gene expression to promote
differentiation process in cardiomyocytes during devel-
opment. It also regulates hypertrophic growth of heart.
Although GATA4 interacts with p53 and p21, it also
works with Bcl2. This GATA4-Bcl2 interaction promotes
cardiomyocyte survival [75, 76].

Key interactions with tumor suppressors/
differentiation-related genes

It is expressed in both embryonic and adult cardiomyo-
cytes. It regulates the gene expression of many down-
stream cardiac genes. It also maintains the cardiac
function in adult heart. GATA4 is an important regulator
of terminal differentiation program in cardiomyocytes. It
antagonizes c-myc to limit the replication potential. Mul-
tiple studies have suggested that damage to GATA4 also
damages the Tbx5. This damage also contributes to con-
genital heart defects [77]. GATA4 plays a very significant
role in differentiation process also by governing genes
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associated with cell-to-cell adhesion, cytoskeleton organ-
ization and extracellular matrix dynamics; this promotes
them to become more differentiated and less proliferative
[78]. It interacts with p53 and p21, which have TS effects.
It is important to note that GATA4 interacts with CD40L
and this way it is capable of inducing senescence. GATA4
also acts as a switch to activate NF-xB signaling [79].

Contributions to combinatorial code/ cell type specific
genetic-programming

GATA4 works with other key cardiac TFs including
Nkx2-5 and Thx5. GATA4 is considered to be a key
regulator of cardiac phenotype. It has upstream interac-
tions with BMP, FGF and Whnt signaling pathways [175].
The significance of GATA4 can also be estimated from
the fact that when ectopically its expression is induced
together with Thx5 and SMARCD3, this is capable of
inducing genetic programming of cardiomyogenesis in
non-cardiac regions of embryo. GATA4 regulates Mef2c
expression and acts also as IslI enhancer. Note that
GATA4 which is primarily involved in cardiomyocyte dif-
ferentiation interacts with Mef2c and Is/1 both of which
are involved in regulating progenitor and proliferation-
related genes in CPCs [176]. Both GATA4-Thx5 and
Mef2c-Tbx5 work by triggering the gene expression of
subsequent downstream cardiomyocyte-specific genes.
GATA4 and Tbx5 are considered key regulators of car-
diac gene regulatory networks. Nkx2—-5 — GATA4 com-
plex also plays role in cardiac hypertrophy in response to
stretch. This complex interaction also governs the release
of Atrial and Brain Natriuretic Peptides [177].

Presence in other tumors

In lung cancer, it plays the role of TS, as it down-regu-
lates the Wnt7b and TGF-beta. The presence of SMAD4
and GATA4 is considered to be related to poor-prognosis
in esophageal adenocarcinoma. Similarly, GATA4 is also
upregulated in pancreatic cancer and other cancers. Dif-
ferent models have shown that upregulation will increase
the process of differentiation [178]. However, it fails to
halt or reduce proliferation in tumor microenvironments
[179, 180]. In ALL, GATA4 has been associated with
increased proliferation and inhibition of apoptosis. The
predominant effect of specific genes and signaling path-
ways that are governing the landscape of a tumor may
undermine the specific function of many differentiation-
related genes [181, 182].

Possible role in cardiac myxoma

Primitive cardiomyocyte TFs have been detected in CM
including GATA4, Mef2c, Nkx2-5 and eHAND [80]; they
are slightly or even intensely positive in cardiac myxoma
samples. In many samples, GATA4 gene expression was
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dysregulated. Decline or disruptions in gene expression
of key regulatory differentiation genes such as GATA4
may have drastic impact on the overall genetic com-
position of differentiated cardiomyocytes. Such altera-
tions can disrupt the delicate cell type-specific balance
of expression among different types of genes/signaling
pathways. This may contribute to switch the cells more
towards a progenitor-like state, that is a hallmark of CM
[81].

Summary: unraveling the multifaceted roles of GATA4
GATA4, a critical regulator in cardiogenesis, governs
myocardial differentiation and is essential in testicular
development. It interacts with various factors, including
Nkx2-5, TBX5, SRF, HAND2, HDAC2, Erbb3, FOG-1,
and FOG-2. GATA4 promotes cardiomyocyte survival,
morphogenesis, and hypertrophic growth while down-
regulating c-myc expression. It interacts with multi-
ple tumor suppressors like p53 and p21. GATA4’s role
extends to cardiac phenotype regulation, influencing
BMP, FGEF, and Wnt signaling pathways. It can induce
genetic programming of cardiomyogenesis in non-
cardiac regions. In tumors, GATA4 may have variable
effects, acting as a tumor suppressor in lung cancer but
upregulated in pancreatic cancer. In cardiac myxoma,
alterations in GATA4 expression may shift cells toward
a progenitor-like state, disrupting cell type-specific gene
balance.

Thx5

Role in cardiogenesis

Tbx5 is one of the key regulators of cardiogenesis. It is
involved in promoting differentiation of CPCs into car-
diomyocytes. It interacts with NKX2-5, GATA4 and BAF
remodeling complex. Studies in which Thx5 was deleted
by CRISPR/Cas9 editing, showed that the cells main-
tained stem cell-like pluripotent state [82, 83]. Thx5 is
a key player in switching CPCs towards developmental
gene expression by inducing differentiation into cardio-
myocytes. Mutations in this key TF contribute to Atrial
Septal Defect (ASD). It is essential for the development
of heart and limbs. It is expressed in the embryonic, adult
heart and in the endocardium of left ventricle [84—86].

Proliferation-related roles

In the ventricle, Tbx5 expression originates from the FHF
but atrial gene expression originates from Mef2c in the
SHE. Mef2c plays very important role in the proliferation
of CPCs [87]. Thx5 works with SHH in the formation of
atrial septum. The TF Thx5 has a very strong relation-
ship with Nkx2-5, and Tbx5 — Nkx2-5 complex contrib-
utes to the process of cardiomyocyte differentiation. This
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complex also prevents activation of non-cardiac genes
88, 89].

Key interactions with tumor suppressors/
differentiation-related genes

Tbx5 is mutated in Holt-Oram syndrome. Thx5 pro-
motes other cardiogenic TFs. It is strongly intercon-
nected with GATA4 and damage to GATA4 also damages
Tbx5. The TF Thx5 is so significant for the process of dif-
ferentiation of cardiomyocytes that when it is defective,
this contributes to the apoptosis [90, 91]. Thx5 interacts
with Nkx2-5, GATA4 and BAF60c to drive expression of
cardiac genes. Thx5 also interacts with repressor genes
such as NuRD complex, SALL4 and others to downregu-
late the expression of non-cardiac genes. Moreover, Thx5
induces the expression of downstream genes related to
cardiomyocyte differentiation including NPPA and GJAS.
Just like Thx5-Nkx2-5 complex, Thx5 also forms a com-
plex with GATAS and Mef2c to contribute to the process
of cardiomyocyte differentiation. These partnerships by
Tbx5 play cell type-specific key roles in the process of
development [92—94].

Contributions to combinatorial code/ cell type specific
genetic-programming

Tbx5 works with Nkx2-5 to promote cardiac differen-
tiation. Thx5 shifts the gene expression profile more
towards cardiogenesis and it also plays key role in the
beating of cardiomyocytes. In the entire process of car-
diac development, the gene expression of Tbx5 is main-
tained, whereas it also persists in the adult heart. The key
interactions of Tbx5 include Nkx2-5 GATA4, Baf60c,
and Mef2c in cardiomyocyte development. It also inter-
acts and regulates the gene expression of a cascade of
downstream genes involved in cardiac differentiation.
It inhibits the gene expression of neural and other non-
cardiac cell types in cardiogenesis through Tbx5-NuRD
interaction [183].

Presence in other tumors

Tbx5 inhibits cell proliferation in osteosarcoma. It is
a critical regulator of oncogenesis. It has been found to
suppress proliferation in Non-Small Cell Lung Cancer
(NSCLC), acting as a TS. Even in normal embryonic
developmental processes, its over-expression induces
apoptosis and halts cell development. Tbx5 is epigeneti-
cally inhibited in colorectal cancer [184-186].

Possible role in cardiac myxoma

In the normal heart, the atrial expression of ThxS5 is far
greater than the ventricular and Thx5-Nkx2-5 forms a
complex. This is very important as dysregulated expres-
sion of Nkx2-5 is considered to play a very significant
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role in the development of CM. Thx5 forms key com-
plexes that have a major effect in cell fate of cardiomyo-
cytes, ThxS is involved in activation and maintenance
of cardiac lineage genes as well. It prevents off-target
binding of TFs in cardiac development. Hence, altera-
tions in its gene expression may have profound conse-
quences [95, 96]. It is not expressed in CM; this may
be a defining feature in CM development as Thx5 is
one of the principal regulators of cardiomyocyte dif-
ferentiation. Any dysregulation in Thx5 can trigger a
cascade of destruction by altering the direction of cell
type towards mesenchymal progenitor-like state. In
the development and maintenance of cardiomyocytes,
Tbx5 suppresses the expression of genes involved in
non-cardiac cell types. Hence, the dysregulations in
Thx5 may be a major contributor in the emergence of
heterogeneity in CM.

Summary: unraveling the multifaceted roles of Tbx5

Tbx5 is a vital regulator in cardiogenesis, inducing CPC
differentiation into cardiomyocytes through interactions
with Nkx2-5, GATA4, and the BAF60c complex. Muta-
tions can lead to Atrial Septal Defect (ASD), impacting
heart and limb development. Tbx5 collaborates with
Mef2c in CPC proliferation and prevents activation of
non-cardiac genes. It interacts with GATA4, Nkx2-5,
BAF60c, and Mef2c to drive cardiac gene expression,
playing essential roles in cardiomyocyte development.
Tbx5, together with Nkx2-5, shifts gene expression
toward cardiogenesis and is involved in cardiomyocyte
beating. Dysregulated Tbx5 expression is associated with
cardiac myxoma development, potentially disrupting cell
fate and gene expression, contributing to heterogeneity.
In tumors, Tbx5 inhibits proliferation in osteosarcoma,
acts as a tumor suppressor in lung cancer, and is epige-
netically inhibited in colorectal cancer.

Mef2c

Role in cardiogenesis, contributions to the combinatorial
code/cell type programming and key interactions

Mef2c works with Nkx2-5 in controlling the differentia-
tion of CPCs. GATA4 works also by interacting with both
Mef2c and Isl1, and they both have major roles in prolif-
eration of progenitor cells. The Mef2c forms complexes
with both key differentiation-related genes (GATA4 and
Tbx5) of cardiomyocytes. Mef2c¢ interacts with NF-kB
and downregulates its signaling in multiple cell types in
endothelial cells. The role of Mef2c is significant because
of its individual effect on proliferation and also with the
complexes it forms [97, 98]. Mef2c¢ contributes to activa-
tion of the TF HANDI1 [99, 100].
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Proliferation-related roles

Mef2c is involved in cardiac morphogenesis, myogenesis,
vascular development and neurogenesis. It contributes to
maintaining differentiated state in muscle cells by work-
ing with other regulatory complexes. In hematopoiesis,
ERK expression proportionally controls Mef2c expres-
sion. Mef2c plays oncogenic role in many cancers. One
of the very important interactions of Mef2c includes its
interactions with Thx5 and GATA4. These interactions
are of immense significance as Mef2c also plays key role
in the proliferation of CPCs. The complexes that Mef2c
forms with Thx5 and GATA4, they contribute to switch
the CPCs towards differentiated fate while sustaining the
process of proliferation in cardiac development [101].

Presence in other tumors

Mef2c plays oncogenic role in ALL, Acute Myeloid Leu-
kemia (AML), colon adenocarcinoma, Diffuse Large B
Cell Lymphoma (DLBCL), and T-cell lymphomas. It also
plays oncogenic role in prostate cancer and interacts with
dysregulated notch signaling pathway. In hepatic cancer
cells, it increases proliferative signaling. Mef2c acts as
an essential transcription factor in AML oncogenesis.
It interacts with Sox2 during the process of oncogenesis
in cancer stem cells [187, 188]. CDKN1B deletions fre-
quently coincide with the expression of Mef2c in ALL.
Mef2c also plays oncogenic role in Chronic Myelogenous
Leukemia (CML) and imatinib abrogates its expression.
Common cascade pathways (p38 MAPKs-Mef2c) that
can result in proliferation, differentiation and apoptosis
work with genes IL1R and TGFBR in many breast can-
cer subtypes. Mef2c and Wnt signaling pathway both
regulate SIX1 in Hodgkin Lymphoma. Mef2c exerts
direct control over Socs2 [189]. The normal response of
increased Mef2c expression is upregulation of Socs2. The
Mef2c exerts oncogenic effects on Socs2 in different leu-
kemias such as AML and ALL. Mef2c is also upregulated
in Rhabdomyosarcomas [190-192]. Another important
role of Mef2c is also seen in pancreatic cancer. YY1 acts as
tumor suppressor, suppresses invasion and metastasis of
pancreatic cancer cells by downregulating MMP10 which
is upregulated by Mef2c.

Possible role in cardiac myxoma

Multiple studies have detected Mef2c gene expression
in CM samples. As Mef2c works in the form of com-
plexes with other key regulatory genes/pathways includ-
ing GATA4, Isll, Wnt-pathway, its role is also governed
by microenvironment. It is capable of playing oncogenic
role [102]. When key differentiation-related genes such
as GATA4 become dysregulated, this may have drastic
impact on the functioning of Mef2c which can ultimately
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go on to serve like an oncogene in CM landscape [103].
In such conditions, it may switch to work with Wnt and
IslI resulting in the emergence of CPC-like state that is
hallmark of CM [104, 105].

Summary: unraveling the multifaceted roles of Mef2c

Mef2c collaborates with Nkx2-5, GATA4, Tbx5, and
Isll in controlling CPC differentiation and proliferation
during cardiogenesis. It also forms essential complexes
with key differentiation-related genes. Mef2c is involved
in cardiac, muscle, vascular, and neurogenesis develop-
ment and has interactions with NF-«B. In cancer, Mef2c
plays oncogenic roles in various types, including ALL,
AML, colon adenocarcinoma, lymphomas, prostate, and
hepatic cancers. It interacts with different genes and
pathways in these malignancies. Mef2c expression is
detected in cardiac myxoma (CM) samples, where its role
may be influenced by microenvironment and the dysreg-
ulation of key differentiation genes. This could contribute
to a progenitor-like state, a hallmark of CM.

HAND1/2

Role in cardiogenesis, contributions to the combinatorial
code/cell type programming and key interactions

HANDI/2 is expressed in the adult heart and is down-
regulated in cardiomyopathies, it modulates cardiac
hypertrophy and is also involved in heart, vascular, gas-
trointestinal tract, limb and neuronal development.
Mef2c contributes to the activation of HAND1. HANDI
plays a key role in neural crest development. It also inter-
acts with BMP4 which contributes further to the dif-
ferentiation of cardiomyocytes [106, 107]. It has major
interactions with Nkx2-5 and GATA4. It encourages
proliferation with Nkx2-5 and when it interacts with
GATA4, it affects differentiation of cardiomyocytes. It is
important to remember that it also has a TS effect [108,
109].

Presence in other tumors

HAND? also acts as TS. It is downregulated in many
tumors such as NSCLC and other cancers including
ovarian, breast, gastric, colorectal, cervical, endometrial,
prostate and esophageal squamous cell cancer [193]. But
in the micro-environment of HCC it promotes tumor
development. In the normal liver, the gene expression of
HAND? is undetectable. But in some samples of HCC, it
has been found downregulated. In HCC, HAND? inter-
acts with BMP signaling cascade. Due to limitations of
data on this role of HAND?2, it is not possible to draw
concrete conclusions about the role of HAND2 in HCC
[194]. HAND2 negatively regulates TGFbeta, ROCK2
and JAK-STAT pathway [195, 196].
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Possible role in cardiac myxoma

Detected in many but not all cases of CM. It is consid-
ered to be involved in the development of CM [110].
HANDI1/2 acts as TS. Thus, it may have a possible con-
tributing role in limiting the regenerative potential of
cardiomyocytes and may have a contributing role in the
benign nature of CM. This may also prevent the emer-
gence of primary malignant tumors in cardiomyocytes.

Summary: unraveling the multifaceted roles of HAND1/2
HAND1/2 is expressed in the heart tissues, modulating
cardiac hypertrophy. It also contributes to the vascular,
gastrointestinal tract, limb, and neuronal development.
It interacts with Mef2c and BMP4, promoting cardio-
myocyte differentiation. HAND1/2 plays pivotal roles
by interacting with Nkx2-5 and GATA4: it encour-
ages proliferation alongside Nkx2-5 and promotes dif-
ferentiation with GATA4, while also acting as a tumor
suppressor (TS). In other cancers, HAND2 acts as a
TS, downregulated in numerous cancer types, includ-
ing NSCLC, ovarian, breast, gastric, colorectal, cervical,
endometrial, prostate, and esophageal squamous cell
cancer. However, in hepatocellular carcinoma (HCC), it
may promote tumor development, interacting with the
BMP signaling cascade. In cardiac myxoma, HAND1/2 is
detected in many cases, potentially limiting cardiomyo-
cyte regenerative potential, contributing to the benign
nature of CM, and preventing primary malignant tumors
in cardiomyocytes.

MYOCD

Role in cardiogenesis, contributions to the combinatorial
code/cell type programming and key interactions

Mostly MYOCD works with p16 against the TGF-beta
signaling, it induces growth arrest and also inhibits cel-
lular proliferation by inhibiting NF-xB signaling. This
is important because MYOCD-SRF axis forms a major
complex with Mef2c to exert control on cardiac pro-
genitors. This is involved in cardiomyocyte survival and
maintenance of heart function. When MYOCD is defec-
tive, pro-apoptotic factors take over the control of car-
diomyocytes. MYOCD is also involved in maintaining
cardiac structural organization [111-113]. It interacts
with Nkx2-5 to enhance proliferation. But proliferation is
downregulated when SMAD3 gene expression is present.
MYOCD also interacts with NFAT, HNRNPA1, SRF and
Mef2c to enhance proliferation.

Role in proliferation, differentiation and in some other
tumors

It inhibits stemness in NSCLC as it is an essential TS. It
is downregulated in lung squamous cell carcinoma and
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lung adenocarcinoma. It inhibits stemness by inhibit-
ing TGF-beta receptor signaling. The SRE-MYOCD axis
is driver of well-differentiated leiomyosarcoma [197].
But MYOCD functions are also governed by the interac-
tive complexes it forms with key regulatory genes. When
MYOCD forms an interactive loop with SMAD3/4, it
derives TGF-beta based Epithelial mesenchymal transi-
tion (EMT) [198, 199]. MYOCD, which also has TS effect,
is repressed through proliferative signaling by FOXO3A
and KLF4/KLFS. The TS P53 also has a dose depend-
ent regulatory repressor effect on MYOCD. GSK3-beta
can inhibit MYOCD-dependent cardiac gene expres-
sion. The activators of MYOCD include p300. MYOCD
is also inhibited by its ERK1/2 based phosphorylation
[200-203].

Possible role in cardiac myxoma

There are no proper data on the role of MYOCD in CM.
But it may have a possible significant role in the process
of cardiac tumorigenesis. Based on its interactions with
key TFs and its role in inhibiting the stemness-related
progenitor genes and signaling pathways, MYOCD may
have a profound role in preventing the occurrence of pri-
mary tumors in cardiac tissue. As it works together with
Nkx2-5 which is expressed in CM cells, MYOCD may
have a role in maintaining the benign nature of cardiac
myxoma and in preventing the occurrence of malignant
tumors in cardiac tissue.

Summary: unveiling the multifaceted roles of MYOCD
MYOCD primarily collaborates with p16 to counteract
TGEF-beta signaling, inducing growth arrest and inhib-
iting cellular proliferation. Through the MYOCD-SRF
axis, it forms a significant complex with Mef2c, impact-
ing the regulation of cardiac progenitors, enhancing car-
diomyocyte survival, and maintaining heart function.
Defects in MYOCD may lead to the dominance of pro-
apoptotic factors, disrupting cardiomyocyte regulation
and cardiac structural organization. Concerning prolif-
eration, MYOCD interacts with Nkx2—-5 to enhance it
but downregulates when SMAD3 is present. Inhibitory
interactions with NFAT, HNRNPA1, SRE, and Mef2c also
contribute to proliferation. MYOCD acts as a tumor sup-
pressor by inhibiting stemness in non-small cell lung car-
cinoma (NSCLC), downregulated in lung squamous cell
carcinoma and lung adenocarcinoma. Although the role
of MYOCD in cardiac myxoma is not well-documented,
it may play a crucial part in preventing primary tumors in
cardiac tissue. Its interactions with key TFs and its influ-
ence on inhibiting stemness-related genes and signaling
pathways could contribute to maintaining the benign
nature of cardiac myxoma and preventing malignant
tumors in cardiac tissue.
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MSX2

Role in cardiogenesis, contributions to the combinatorial
code/cell type programming and key interactions

In cardiogenesis, MSX2 interacts with HANDI1/2 and
they regulate the gene expression of each other. MSX2
regulates survival of SHF precursors by protecting them
against apoptosis. It also makes sure that there are no
excessive proliferations of cardiac cells, cardiac neural
crest cells and endothelial cells. It acts more as a regu-
lator by interacting with both proliferation-related genes
and differentiation related genes. MSX1/2 are required
for EMT of atrioventricular cushions and patterning of
atrioventricular myocardium [114-116].

Role in proliferation, differentiation and in some other
tumors

MSX2 functions to maintain a balance between survival
and apoptosis. Its upregulation enhances malignant phe-
notype [204, 205]. It also acts as transcriptional repressor.
It induces EMT in pancreatic cancer [206]. MSX2 work-
ing with RAS promotes cell growth. MSX2 is downstream
target of RAS. The MSX2 expression is upregulated in
diabetes and colorectal cancer [207, 208]. The MSX2
interacts with SOX2 to control cancer stem cell-like
characterization in oral squamous cell carcinoma (SCC).
MSX2 represses tumor stem cell phenotypes by SOX2
dysregulations in SCC [209]. The in vitro expression of
MSX2 has been found to inactivate AKT pathway to pro-
mote cell cycle arrest and apoptosis [210].

Possible role in cardiac myxoma

There are no proper data on the role of MSX2 in CM. As
its function is dependent on its interactions and cross-
talk, it also varies with microenvironment. Hence, in CM
its role is more likely to be dependent on tumor microen-
vironment. Such as in advanced CM, it may possibly con-
tribute to tumorigenesis by promoting progenitor-like
state.

Summary: unraveling the multifaceted roles of MSX2

MSX2 regulates gene expression with HAND1/2 in car-
diogenesis, ensuring survival of SHF precursors and pre-
venting excessive proliferation. It balances survival and
apoptosis in proliferation, with upregulation enhancing
malignancy. In diabetes and colorectal cancer, MSX2 is
upregulated. MSX2 interacts with SOX2 in oral SCC to
control cancer stem cell-like traits. In cardiac myxoma,
MSX2’s role depends on the tumor microenvironment,
potentially promoting a progenitor-like state in advanced
cases.
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HOPX

Role in cardiogenesis, contributions to the combinatorial
code/cell type programming and key interactions

HOPX is expressed when CPCs become committed to
cardiomyocyte fate. The niche signals help regulate the
committed state. It interacts with activated SMADS to
repress Wnt-signaling pathway [117]. It switches the cells
more towards differentiated fate of cardiomyocytes by
promoting local BMP signals to inhibit Wnt-signaling
pathway, thus promoting cardiomyogenesis [118, 119].

Role in proliferation, differentiation and in some other
tumors

HOPX inhibits Wat-signaling; this causes HOPX to trig-
ger stem cell quiescence and also explains the role of
HOPX as TS by acting as RAS inhibitor. The downregula-
tion of HOPX expression contributes to colorectal, head,
neck and other cancers. It plays a critical role in cell type
homeostasis [211-213].

Possible role in cardiac myxoma

There are no proper data on the role of HOPX in CM. The
dysregulations in HOPX may possibly serve to contrib-
ute towards CM development. The downregulation in its
gene expression may alter the genetic landscape of car-
diomyocytes as HOPX plays key roles in differentiation
and also acts as a TS. HOPX dysregulations may lead to
switching the gene expression in the direction of progeni-
tor-like state, as it is present in CPCs.

Summary: unraveling the multifaceted roles of HOPX

HOPX is expressed during CPC commitment to cardio-
myocytes, interacting with activated SMADS to repress
Wnt signaling, promoting cardiomyogenesis. It inhibits
Whnt signaling and serves as a tumor suppressor (TS) by
inhibiting RAS. Downregulation of HOPX contributes to
various cancers. In cardiac myxoma (CM), HOPX’s role
remains unclear, but its dysregulation may influence CM
development by altering the genetic landscape, poten-
tially pushing gene expression toward a progenitor-like
state present in CPCs.

Key cardiac signaling pathways

Wnt signaling pathway

Role in cardiogenesis and key interactions

Wt plays a very important role in cardiac development
also by contributing to planar cell polarity in cardiogen-
esis. The Whaut-signaling is also involved in adult heart
remodeling. It also contributes to cardiac hypertrophy
and increases ANP gene expression. Reduced Wnt lev-
els have been linked to premature myocardial infarction.
Wnt3a is involved in cardiac progenitor renewal. This
pathway is involved in cardiogenesis and cardiac disease
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development [120, 121]. Whnt-signaling pathway pro-
motes fibrosis in cardiac repair. This is a very important
factor in defining the limitations of cardiac regeneration.
The Secreted frizzled-related protein (SFRP) based down-
regulation of Wnt/beta-catenin is cardio-protective as it
inhibits fibrosis and inflammation. This impact of SFRP
gene expression causes EMT in post myocardial infarc-
tion state. The Wnt/beta-catenin pathway promotes
proliferation in CPCs and its inhibition promotes differ-
entiation [122, 123].

Role in proliferation, differentiation and in tumorigenesis
This pathway contributes to stemness in hematopoietic
stem cells. In cancers, abnormal Whut-signaling contrib-
utes to the maintenance of cancer stem cells. Wnt/beta-
catenin is upregulated in ALL and Chronic lymphocytic
leukemia (CLL). It interacts with Notch signaling too in
cancer microenvironment. The APC TS also plays impor-
tant role in regulating this signaling pathway. Inhibiting
Wht-pathway increases apoptosis in CLL [214-216]. In
melanoma, it promotes tumor growth through abnor-
mal Wnt5a. It is also upregulated in breast cancers and
its upregulation silences its repressors [217, 218]. The
loss of PTEN TS and c-myc amplifications are linked to
abnormal Wat-signaling. In tumorigenesis, this pathway
derives tumor development [219].

Whnt/beta-catenin pathway has massive influence over
other key genes such as TSs including Numb and it is
capable of repressing the numb gene expression. This
results in the maintenance of cancer stem cells. This is
also one of the mechanisms for immune evasion by can-
cer stem cells. This pathway is also involved in EMT and
is upregulated in colorectal cancer, prostate, pancreatic
and many other cancers [220, 221].

Possible role in cardiac myxoma

When Whnt-signaling pathway is disrupted, it contributes
to upregulation of the gene expression of progenitor-like
signatures [124]. Wnt/beta-catenin maintains telomeres
through Telomerase Reverse Transcriptase (TERT) gene.
When this signaling pathway combines with NF-xB sign-
aling pathway, it contributes to dedifferentiation into
stem cell-like state [125]. As the Wnt-signaling also plays
important role in early stages of cardiogenesis, hence this
dedifferentiation-related role may have possible implica-
tions in CM development.

Summary: unraveling the multifaceted roles of Wnt signaling
pathway

The Wnt signaling pathway is vital in cardiogenesis, influ-
encing planar cell polarity and adult heart remodeling. It
plays a role in cardiac hypertrophy, progenitor renewal,
and fibrosis. Dysregulation of Wnt signaling is linked
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to myocardial infarction. In proliferation, it impacts
stemness in hematopoietic stem cells and cancer stem
cells, contributing to tumorigenesis in various cancers.
The pathway interacts with Notch signaling and regu-
lates TS genes. In the context of cardiac myxoma (CM),
disrupted Wnt signaling may lead to gene expression
patterns resembling progenitor-like states, potentially
influencing CM development. Wnt signaling is involved
in both cardiac development and tumorigenesis, making
it significant in understanding CM.

FGF signaling pathway

Role in cardiogenesis, proliferation and key interactions

The FGF Signaling Pathway is involved in the differentia-
tion of stem cells to SHF progenitors and is also involved
in the maintenance of pluripotency. These effects are
based on interactions and complexes which FGF sign-
aling pathway forms in order to exert effect on cell fate
[126]. FGF2 inhibits TGF-betal and promotes cardio-
protection. It is also involved in epicardial EMT, coro-
nary vasculogenesis and angiogenesis through FGFI. The
FGF Signaling Pathway interacts with the IGF1/2, VEGE
BMPS, TGF-Beta, Wnt and Notch signaling pathway.
FGFI10 and FGF8 contribute to the proliferation of SHF
progenitor cells [127]. The FGF-MAPK axis promotes
CPCs multi-potency. FGFs also have major interaction
with PI3K/AKT pathway [128, 129]. In cardiogenesis,
FGF2-Wnt complex exerts influence over human pluri-
potent stem cells to shift them into CPCs by suppressing
GSK3-beta [130-132].

Role in differentiation and in tumorigenesis

FGF2-BMP2 complex promotes cardiomyocyte differen-
tiation. IslI-Thx1 positively interacts with FGFI0, which
contributes to differentiation of CPCs. Nkx2-5 negatively
regulates FGFI10, which is involved in promoting cardio-
myocyte differentiation [222]. In cardiomyocyte differ-
entiation, GATA4 interacts with FGF16 and suppresses
proliferation potential. It also provides postnatal cardio-
protection. The FGFI6 negatively regulates FGF2-RAS-
MAPK complex [223, 224].

In postnatal adult cardiomyocytes, FGF Signaling plays
very important role in modulating proliferation; FGFI
is involved in homeostasis and remodeling [225]. FGFs
have multifunctional roles ranging from proliferation,
homeostasis to differentiation. FGF acts as blocker of
premature CPCs differentiation. The FGF-BMP cross-
talk plays key regulatory role in governing cardiomyocyte
differentiation [226, 227]. The FGF Signaling Pathway
is downregulated by BMP4-MSX1 complex which pro-
motes differentiation of neural crest cells. The FGF Path-
way interacts with Nkx2-5 to produce more profoundly
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the ventricular characteristics in the developing heart
[228, 229].

Possible role in cardiac myxoma

The FGF Signaling Pathway may have significant role in
CM development as loss of FGF causes gradual accu-
mulation of atrial cells [133]. It is important to note that
most CMs originate in the atria. The loss of FGF has such
immense impact that it causes ectopic atrial gene expres-
sion in ventricles. One of the most important impacts of
the sustained FGF signaling is that it acts to suppress car-
diomyocyte plasticity. This may also point to the origins
of CM [134].

Summary: unraveling the multifaceted roles of FGF signaling
pathway

The FGF Signaling Pathway plays a crucial role in cardio-
genesis by influencing stem cell differentiation to SHF
progenitors, maintaining pluripotency, and promoting
cardiomyocyte differentiation. It interacts with vari-
ous signaling pathways, including IGF1/2, VEGE, BMPs,
TGF-Beta, Wnt, and Notch. FGF2-Wnt complex shifts
pluripotent stem cells to CPCs, suppressing GSK3-beta.
FGFs, such as FGF10 and FGF8, drive SHF progenitor
cell proliferation. In postnatal cardiomyocytes, FGF sign-
aling modulates proliferation and homeostasis. FGF1
maintains adult cardiomyocyte homeostasis and remod-
eling. Dysregulation of the FGF pathway may contribute
to CM development by promoting ectopic atrial gene
expression in ventricles and suppressing cardiomyocyte
plasticity. Most CMs originate in the atria, highlighting
the pathway’s significance.

BMPs

Role in cardiogenesis and key interactions

BMPs downregulate the expression of progenitor genes in
CPCs. It enhances differentiation of cardiomyocyte. They
induce some progenitor genes as well. The BMP signaling
pathway downregulates Is/1, Thx1l, FGFI0 and switches
the gene expression towards cardiomyocyte differen-
tiation [135]. When BMP-signaling is defective, the gene
expression of HAND2 and Nkx2-5 remains unchanged
[136, 137]. BMPs interact with Nkx2-5, HAND2, Thx2
and Tbx20 to promote cardiomyocyte differentiation. It
is also involved in epicardial EMT which is regulated by
both TGF-beta and BMPs. SMADs negatively regulate
TGF-beta [138, 139].

Role in proliferation, differentiation and in tumorigenesis

BMPs have dual role in tumorigenesis. They are capable
of acting both as TSs and promotors of tumor develop-
ment. This is based on microenvironment and overall
profile of governing key regulatory genes. For example,
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the absence of BMPs causes the progression of colorec-
tal carcinoma. In Barrett’s esophagus, the BMP-signaling
pathway is upregulated. BMP4 also contribute to neural
development. BMPs interact with K-RAS and are upreg-
ulated in NSCLC [230]. BMPs are also involved in adult
tissue homeostasis. In cardiogenesis, BMP2 causes the
differentiation of CPCs. Similarly, BMPI10 reduces the
cardiomyocyte proliferation potential [231]. The gene
expression of BMP2 in cardiac cushions causes EMT
myocardial patterning. The role of BMPs is influenced by
the microenvironment [232]. The BMP-signaling path-
way also acts on the progenitor genes. It promotes the
gene expression of Oct-4 and Nestin. They are among the
key genes involved in stem cells [233]. Another fascinat-
ing feature of BMPs includes their interactions with TSs
such as p53, p21, SMADs and cause repression of TGF-
beta. When p53 is mutated, Whnt-signaling pathway is
upregulated. As a result of Waut-pathway upregulation,
the interconnected loop of BMP signaling becomes dys-
regulated [234, 235]. BMPs have been found to act as TSs
in Renal Cell Carcinoma, Glioblastoma, esophageal ade-
nocarcinoma, prostate adenocarcinoma, diffuse gastric
adenocarcinoma and others [236, 237].

The role of BMPs in HCC is different and of immense
significance as these cells have vast regenerative poten-
tial; they contribute towards G1I to S transitions through
cyclins [238-240].

Possible role in cardiac myxoma

BMPs may possibly have a very significant role in CM
development as it is involved in cardiomyocyte differ-
entiation during the process of cardiogenesis. It is also
involved in limiting the cardiac regenerative potential.
Further studies should be conducted to evaluate the role
of BMPs in CM development.

Summary: unraveling the multifaceted roles of BMIPs

BMPs are vital in cardiogenesis, promoting cardiomyo-
cyte differentiation by downregulating progenitor genes
in CPCs. They interact with Nkx2—-5, HAND2, Tbx2, and
Tbx20 to facilitate cardiomyocyte differentiation and reg-
ulate epicardial EMT. In tumorigenesis, BMPs exhibit a
dual role, acting as both tumor suppressors and promot-
ers based on microenvironment and gene interactions.
BMPs interact with key genes like p53, p21, and SMADs
to repress TGF-beta and influence cell behavior. Their
role in HCC is especially significant due to their impact
on GI to S transitions. In cardiac myxoma, BMPs may
play a substantial role in CM development by influencing
cardiomyocyte differentiation and limiting regenerative
potential, but further research is needed to fully under-
stand this role.
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Notch signaling pathway

Role in cardiogenesis and key interactions

It is involved in cardiomyocyte proliferation, differ-
entiation, cell fate specification and patterning [140].
Its specific role depends on its interactions with other
key regulatory genes such as with BMP2 to promote
cardiomyocyte differentiation [141]. Similarly, it inter-
acts with activins and PI3K/AKT pathway to promote
mesenchymal state in CPCs. The notch pathway inter-
acts with p21, c-myc, snaill/2, TGF-beta and in EMT
it interacts with DIll4, Jagl, BMP2, Alk3/6 and other
key regulatory genes [142, 143]. ,In EMT, it also works
through important interactions with snaill/2-TGFbeta.
In SHE, Notch regulates BMP4 and FGF8 gene expres-
sion [144-146].

Role in proliferation, differentiation and in tumorigenesis
The notch pathway in cancer contributes to the
stemness of cancer stem cells [241]. It interacts with
proto-oncogenes and inflammatory pathways. It also
has strong cross-talk with FGF and Wnt-signaling path-
ways [242]. Notch has key interactions with many TSs
such as PTEN, P53, P21 and others. The network of
these key cross-talks governs the direction of cell fate,
and dysregulations in such key regulators contribute to
the disease development including cancers [243, 244].

Possible role in cardiac myxoma

Notch may have possible implications in CM origins
because of interactions with key cardiac TFs such as
Isll and Mef2c. Notch expression increases postnatal
cardiac survival and contributes to the proliferation
of CPCs in cardiac development. The Notch signaling
pathway governs cardiac tissue renewal by maintaining
CPCs in a committed state. Further studies should be
conducted to evaluate the role of Notch in CM devel-
opment [1, 15, 19].

Summary: unraveling the multifaceted roles of notch
signaling pathway

The Notch signaling pathway is crucial in cardiogen-
esis, influencing cardiomyocyte proliferation, differ-
entiation, and cell fate. Its interactions with BMP2,
activins, PI3K/AKT, p21, c-myc, and TGF-beta deter-
mine specific roles in CPCs and EMT. In SHE, it reg-
ulates BMP4 and FGF8 gene expression. In cancer,
Notch contributes to stemness, interacting with proto-
oncogenes, inflammatory pathways, FGF, and Wnt
signaling, alongside multiple tumor suppressors like
PTEN and P53. Dysregulations in this network impact
disease development. Notch may have implications in
CM due to interactions with cardiac TFs like Isll1 and



Shafi etal. BMC Cancer  (2023) 23:1245

Mef2c, supporting postnatal cardiac survival, CPC pro-
liferation, and cardiac tissue renewal. Further research
is needed to explore Notch’s role in CM development.

Occurrence of Cardiac Myxoma in Carney complex, pointing
towards the significance of results in this study

The mutation in PRKARIA causes myxomas and carney
complex, and multiple myxomas are a feature of Carney
complex [148].

PRKARIA acts also as a TS. The mutated PRKARIA
also causes other tumors including thyroid tumors
because of increase in gene expression of RET/PTC2
signaling, multiple endocrine neoplasias and myxomas
[149]. Mutations in PRKARIA lead to the onset of dys-
regulated c-AMP protein kinase A signaling. CMs occur
in 20-40% of Carney Complex patients and can occur
in many chambers [147]. The nature of mutation in
PRKARI1A also points towards the origin of CM as pos-
tulated in this study. This signifies how important the role
of differentiation-related genes/TSs is in the maintenance
of cell type-specific gene expression in cardiomyocytes. It
also signifies how the defects in such key regulatory genes
such as PRKARIA can result in switching of cardiac cells
towards a mesenchymal-like progenitor state present in
CM [150, 151]. The CM development in carney complex
also signifies the role of TSs and differentiation-related
genes/TFs in maintenance, homeostasis of cardiomyo-
cytes and also in tumorigenesis.

Discussion
Transformation of cardiomyocytes into progenitor-like
state, hallmark of CM
Cardiac cells undergoing a transformation into a progeni-
tor-like state, a distinctive hallmark of this benign cardiac
tumor. This transformation is among the most signifi-
cant possible ways of CM tumorigenesis. This reversion
is attributed to dysregulations in key cardiac genes, tran-
scription factors (TFs), and signaling pathways involved
in the control of cardiomyocyte differentiation and main-
tenance of cardiac cell fate. CM develops when genes/
TFs/signaling pathways with proliferation-related roles
are upregulated and differentiation regulators are down-
regulated [7, 8]. The resulting tumor microenvironment
also switches many factors towards tumorigenesis [5, 6].
The cardiac genetic landscape meticulously balances
between genes, transcription factors (TFs), and pathways
governing proliferation and differentiation. Dysregula-
tions in the gene expression of key differentiation regu-
lators, including Tbx5, GATA4, HAND1/2, MYOCD,
HOPX, and BMPs, serve as the catalysts for this remark-
able reprogramming. These regulatory actors orches-
trate a symphony that drives the once-differentiated
cardiomyocytes to abandon their mature identities and
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embrace a more primitive, progenitor-like phenotype
[262, 263]. Dysregulation in factors like Isl1, Baf60 com-
plex, Wnt, FGF, Notch, and Mef2c plays a pivotal role in
this complex process. The Nkx2—-5 and MSX2 contribute
predominantly to both proliferation and differentiation
of Cardiac Progenitor Cells (CPCs), are capable of serv-
ing influential roles in the landscape of CM development
[264, 265]. This highlights the intricate balance between
differentiation, proliferation, and regulation of cardiac
cell fate. The dysregulations in the interconnected net-
works of genes/TFs/signaling pathways emphasizes the
re-differentiation of cardiomyocytes in CM development
[152, 266].

The cross-talk and interactions in regulating the fate

of cardiomyocytes

Cardiac development is a multistep developmental pro-
cess. It is governed by CPCs that differentiate into cardio-
myocytes. The entire process at every stage is governed
by sequential unfolding of combinatorial code/ cell type-
specific genetic programming which directs the cell type-
specific genetic program to unfold [245]. The cascades of
TFs/genes involved are governed also by cross-talk, the
interaction between signaling pathways. These cross-
talk based interactions cause the emergence of specific
gene expression effect. The cardiac development process
defines the nature and developmental architecture of
cardiomyocytes [246]. This study has investigated car-
diogenesis to trace the possible origins of CM and the
relationship of limited cardiac regenerative potential with
the rare occurrence/benign nature of tumorigenesis in
cardiac tissues. The PTFs trigger the epigenetic program-
ming in CPCs [247]. This sets in motion the unfolding of
successive lineage specification. Further unfolding of the
lineage, reshapes the genetic landscape towards cardio-
myocyte development by establishing the commitment
of cells towards differentiation. The committed CPCs
emerge as a consequence of this effect. When PTFs com-
bine with specific TFs, this causes initiation of cell pro-
gram via unfolding regulatory networks. This process
directs the development of CPCs towards cardiomyo-
cytes [2438].

The governing role of proliferation, differentiation

and tumor suppressor genes in regulating the cell fate

The entire process involving unfolding of progenitor
genes, cell type-specific genes, and associated function-
ing of regulatory genes, is governed very tightly through
cross-talks and interconnectedness of genes/TFs with
key regulatory genes. The differentiation-related genes
and TSs switch the cell circuitry more towards differenti-
ation pathways. There exists specific combinatorial code/
genetic programming for each cell type; Nkx2-5, Mef2c,
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GATA4, Tbx5 are among the key regulators of cardiomy-
ocyte programming [249]. The combinatorial code/ cell
type-specific genetic programming works also via cross-
talk and tightly regulated relationships. The cross-talk of
TFs with proliferation genes, differentiation/ TS genes,
fate-specific genes, and others, govern the development
and maintenance of cell type [250].

When the gene expression of key genes including Tbx5
that govern the programming of cell type becomes dys-
regulated, this can alter the homeostasis of cell type. This
can lead to switching the gene expression of cardiomyo-
cytes towards disease development such as dedifferentia-
tion into the cardiac progenitor-like state, resulting in the
emergence of CM [251].

Carney complex also signifies how differentiation/ TS
genes govern cell fate and their defects can cause CM.
The role of TSs in limiting cardiac regenerative and pro-
liferative potential is also reflected by the TS-like effect
exerted by the landscape of differentiation genes. The key
TF Nkx2-5, which is a major TF in cardiogenesis works
in close association with TSs by interacting with p53 and
p21. This interaction modulates the activity of this key
TFE. The p53 is able to interact with both wild-type Nkx2-
5 and mutant Nkx2-5 in cardiac tissue. The p21, which
is a CDK inhibitor, works to regulate Mef2c expression.
The cell type-specific interactions of key genes may vary
in different microenvironments [252].

Stemness and TS/ differentiation genes controlling

the cell fate, and their dysregulations resulting in disease
development

The stemness and differentiated state are the two
extremes of the state of cell. Here we are focusing pri-
marily on the cardiomyocytes. As cardiomyocytes
are differentiated cells with very limited regenerative
potential and they have to survive for very long dura-
tions in life, they must maintain themselves in the
differentiated state. For that purpose, they maintain
a sufficient level of gene expression of differentia-
tion-related genes and TSs [253]. As other cell types,
including neuronal cells, cardiomyocytes don’t go into
proliferative phase the way skin or hepatic cells do,
hence with age the cell circuitry shifts more towards
the enhanced expression of differentiation-related
genes and TSs. This overall exerts an increased TS-
like effect. These differentiation-related genes interact
with TSs and exert massive influence over other genes
including those involved in proliferation. Hence, with
aging there are increased degeneration-related effects
in these cell types such as neurodegeneration in neu-
rons and sigmoid shape of heart with decline in car-
diac function. In order for these cell types to remain in
arrested cell cycle state, the TSs exert massive influence
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on the genomic landscape of these cell types. But due to
aging, this effect becomes more pronounced and con-
tributes also to degenerative diseases [254].

Cell types with long survivals and limited regeneration
capacity including neurons and cardiomyoctes, maintain
profound gene expression of differentiation-related and
TS genes. With increasing age, this predisposes these
cell types towards the risk of degeneration such as Alz-
heimer’s disease in neurons, sigmoid shape heart with
decline in cardiac function and others [255]. Due to the
accumulation of dysregulations in gene expression of the
key regulators that are involved in the maintenance of
differentiated state, the cells switch towards stem cell-like
progenitor state, that is also the hallmark of CM. This is
possibly because of the same reason that an inverse rela-
tionship exists between Alzheimer’s disease and cancer
in terms of molecular mechanisms and cellular pathways
[256], further signifying the importance of differentia-
tion and proliferation genes in disease development. It is
already well established that TSs such as p21, p27, p53,
and others promote and induce differentiation. The p53
expression also induces differentiation in pluripotent
stem cells by suppressing stemness transcription fac-
tors including Oct-4, nanog and others. Similarly, p53
and p63 downregulate Oct-4 and promote the process of
differentiation.

The interconnectedness in the cell circuitry is so pro-
found that mitogens/ proliferation-related genes also
work through cross-talk and interconnectedness. For
example, the c-Myc gene cooperates with BCL2, BCR /
ABL and interacts with TSs too, including p53 gene.
Other examples include the Ras TF, as it also drives pro-
liferation like c-Myc; similarly FGFR3 works through
tyrosine kinase and act as proto-oncogene. The Ras/Raf
pathway and PI3K/AKT pathway interact with c-Myc,
and the ¢-Myc works with p53. Similarly, cyclins /CDKs
interact with EGER resulting in massive increase in the
gene expression of Ras/Raf and PI3K/AKT/mTOR path-
way. These interactions and cross-talks also play key roles
in pluripotent stem cells, development, post-natal cells,
and disease development, including tumorigenesis [257].

Deviation of cardiomyocyes from cell type-specific
well-differentiated state increases the risk of disease
development, including the turning back of the cells
into progenitor-like cardiac stem cells. Some studies
have pointed to the dysregulated expression of Nkx2-5
in tumor development. As Nkx2-5 has major interac-
tions with p53, this also prevents the tumor from becom-
ing malignant. Such interactions have been described
in detail in respective sections [258]. Cardiomyocytes
have very limited proliferation potential in adult life.
This nature of this cell type is governed by the cell type-
specific programming that also restricts the proliferative
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potential of this cell type after completion of develop-
ment in postnatal period [259].

Heterogeneity in cardiac myxoma

The key genes/TFs and signaling pathways also play
important roles in other cells types. Due to dysregula-
tions and deviation in the cell type-specific genetic pro-
graming based gene expression in CM development,
many key regulators of cell type go in the direction of
gene expression related to the other cell types. This
results in the presence of tumor heterogeneity in CM. For
example, Isl1 also plays a role in other cell types. It inter-
acts with FGFR in ganglion cells during embryogenesis,
essential regulators of pancreatic morphogenesis and dif-
ferentiation, and facilitates neuronal differentiation [260].
Retinoic acid promotes the Is/I expression in pancreatic
endocrine differentiation. The Isl1/2 defects contrib-
ute to the developmental defects in motor neurons. Shh
induces Isll expression in neural development. Other
major interactions of Isl include: Ngn2, NeuroD4, Neu-
roM, Pax6 and Nkx2.2. Isl1 gene expression, that is key
component of CPCs, is also detected in pancreas, brain,
lung, thymus, ovary [261].

The heterogeneity that exists in CM, may be because
of the multitude of roles that Nkx2-5, Isl1, GATA4, Tbx5
and other key genes/TFs and signaling pathways play in
different microenvironments and in different cell types.
The dysregulations in them result in the deviation of cells
away from cell type-specific gene expression [262]. As the
cardiac specific combinatorial code-based functioning of
TFs get dysregulated, this deviates the direction of line-
ages from one specific to multiple cell types having signif-
icant role of these key genes/TFs and signaling pathways
in their development [263].

Interconnected landscape of key regulatory genes
governing the cell type-specific roles

Increased TS/ differentiation-related gene expression
limits the expression of proto-oncogenes; this results in
declining the risk of tumorigenesis but simultaneously
limits the regenerative capacity. The key cardiac genes
such as Nkx2-5 have major interactions with TSs. The
genes/signaling pathways work in the form of associa-
tion and combinations. Such combinations include the
proliferating genes working with differentiation-related
genes with key regulatory interactions with the TSs. This
combination-based genetic functioning is very important
part of cell type-specific combinatorial code/ genetic pro-
gramming [264]. The heterogeneity in CM is because of
the dysregulations in such key genes/TFs and signaling
pathways. It is because of these disruptions in the inter-
connected working of key regulatory genes that disrupts
the cell type-specific combinatorial functioning. This
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leads every key gene/TF to swing towards other cell lin-
eage directions in which they also participate in devel-
opment. The example of interconnected working is also
seen in the TF Nkx2-5, which works in the intercon-
nected network of Nkx2-5 — mef2c —p53, and includes
many other interactions too. The TF Nkx2-5 contributes
to proliferation through JAK-STAT pathway. This Nkx2-5
complex doesn’t work alone, it has positive feedback loop
with GATA4 and interacts with Thx5. This sets in motion
the unfolding of cell fate specific machinery. It also down-
regulates FGFI0 and Isl1 for the promotion of differen-
tiation. This also represses the expression of non-cardiac
genes [265]. The presence of dysregulated Nkx 2-5 is pre-
sent in cancers such as ALL, because there it is working
in a very different microenvironment and with different
regulatory genes such as Mef2c-Nkx2-5 complex, which
plays oncogenic role. When the Nkx2-5 combines with
TSs, it promotes differentiation, cell cycle regulation,
and apoptosis. Its function is dependent on microenvi-
ronment, key interactions and cross-talk with regulatory
genes [152, 266].

The targets for gene editing and epigenome editing

in the development of future cardiac therapies

The decline in the gene expression of cardiac cell type-
specific genes dysregulates the genetic programing of
cardiac tissues involved in cell type-specific homeostasis.
The multiple roles of every gene/TF begin to manifest
themselves causing the emergence of heterogeneity [267,
268]. As the control exerted by the differentiating genes
begin to decline, then the genetic landscape of CPCs
begin to manifest. This switches the gene expression of
cardiac tissues towards progenitor-like state, hallmark
of the CM. The multipotent nature of CPCs begins to
manifest itself in CM development. In adult cardiomyo-
cytes, there remains a persistent expression of cardiac
lineage-specific genes which maintains the cardiac tis-
sue homeostasis [269]. This same persistent expression
of the differentiation-related genes with TS effect also
prevents the CM from becoming malignant. This effect
possibly maintains the benign nature of primary benign
cardiac tumors including CM, and overall contributes
to the rare occurrence of primary cardiac tumors. The
overall increased exertion of tumor suppressive-effect in
this way also causes cardiomyocytes to have very limited
regenerative potential because it antagonizes the expres-
sion of proliferation-related genes [270].

This study also provides the targets for gene-editing
tools such as CRISPR gene editing or epigenome editing
to correct or regulate the genes/signaling pathways which
become dysregulated in CM development [271]. This
study may serve as a map for genetic and epigenetic tar-
gets for the development of new therapeutic approaches
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towards reviving cardiac regenerative potential, targeting
CM development and the development of cardiac orga-
noids [272].

Conclusions

Cardiomyocytes are one of the cell types that have very
limited regenerative potential and survive for a very
long duration of time. For this purpose, they continu-
ously need to maintain themselves in a well-differentiated
state. Based on the process of cardiomyocyte develop-
ment in cardiogenesis, the emergence of CM is possibly
governed by the dysregulations in key cardiac genes/TFs
and signaling pathways. The dysregulations in differentia-
tion related genes/TFs including ThxS5, GATA4, MYOCD,
HANDI1/2, HOPX, MSX2, BMPs have profound effect
on controlling the gene expression of cardiomyocytes.
They also contribute to limiting the regenerative poten-
tial of cardiomyocytes. The defective or dysregulated
gene expression of such key differentiation-related genes
causes the switching of cardiomyocytes towards progen-
itor-like state by causing upregulation of progenitor and
proliferation-related genes. The key signaling pathways
including Wnt, BMPs, Notch, FGF signaling pathways
also play key regulatory roles in cardiac tissues. In car-
diac development, their roles are very tightly regulated.
And they work through cross-talk and interactions with
cardiac-programming genes and regulators. The dysregu-
lations in Wnt, Notch, FGF are capable of contributing to
the process of tumorigenesis. Similarly, BMPs have more
profound role as TSs in many cancers and are key con-
tributors to the process of differentiation. The possible
reason that cardiomyocytes are unable to easily change
into primary malignant tumors, it is because they are
very strongly regulated in differentiated state through a
loop of multiple interconnected differentiation and TS
genes. The massive influence exerted by these genes also
causes the limitations in the regenerative abilities of car-
diomyocytes. And many PTFs of CPCs including Is/1,
Nkx2-5 expressed in CPCs, they also function to main-
tain cardiac fate, or final cell type. The Mef2c and Baf60
also don't function independently; they are also very
tightly regulated and work in the form of complexes with
key TFs of cardiomyocytes. Another example of control
over stemness is the presence of MYOCD gene expres-
sion. It exerts control over stemness-related genes and
prevents them from changing into a total stem cell-like
state. The benign nature and rare occurrence of CM is a
possible consequence of the limited cardiac proliferative/
regenerative potential. More research is needed in this
area; this can be done by developing models of cardiac
organoids focused on cardiogenesis, and gene-editing
them to transform into CM.
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Abbreviations

BMPs Bone Morphogenetic Proteins
CDKs Cyclin-dependent kinases
(@Y Cardiac Myxoma

CPCs Cardiac Progenitor Cells

EGFR Epidermal growth factor receptor

EMT Epithelial mesenchymal transition

FHF first heart field

FGF fibroblast growth factor

GATA4 GATA Binding Protein 4

GSK3 Glycogen synthase kinase 3

HAND1/2 Heart and neural crest derivatives expressed protein %2

HOPX homeodomain-only protein homeobox

ISL1 ISL LIM Homeobox 1

JAK Janus kinase

Mef2c myocyte enhancer factor 2C

MYOCD gene  Myocardin

Myc MYC proto-oncogene

MSX2 Msh Homeobox 2

MAPK Mitogen-activated protein kinase

mTOR Mechanistic target of rapamycin

NF-kB Nuclear factor kappa-light-chain-enhancer of activated B
cells

Nkx2-5 Homeobox protein Nkx-2.5

Notch Signaling pathway

Oct2 Octamer transcription factor 2

PI3K Phosphoinositide-3 kinase

PRKARTA cAMP-dependent protein kinase type l-alpha regulatory
subunit

PTEN Phosphatase and tensin homolog

STAT Signal transducer and activator of transcription

SHF second heart field

Thx5 T-box transcription factor 5

TFs Transcription Factors

TGF-B Transforming Growth Factor-3

TSs Tumor Suppressors

Wnt Signaling pathway
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