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Abstract
Background We created discriminative models of different regions of interest (ROIs) using radiomic texture features 
of neurite orientation dispersion and density imaging (NODDI) and evaluated the feasibility of each model in 
differentiating glioblastoma multiforme (GBM) from solitary brain metastasis (SBM).

Methods We conducted a retrospective study of 204 patients with GBM (n = 146) or SBM (n = 58). Radiomic texture 
features were extracted from five ROIs based on three metric maps (intracellular volume fraction, orientation 
dispersion index, and isotropic volume fraction of NODDI), including necrosis, solid tumors, peritumoral edema, tumor 
bulk volume (TBV), and abnormal bulk volume. Four feature selection methods and eight classifiers were used for the 
radiomic texture feature selection and model construction. Receiver operating characteristic (ROC) curve analysis was 
used to evaluate the diagnostic performance of the models. Routine magnetic resonance imaging (MRI) radiomic 
texture feature models generated in the same manner were used for the horizontal comparison.

Results NODDI-radiomic texture analysis based on TBV subregions exhibited the highest accuracy (although 
nonsignificant) in differentiating GBM from SBM, with area under the ROC curve (AUC) values of 0.918 and 0.882 
in the training and test datasets, respectively, compared to necrosis (AUCtraining:0.845, AUCtest:0.714), solid tumor 
(AUCtraining:0.852, AUCtest:0.821), peritumoral edema (AUCtraining:0.817, AUCtest:0.762), and ABV (AUCtraining:0.834, 
AUCtest:0.779). The performance of the five ROI radiomic texture models in routine MRI was inferior to that of the 
NODDI-radiomic texture model.

Conclusion Preoperative NODDI-radiomic texture analysis based on TBV subregions shows great potential for 
distinguishing GBM from SBM.

Key points
• NODDI-radiomic texture analysis can distinguish glioblastoma multiforme from solitary brain metastasis.
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Background
Glioblastoma multiforme (GBM) and solitary brain 
metastases (SBM) are the most common malignant brain 
tumors, and their correct identification is key for further 
diagnosis and treatment [1–3]. Although magnetic reso-
nance imaging (MRI) is the main tool for differentiating 
between the two types of tumors, both GBM and SBM 
may show marked peritumoral edema and similar con-
trast-enhancement patterns on routine MRI, leading to 
great challenges in identification [4–6].

Previous studies reported that radiomics combined 
with routine MRI showed significant advantages in dis-
tinguishing GBM from SBM and suggested that specific 
imaging features are helpful in distinguishing between 
the two types of tumors [7, 8]. Currently, the acquisition 
of specific image features can be summarized into two 
trends: applying special MRI modalities or focusing on 
specific image feature types [9, 10].

Diffusion-weighted imaging (DWI) can provide a class 
of microscopic features related to the movement of water 
molecules in tissues, such as the current advanced dif-
fusion imaging model and neurite orientation disper-
sion and density imaging (NODDI) [11, 12]. NODDI is a 
multi-spherical shell diffusion model based on the differ-
ence in the diffusion of water molecules inside and out-
side the cell and is more often used to characterize the 
difference in water diffusion between tumor infiltration 
and vasogenic edema [13–15].

Texture features are considered image feature types, 
and radiomic texture analysis is a sensitive technique that 
allows for a subtle assessment of the gray-scale signal 
intensity distribution of pixels and/or voxels, which can 
be used to quantify lesion irregularity and heterogeneity 
in tissue composition on MRI [16]. Several studies have 
evaluated the application of texture analysis to conven-
tional imaging modalities for various diseases [17–21] 
but there are no reports on radiomic texture analysis 
from NODDI. We speculate that radiomic texture anal-
ysis may provide more advantages than routine MRI in 
distinguishing GBM from SBM.

Here, considering the sensitivity of texture features 
in regions of interest (ROIs), we created different ROI-
based prediction models using texture features derived 
from NODDI. We then evaluated how well each radiomic 
texture analysis model could distinguish GBM from SBM 
and compared the prediction models for routine MRI 
radiomic texture analysis.

Materials and methods
Patients
This retrospective study was approved by our institu-
tional ethics committee, which waived the requirement 
for informed patient consent. The study procedures 
were in line with the guidelines laid out in the Declara-
tion of Helsinki. Records from a total of 204 patients 
newly diagnosed with cerebral GBM or SBM between 
November 2015 and December 2022 were reviewed, and 
the inclusion and exclusion criteria listed in Fig.  1 were 
applied. Patients were then divided into a training data-
set (diagnosed between December 23, 2015, and October 
11, 2021 [n = 143]) and a time-independent test dataset 
(diagnosed between October 16, 2021, and December 
26, 2022 [n = 61]). The demographic and clinical data are 
summarized in Table 1.

MRI acquisition
All images were acquired using a 3T MR scanner (MAG-
NETOM Prisma; Siemens Healthcare, Erlangen, Ger-
many) with a 64-channel head/neck coil. The structural 
MR protocols included axial T2-weighted imaging 
(T2WI), T2-dark-fluid, T1WI, three-dimensional (3D) 
contrast-enhanced T1 magnetization prepared by rapid 
gradient echo (CE-T1 MPRAGE), and DWI. The param-
eters of all MRI sequences are listed in Table 2.

DWI was performed using a spin-echo echopla-
nar imaging sequence with the following additional 
parameters: six b-values (0, 500, 1000, 1500, 2000, and 
2500 s/mm2) with diffusion encoding in 30 directions for 
every nonzero b-value and one for the zero b-value, and 
acceleration number of simultaneous multiple slices and 
integrated parallel acquisition technique, 3 × 2.

CE-T1 MPRAGE acquisition was performed after 
intravenous injection of 0.2 mL/kg of gadopentetate 
dimeglumine (Magnevist, Bayer Schering Pharma AG, 
Berlin, Germany) using a high-pressure syringe, followed 
by a 20-mL saline flush at the same injection rate. CE-T1 
MPRAGE images were obtained after contrast agent 
administration and were reconstructed into 20 axial 
slices before use.

Image processing
Head motion and eddy current corrections were con-
ducted on all DW images using the Diffusion Kit Eddy 
tool (https://diffusionkit.readthedocs.io/). Subsequently, 
the NODDI metric maps were estimated directly from 
the DW images using NeuDilab, an in-house software 
developed using Python based on the free DIPY toolbox 

• ROI division affects efficiency, and tumor bulk volume outperformed other ROIs.
• NODDI-based outperforms routine magnetic resonance imaging-based radiomic texture analysis.
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(https://www.dipy.org/). Finally, NODDI metric maps 
were constructed, including the intracellular volume 
fraction, orientation dispersion index, and isotropic vol-
ume fraction.

MR image segmentation
MR images were first registered to T2-dark-fluid images 
using the open-source software ITK-SNAP (version 
3.8.0; http://www.itksnap.org). Subsequently, ROIs were 
assessed using semi-automatic segmentation. Specifi-
cally, we constructed a deep learning model based on 

Table 1 Clinical characteristics of patients whose data were included in the training and test datasets
Characteristic Training dataset (n = 143) Test dataset (n = 61) p value

GBM
(n = 102)

SBM
(n = 41)

p value GBM
(n = 44)

SBM
(n = 17)

p value

Age, years
 Mean ± SD 52.1 ± 12.0 56.5 ± 11.6 0.516 53.0 ± 9.7 55.4 ± 11.4 0.451 0.347
Sex, n 0.855 0.763 0.832
 Male (%) 58 (56.8) 24 (58.5) 24 (54.5) 10 (58.8)
 Female (%) 44 (43.2) 17 (41.5) 20 (45.5) 7 (41.2)
Variety of SBM, n
 Lung, n
  Adenocarcinoma (%) 28 (68.3) 13 (76.4)
  Squamous cell carcinoma (%) 2 (4.9)
  Neuroendocrine carcinoma (%) 3 (7.4) 1 (5.9)
  Small cell lung carcinoma (%) 1 (2.4)
  Poorly differentiated carcinoma (%) 1 (2.4)
 Stomach, n
  Adenocarcinoma (%) 1 (2.4) 0
 Kidney, n
  Clear cell carcinoma (%) 3 (7.4) 1 (5.9)
 Uterus, n
  Endometrial carcinoma (%) 1 (2.4) 1 (5.9)
 Unknown site, n (%) 1 (2.4) 1 (5.9)
GBM, glioblastoma multiforme; SBM, single brain metastasis; SD, standard deviation

Fig. 1 Image processing pipeline for radiomic texture analysis. GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GBM, glio-
blastoma multiforme; SBM, solitary brain metastasis
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nnU-Net to automatically segment ROIs [22]. Details 
of the segmentation are presented in Supplementary 
Appendix E1. Five separate ROIs were defined: necro-
sis, solid tumor, peritumoral edema, tumor bulk volume 
(TBV), and abnormal bulk volume (ABV). Figure 2 shows 
examples of two segmentation cases based on semiauto-
matic segmentation.

Radiomic texture extraction and model construction
Feature extraction, feature selection, and model building 
were performed using the open-source software FeAture 
Explorer (FAE, version 0.5.2) [23]. Based on the automat-
ically segmented ROIs, radiomic texture features were 
extracted using first-order statistical functions, gray-level 
co-occurrence matrix (GLCM) functions, and gray-level 
run-length matrix (GLRLM) functions on the original 
NODDI parametric maps, as well as eight sub-bands of 
its wavelet transformation. As controls, the features of 
routine MR images (T2WI, T2-dark-fluid, T1WI, and 

CE-T1 MPRAGE) were extracted in the same manner. 
Radiomic texture analysis for each ROI was based on a 
combination of three parametric map features from the 
NODDI or a combination of four routine MRI features. 
Finally, 234 features were extracted from each parameter 
map of NODDI (or each type of routine MRI). Details of 
the extracted features are presented in Supplementary 
Appendix E2.

Because of the imbalanced GBM-to-SBM sample ratio 
(2.5:1), we applied upsampling to the training dataset. 
After feature extraction, all radiomic texture feature 
values were normalized using the min-max or Z-score 
method. Four feature selection methods—Pearson’s cor-
relation coefficient (PCC), analysis of variance, recursive 
feature elimination, and the Kruskal-Wallis test—as well 
as eight classifiers—support vector machine, linear dis-
criminant analysis, auto-encoder, random forest, logistic 
regression, logistic regression via Lasso, ada-boost, and 
decision tree—were utilized to construct texture feature 

Table 2 Sequence parameters
Sequences Slice orientation TR/TE (ms) Number

of slices
Slice thickness FOV (mm2) Acquisition matrix Scan time

T1WI Axial 250.0/2.46 20 5.0 mm 220 × 220 314 × 314 37 s
T2WI Axial 4,090.0/99.0 20 5.0 mm 220 × 220 733 × 733 34 s
T2-dark-fluid Axial 8,000.0/81.0 20 5.0 mm 220 × 220 314 × 314 1 min 38 s
Diffusion-weighted imaging Axial 2,500.0/71.0 60 2.2 mm 220 × 220 100 × 100 6 min 34 s
CE-T1 MPRAGE Sagittal 2,300.0/2.32 176 0.9 mm 240 × 240 266 × 266 5 min 21 s
CE-T1 MPRAGE, contrast-enhanced T1 magnetization prepared rapid gradient echo

Fig. 2 GBM and SBM derived from CE-T1 MPRAGE images for different regions of interest (ROIs) mapping and visualization. Tumor bulk volume (TBV) 
represents the addition of the tumor necrotic areas and solid tumor areas. Abnormal bulk volume (ABV) represents the largest area of the abnormal signal. 
Peritumoral edema is the difference between TBV and ABV. GBM, glioblastoma multiforme; SBM, solitary brain metastasis
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prediction models for each ROI. When the PCC value of 
a feature pair was greater than 0.90, only one of the fea-
tures was randomly retained. Five-fold cross-validation 
was used to determine the hyperparameters of each 
model. After determining the hyperparameters, all train-
ing data were retrained for the final models. The maxi-
mum number of features included in the radiomic texture 
analysis model construction was four. Details of the 
sample size and feature number estimates are displayed 
in Supplementary Appendix E3. The final models were 
determined based on the highest area under the receiver 
operating characteristic (ROC) curve (AUC) value in the 
cross-validation, and a time-independent test dataset was 
used to evaluate the performance of the final model. The 
performance of the test dataset was determined through 
ROC curve analysis and evaluations of accuracy, AUC, 
sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV).

Statistical analysis
Statistical analyses were performed using SPSS (version 
21.0) and MedCalc (version 20.015) software. Differences 
in clinical characteristics between GBM and SBM were 
assessed using chi-square tests (or the Mann–Whitney U 
test, depending on the results of normality and homosce-
dasticity tests) and independent t-tests, as appropriate. 
DeLong’s test was used to assess differences in AUC val-
ues between models. Statistical significance was set at a 
two-sided p value < 0.05.

Results
Patient clinical characteristics
The patients’ clinical characteristics are summarized in 
Table  1. No significant differences were found in clini-
cal characteristics between the patients in the train-
ing and test datasets (all p > 0.05). A total of 146 (71.5%) 
patients had GBMs, and 58 (28.5%) were diagnosed with 
SBM by pathological examination. The GBM rates were 
71.3% (102/143) and 72.1% (44/61) for the training and 
test datasets, respectively, with no significant difference 
between the two (p = 0.907).

Performance of texture feature prediction models
The NODDI-radiomic texture model based on the five 
ROIs performed differently when discriminating between 
GBM and SBM, and the TBV radiomic texture model 
exhibited the best performance. In the training set, we 
determined AUCs for the necrosis, solid tumor, peritu-
moral edema, TBV, and ABV texture models of 0.845, 
0.852, 0.817, 0.918, and 0.834; the same values for the five 
models in the test set were 0.714, 0.821, 0.762, 0.882, and 
0.779. Figure  3 shows the cross-validation, training set, 
and test set AUCs of the texture model for the five ROIs.

The performance of the five ROI texture models on 
routine MRI was inferior to that of the NODDI-radiomic 
texture model. The AUCs of the necrosis, solid tumor, 
peritumoral edema, TBV, and ABV texture models were 
0.712, 0.836, 0.853, 0.770, and 0.813 in the training set 
and 0.651, 0.786, 0.806, 0.723, and 0.818 in the test set.

A more detailed comparison of the evaluation indi-
cators between the NODDI and conventional MRI 
radiomic texture models for the five ROIs in the test 
set (accuracy, sensitivity, specificity, PPV, and NPV) is 
provided in Table  3. The NODDI TBV texture model 
achieved better sensitivity (84.1%) and specificity (82.3%), 
proving its excellent performance on imbalanced datas-
ets. More details on the model construction are provided 
in Fig.  4, showing the cross-validation set, training set, 
and test set AUCs for different classifiers in the deter-
mination of optimal model performance. Figures  5 and 
6, and Supplementary Table 1 show the feature values, 
distributions and statistical correlations, contribution of 
features, and methods used in the key modeling steps for 
each model. The DeLong test results for each model are 
presented in Supplementary Table 2.

Discussion
To the best of our knowledge, this is the first study that 
comprehensively explores the value of radiomic texture 
analysis based on preoperative NODDI in differentiating 
GBM from SBM. Our findings reveal the excellent poten-
tial and application value of NODDI-radiomic texture 
analysis based on the TBV for differentiating between the 
two types of tumors.

Analogous to histogram analysis, radiomic texture 
analysis is a nimble and interpretable method. Prior 
research has showcased the efficacy of MRI texture 
analysis in differentiating GBM from SBM [24, 25]. 
Ortiz-Ramón et al. proposed a method that combines 
two-dimensional texture analysis and machine learning 
technology to differentiate between GBM and SBM. They 
obtained an AUC of 0.896 by constructing a model using 
32 texture features [24]. Our research, based on texture 
analysis, attained comparable discriminatory capabil-
ity utilizing four texture features. Moreover, preceding 
studies proposed that routine MRI possesses restricted 
capacity to differentiate between the two tumor types. 
Han et al. developed a radiomics model on T2WI images 
to distinguish GBM and SBM, achieving an AUC of 0.696 
[25]. Our results corroborate this assertion; although 
four routine sequences were combined to construct the 
model, only moderate discriminatory capability was ulti-
mately achieved. Our results indicate that the NODDI 
texture model outperforms routine MRI texture models. 
The clinical benefits of NODDI over MRI include the 
elimination of risks associated with the use of contrast 
agents and a reduction in the number of parameters 
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needed. We speculate that texture analysis based on 
NODDI can quantify the extent of axonal dispersion or 
damage within the lesion, which is very effective in dis-
tinguishing between GBM and SBM.

Various ROI settings lead to the difference in the iden-
tification ability of the model. Although specific texture 
features can be found in tumors and peritumoral edema, 
the discrimination ability of these features shows two 
trends. The model containing tumor regions showed a 

Fig. 3 Performance of the NODDI and routine MRI radiomic texture analysis models based on five ROIs. NODDI, neurite orientation dispersion and den-
sity imaging
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stronger ability to distinguish GBM from SBM. In fact, 
the tumor parenchymal area in GBM exhibits dense 
cell growth, heterogeneity, and nuclear atypia morphol-
ogy. The tumor parenchyma of SBM exhibits relative 
homogeneity. This difference can be attributed to the 
different growth patterns of the two types of tumors. 
The radiomics texture analysis model based on NODDI 
seems to be able to distinguish the growth patterns of 
GBM and SBM. The pathological differences manifested 
by the peritumoral edema area of GBM (comprising 
tumor cells and new blood vessels) lead to the formation 
of invasive edema. In SBM, normal brain tissue is com-
pressed by tumors, and simple vasogenic edema forms 
around the tumor. However, the identification efficiency 
of the edema area model is significantly reduced, and 
the radiomics texture analysis model based on NODDI 
cannot well distinguish invasive edema from angiogenic 
edema. In general, among the models based on five dif-
ferent ROI subregions, our NODDI-radiomic texture 
model based on TBV performed the best. TBV is a com-
bination of necrosis and tumor parenchyma, and we 

speculate that relying on TBV guarantees the continuity 
and integrity of tumor texture features, leading to stron-
ger identification ability.

Previous studies have reported progress in the ability 
of DWI and diffusion tensor imaging (DTI) to differenti-
ate between GBM and SBM [26–28]. The meta-analysis 
conducted by Suh et al. suggests that the diagnostic abili-
ties of DWI and DTI are limited (i.e., a pooled sensitivity 
of 79.8% [95% CI, 70.9–86.4%] and a pooled specificity of 
80.9% [95% CI, 75.1–85.5%]), despite their wide individ-
ual sensitivity and specificity [26]. DWI and DTI are bet-
ter suited as part of a multiparametric MRI protocol than 
as single sequences [25]. NODDI, an extension of DWI, 
is the only imaging modality with the potential to accu-
rately differentiate GBM from SBM [29].

First-order statistical features are considered low-order 
features, whereas the GLCM and GLRLM are consid-
ered high-order features and are usually extracted from 
the original image or the wavelet image derived from 
the original image [10]. These features describe the sta-
tistical relationships between image pixels (voxels) from 

Table 3 Performance on the test dataset: NODDI and routine MRI radiomic texture model
Model Accuracy 

(%)
AUC
(95% CI)

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

NODDI-Necrosis 72.1 0.713 (0.574–0.853) 77.2 58.8 82.9 50.0
NODDI-Solid tumor 85.2 0.821 (0.695–0.946) 93.1 64.7 87.2 78.5
NODDI-Peritumoral edema 78.6 0.762 (0.610–0.914) 81.8 70.6 87.8 60.0
NODDI-TBV 83.6 0.882 (0.789–0.975) 84.1 82.3 92.5 66.7
NODDI-ABV 72.1 0.779 (0.667–0.897) 65.9 88.2 93.5 50.0
Routine MRI-Necrosis 60.7 0.651 (0.483–0.819) 54.5 76.4 85.7 39.4
Routine MRI-Solid tumor 77.1 0.786 (0.649–0.923) 77.3 76.5 89.5 56.5
Routine MRI-Peritumoral edema 72.1 0.806 (0.692–0.919) 68.2 82.4 90.9 50.0
Routine MRI-TBV 78.7 0.723 (0.561–0.885) 86.3 58.8 84.4 62.5
Routine MRI-ABV 83.8 0.818 (0.684–0.952) 90.9 76.4 90.9 76.5
95% CI, 95% confidence interval; ABV, abnormal bulk volume; AUC, area under the ROC curve; NODDI, neurite orientation dispersion and density imaging; TBV, tumor 
bulk volume; MRI, magnetic resonance imaging; PPV, positive predictive value; NPV, negative predictive value

Fig. 4 Cross-validation set, training set, and test set AUCs of the different classifiers. AUC, area under the ROC curve; ABV, abnormal bulk volume; TBV, 
tumor bulk volume
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different perspectives and are often highly correlated and 
redundant [30]. Feature selection is therefore necessary. 
Feature selection simplifies the features used for texture 
analysis, excludes non-contributing and highly correlated 
features, reduces the redundancy and multicollinear-
ity of candidate texture features, and facilitates the use 
of machine learning models for evaluation. In this study, 
four candidate features for building radiomic texture 
analysis models were identified, and the values of these 

reproducible features were independent of the traditional 
clinicopathological features.

The fifth edition of the World Health Organization 
classification of central nervous system tumors (WHO 
CNS5) emphasizes the value of molecular pathology in 
the diagnosis of GBM [31]. Most pathology centers need 
time to adapt to changes in the new WHO CNS5, thereby 
delaying the update of classification standards. Notably, 
all patients whose data were included in the present study 
were classified based on the 2016 WHO guidelines.

Fig. 5 Feature distribution and contribution of the NODDI radiomic texture models
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This study has, however, several limitations. First, the 
relatively small sample size was adequate for our tenta-
tive exploration but limits statistical power as well as the 
generalizability of our results. Second, samples need to 
be divided into training and testing datasets for internal 
validation. Unfortunately, we were not able to externally 
validate our results. Finally, it is imperative to enhance 
the transparency surrounding the associations between 
biological interpretability and advanced imaging parame-
ters. This will enable the provision of substantial evidence 
for the treatment and care of tumors, as well as micro-
scopic studies such as single-cell analysis [32, 33].

Conclusions
Preoperative NODDI-radiomic texture analysis based on 
TBV shows great potential for distinguishing GBM from 
SBM. Further studies are required to explore the general-
izability of our findings through external validation and 
to apply these results to clinical practice.
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AUC  Area under the ROC curve
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DWI  Diffusion-weighted imaging
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Fig. 6 Feature distribution and contribution of the routine MRI radiomic texture models
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