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Abstract 

Background Prostate cancer is a common solid tumor that affects a significant number of men worldwide. Con-
ventional androgen deprivation therapy (ADT) increases the risk of developing castration-resistant prostate cancer 
(CRPC). Effective clinical management of patients with CRPC is challenging due to the limited understanding.

Methods In this study, transcriptomic and metabolomic profiles of androgen-dependent prostate cancer cell line 
LNCaP and the androgen-independent cells developed from LNCaP cells (LNCaP-ADR) were investigated using 
RNA-sequencing and LC-MS/MS, respectively. The differentially expressed genes and metabolites were analyzed, 
and integrative analysis of transcriptomic and metabolomic data was further conducted to obtain a comprehensive 
understanding of the metabolic characteristics in LNCaP-ADR cells. Quantitative real-time PCR (QPCR) was employed 
to ascertain the mRNA expression levels of the selected differentially expressed genes.

Results The arginine and proline metabolism pathway was identified as a commonly altered pathway at both the 
transcriptional and metabolic levels. In the LNCaP-ADR cells, significant upregulation was observed for metabolites 
including 5-Aminopentanoic acid, L-Arginine, L-Glutamic acid, N-Acetyl-L-alanine, and Pyrrole-2-carboxylic acid 
at the metabolic level. At the transcriptional level, MAOA, ALDH3A2, ALDH2, ARG1, CKMT2, and CNDP1 were found to be 
significantly upregulated in the LNCaP-ADR cells. Gene set enrichment analysis (GSEA) identified various enriched 
gene sets in the LNCaP-ADR cells, encompassing inflammatory response, 9plus2 motile cilium, motile cilium, ciliary 
plasm, cilium or flagellum-dependent cell motility, cilium movement, cilium, response to endoplasmic reticulum 
stress, PTEN DN.V1 DN, SRC UP.V1 UP, IL15 UP.V1 DN, RB DN.V1 DN, AKT UP MTOR DN.V1 UP, VEGF A UP.V1 UP, and KRAS.
LUNG.BREAST UP.V1 UP.

Conclusions These findings highlight the substantial association between the arginine and proline metabolism 
pathway and CRPC, emphasizing the need to prioritize strategies that target dysregulated metabolites and differen-
tially expressed genes as essential interventions in the clinical management of CRPC.

Keywords Transcriptomics, Metabolomics, LNCaP cells, CRPC

†Xinyi Shi and Xingchen Dai contributed equally to this work.

*Correspondence:
Pu Li
lipufudan@126.com
Yujing Gao
gaoyujing2004@126.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-023-11707-3&domain=pdf


Page 2 of 16Dai et al. BMC Cancer         (2023) 23:1241 

Introduction
 Prostate cancer (PCa) is the second most prevalent solid 
tumor in men worldwide and ranks as the fifth lead-
ing cause of cancer-related deaths [1]. Annually, around 
1.3  million new cases of prostate cancer are diagnosed. 
Approximately 10  million men are currently living with 
prostate cancer, and among them, approximately 700,000 
have metastatic disease. Metastatic prostate cancer 
claims the lives of over 400,000 individuals annually, 
and it is projected to more than double by 2040 [2]. The 
occurrence of prostate cancer is primarily influenced by 
factors such as age, family history, ethnicity, and genetic 
susceptibility [3]. Androgen deprivation therapy (ADT), 
achieved through medical or surgical castration, has been 
the standard treatment for metastatic prostate cancer for 
several decades. However, resistance to castration even-
tually develops, leading to the progression of castration-
resistant prostate cancer (CRPC), which can progress 
rapidly and result in a life expectancy of 2 to 4 years [4, 
5]. The development of castration-resistant prostate 
cancer (CRPC) poses a significant challenge in prostate 
cancer treatment. Despite extensive research and reports 
on CRPC, the underlying mechanism of its formation 
remains incompletely understood. Currently, there are no 
specific and reliable diagnostic methods available to dis-
tinguish CRPC from typical prostate cancer in the early 
stages.

Transcriptomics allows us to interpret functional ele-
ments of the genome and reveal global gene expression 
profiles associated with disease. Based on gene expres-
sion data, researchers have uncovered pathway dysregu-
lation and transcriptional programs associated with PCa 
progression and metastasis [6], which helps to predict 
the prognosis of the patients [7], and understand the 
mechanism for the process of tumorigenesis [8]. Metabo-
lomics is currently the main method for early diagnosis 
and precision medicine, focusing on small molecules to 
reveal changes in the metabolism of biological systems 
[9]. Metabolomics uncovers differences in metabolite 
concentrations or alterations in metabolic pathways [10], 
which can provide insights into cancer progression from 
a metabolic perspective [11], promising to be a valuable 
tool for the early detection of PCa and consequently lead-
ing to earlier disease treatment and clinical outcomes 
improvement [12]. Moreover, the integration of metab-
olomic and transcriptomic data may provide greater 
insight into the disease than either approach alone. Par-
ticularly, dysregulation of metabolites and genes in the 
same biological process will strengthen the potential 
implication of the process in the disease.

In the present study, we conducted RNA-sequenc-
ing and metabolomics analyses on the androgen-
dependent prostate cancer cell line LNCaP and the 

androgen-independent cells generated from LNCaP. By 
separate and integrated analyses of transcriptomic and 
metabolomic profiles of the two cell lines, we summa-
rized the specific transcriptomic and metabolomic fea-
tures of LNCaP-ADR cells that different from LNCaP 
parental cells. Our study will not only help to decipher 
the mechanism underlying CRPC progression, but also 
provide potential biomarkers for the risk assessment of 
CRPC.

Materials and methods
Cell culture
LNCaP parental cells were purchased from American 
Type Culture Collection (ATCC) and preserved in our 
laboratory. Cells were cultured in RPMI 1640 medium 
supplemented with 10% fetal bovine serum (FBS), 100 
μg/mL streptomycin, and 100 U/mL penicillin (Beyotime, 
Cat. No. ST488). The cells were incubated at 37℃ in a 5% 
 CO2 environment. An androgen-independent prostate 
cancer cell line, LNCaP-ADR, was generated by culturing 
the LNCaP parental cells under androgen-deprivation 
conditions. The cells were maintained in phenol red-free 
RPMI 1640 medium (Gibco, Cat. No. 11835030) supple-
mented with 10% charcoal-dextran stripped fetal bovine 
serum (cFBS; Biological Industries, Cat. No. 04-201-1A), 
streptomycin, and penicillin.

RNA‑sequencing
Total RNA of LNCaP parental cells (L group) and 
LNCaP-ADR cells (LA group) was isolated and puri-
fied using TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA) following the manufacturer’s procedure. The RNA 
amount and purity of each sample was quantified using 
NanoDrop ND-1000 (NanoDrop, Wilmington, DE, USA). 
The RNA integrity was assessed by Bioanalyzer 2100 
(Agilent, CA, USA) with RIN number > 7.0, and con-
firmed by electrophoresis with denaturing agarose gel. 
The RNA-Sequencing analysis was conducted by LC-Bio 
Technologies Co., Ltd (Hangzhou, China).

Gene Ontology (GO) and Kyoto Encyclopedia of genes 
and genomes (KEGG) enrichment analysis
For functional enrichment analysis, all differentially 
expressed genes (DEGs) were annotated to terms in the 
GO databases and significantly enriched GO terms were 
identified among the DEGs using a p-value threshold of 
less than 0.05. The GO analysis classified the enriched 
terms into three subgroups: biological process (BP), cel-
lular component (CC), and molecular function (MF). 
Additionally, all DEGs were mapped to the KEGG data-
base, and significantly enriched KEGG pathways were 
identified using a p-value threshold of less than 0.05.
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Gene Set Enrichment Analysis (GSEA)
GSEA Java (v4.1.0) was employed for Gene expression 
enrichment analysis (GSEA) analysis. GSEA analysis was 
conducted between the LNCaP-ADR cells (LA group) 
and LNCaP parental cells (L group) using transcrip-
tomic data. The reference gene sets selected for analy-
sis included h.all.v7.4.symbols.gmt (hallmark gene sets), 
c5.all.v7.4.symbols.gmt (ontology gene sets), and c6.all.
v7.4.symbols.gmt (oncogenic signature gene sets). In 
each analysis, a total of 1,000 gene sets were arranged 
to determine significantly different pathways. Gene set 
permutations were performed 1,000 times to identify 
pathways with significant differences. The enrichment 
magnitude was quantified using the normalized enrich-
ment score (|NES|xx1), while the statistical significance 
was assessed using the false discovery rate (FDR<25%). 
A nominal p-value < 5% was chosen as the cut-off criteria 
for statistical significance.

Metabolites extraction
A certain amount extract solution (acetonitrile: meth-
anol: water = 2: 2: 1) was added to the cell samples 
(LNCaP-ADR and LNCaP-parental cell lines respectively, 
five replicates for each cell line). After 30  s vortex, the 
samples were freezed and thawed with liquid nitrogen for 
3 times. Then the samples were incubated at -40 ℃ for 
1 h and centrifuged at 12,000 rpm for 15 min at 4 ℃. 800 
µL supernatant was transferred to an EP tube and dried 
in a vacuum concentrator. Then acetonitrile: methanol: 
water = 2: 2: 1, with isotopically-labelled internal stand-
ard mixture was added in proportion to redissolve. The 
resulting supernatant was transferred to a fresh glass vial 
for LC/MS analysis. The quality control (QC) sample was 
prepared by mixing an equal aliquot of the supernatants 
from all of the samples.

LC‑MS/MS analysis
LC-MS/MS analyses were performed using an UHPLC 
system (Vanquish, Thermo Fisher Scientific) with a 
UPLC BEH Amide column (2.1 mm × 100 mm, 1.7 μm) 
coupled to Q Exactive HFX mass spectrometer (Orbit-
rap MS, Thermo). The mobile phase consisted of 25 
mmol/L ammonium acetate and 25 ammonia hydroxide 
in water(pH = 9.75)(A) and acetonitrile (B). The auto-
sampler temperature was 4℃, and the injection volume 
was 3 µL.

The QE HFX mass spectrometer was used for its abil-
ity to acquire MS/MS spectra on information-dependent 
acquisition (IDA) mode in the control of the acquisition 
software (Xcalibur, Thermo). In this mode, the acqui-
sition software continuously evaluates the full scan 
MS spectrum. The ESI source conditions were set as 

following: sheath gas flow rate as 30 Arb, Aux gas flow 
rate as 25 Arb, capillary temperature 350 ℃, full MS res-
olution as 60,000, MS/MS resolution as 7500, collision 
energy as 10/30/60 in NCE mode, spray Voltage as 3.6 kV 
(positive) or -3.2 kV (negative), respectively. The LC-MS/
MS analysis was conducted by BIOTREE Technologies 
Co., Ltd (Shanghai, China).

Principal Component Analysis (PCA)
Internal standard normalization method was employed 
in the data analysis. The final dataset containing the 
information of peak number, sample name and normal-
ized peak area was imported to SIMCA16.0.2 software 
package (Sartorius Stedim Data Analytics AB, Umea, 
Sweden) for multivariate analysis. Data was scaled and 
logarithmic transformed to minimize the impact of both 
noise and high variance of the variables. After these 
transformations, PCA, an unsupervised analysis that 
reduces the dimension of the data, was carried out to vis-
ualize the distribution and the grouping of the samples. 
95%confidence interval in the PCA score plot was used as 
the threshold to identify potential outliers in the dataset.

Orthogonal Projections to Latent Structures‑Discriminant 
Analysis (OPLS‑DA)
SIMCA software (V16.0.2, Sartorius Stedim Data Ana-
lytics AB, Umea, Sweden) was utilized for logarithmic 
(LOG) conversion and UV formatting of the data. Ini-
tially, an OPLS-DA modeling analysis was performed 
on the first principal component to assess the model’s 
quality using 7-fold cross-validation. The interpretability 
of the model to the categorical variable Y (R2Y) and the 
predictability of the model (Q2), obtained after cross-val-
idation, were used to evaluate its validity. Subsequently, 
a permutation test was conducted by randomly chang-
ing the order of the categorical variable Y multiple times 
to obtain different random Q values. This test further 
assessed the model’s validity. Based on the data results, 
an OPLS-DA model was constructed, and scatter plots 
and permutation test results were obtained.

Screening of differentially expressed metabolites
Differentially expressed metabolites were screened using 
the following criteria: p-value of Student’s t-test < 0.05 
and Variable Importance in the Projection (VIP) of the 
first principal component of the OPLS-DA model > 1. 
The results of screening differential metabolites were vis-
ualized using volcano plots.

Metabolic pathway analysis of differentially expressed 
metabolites
The differential metabolites were mapped to authorita-
tive metabolite databases such as KEGG and PubChem 



Page 4 of 16Dai et al. BMC Cancer         (2023) 23:1241 

to obtain matching information. After that, metabolic 
pathways in the pathway database specific to the corre-
sponding species (human) were searched and analyzed. 
Pathway screening criteria were set as follows: FDR < 0.1 
and Impact > 0. The key pathway with the highest corre-
lation to the metabolite differences was determined. The 
analysis was conducted using R version 3.6.1.

Clustering correlation heatmap and correlation network 
map
To investigate the relationship and correlation between 
differentially expressed metabolites and genes, clustering 
correlation heatmaps and correlation network maps were 
generated. The clustering correlation heatmap with signs 
and correlation network were created using the OmicS-
tudio tools at https:// www. omics tudio. cn/ tool. The cor-
relation calculation (Pearson correlation) was performed 
using the stats package in R version 3.6.3 (2020-02-29). 
The analysis was conducted using R version 3.6.3 (2020-
02-29) and the igraph package version 1.2.6.

Quantitative real‑time PCR (QPCR)
Total RNA of LNCaP cells were extracted using TRIZOL 
reagent (Invitrogen, USA), and reversely transcribed to 
cDNA using an RNA reverse transcription kit (Takara, 
Japan). QPCR was performed using the ABI 7500 Fast 
Real-Time PCR system (Applied Biosystems, Carlsbad, 
CA). Primers were synthesized by Shanghai Sangong 

Biotechnology Co., Ltd. (China). The Primers for the 
QPCR are as follows: MAOA, forward, 5’-GAA TCA 
AGA GAA GGC GAG TATCG-3’, reverse, 5’-GGC AGC 
AGA TAG TCC TGA AATG-3’; ARG1, forward, 5’-GTG 
GAA ACT TGC ATG GAC AAC-3’, reverse, 5’- AAT CCT 
GGC ACA TCG GGA ATC-3’; ALDH2, forward, 5’- ATG 
GCA AGC CCT ATG TCA TCT-3’, reverse, 5’- CCG TGG 
TAC TTA TCA GCC CA-3’, ALDA3A2, forward, 5’- AAA 
CCA GTT AAG AAG AAC GTGCT-3’, reverse, 5’- CGA 
AGG GGT AAT TCC AAG CTC-3’; CKMT2, forward, 5’- 
CCA AGC GCA GAC TAC CCA G-3’, reverse, 5’ GGT GTC 
ACC TTG TTG CGA AG-3’, CNDP1, forward, 5’- ATG 
GTC AGA GTC TTC CAA TACCT-3’, reverse, 5’- TAG 
AAG CAC ACG GTG CCT TTC-3’; GAPDH, forward, 5’- 
GGA CTC ATG ACC ACA GTC CA-3’, reverse, 5’- CCA 
GTA GAG GCA GGG ATG AT-3’. The mRNA levels were 
normalized using GAPDH as a reference, and the rela-
tive expression levels were determined using the  2−ΔΔCt 
method.

Statistical analysis
GraphPad Prism version  8.3.0 software (GraphPad 
Inc., San Diego, CA, USA) was utilized for the analy-
sis of the QPCR data, with the results presented as the 
mean ± standard deviation (SD). Unpaired t-tests were 
conducted to compare two groups wherever applicable. A 
significance threshold of P < 0.05 was used to determine 

Fig. 1 Volcano map of DEGs between LNCaP-ADR cells and LNCaP parental cells. The volcano map displays the differentially expressed genes 
(DEGs) between LNCaP-ADR cells (LA group) and LNCaP parental cells (L group). The x-axis is presented on a log2 scale, representing the fold 
change in gene expression between LNCaP-ADR cells and LNCaP parental cells (log2(fold change)). Negative values on the x-axis indicate 
downregulation, whereas positive values indicate upregulation. The y-axis is presented on a log10 scale, depicting the p-values, which determine 
the significance level of expression difference. Red dots on the volcano map indicate significantly upregulated genes with at least a two-fold 
change, while blue dots represent significantly downregulated genes, also with at least a two-fold change

https://www.omicstudio.cn/tool
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Fig. 2 Heatmap depicting the differentially expressed genes between LNCaP-ADR cells and LNCaP parental cells. The heatmap uses red or orange 
color to indicate high expression, while blue color represents low expression of the genes in LNCaP-ADR cells (LA group) and LNCaP parental cells (L 
group)
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statistical significance. Each experiment involved a mini-
mum of three replicates.

Result
Identification of differentially expressed genes 
in LNCaP‑ADR cells
To elucidate the possible genes involved in the develop-
ment of androgen deprivation resistance, we conducted 
RNA-sequencing (RNA-seq) of the whole transcrip-
tome of androgen-dependent LNCaP cells (L group) 
and androgen-independent prostate cancer cells gener-
ated from LNCaP cells, referred as to LNCaP-ADR cells 
(LA group) to identify the changes in gene expression. 
A total of 60,612 genes were identified. DEG analysis 
revealed 3,177 genes with significant differential expres-
sion (P < 0.05). Among these, 1,749 genes showed an up-
regulation trend in LNCaP –ADR cells, while 1,428 genes 
showed a down-regulation trend in the cells (Fig. 1). The 
top 100 differentially expressed genes were listed as heat 
map in Fig. 2.

Highly expressed GO terms in the LNCaP‑ADR cells 
associated with cell replication and DNA maintenance
A total of 8,335 GO terms were detected, with 723 GO 
terms found to be significantly enriched among the DEGs 
(P < 0.05). These included 458 GO terms in biological 
processes, 121 GO terms in cellular components, and 142 
GO terms in molecular functions. The top 25, 15 and 10 
annotation items in the above three items were displayed 
in Fig. 3 respectively.

Significantly enriched pathways in LNCaP‑ADR cells
Upon comparing the two groups, the top 20 GO terms 
that were highly expressed in the LNCaP-ADR cells (LA 
group) were primarily associated with cell replication, 
mitosis, DNA replication, and DNA repair (Fig.  4A). 
Compared with the LNCaP parental cells (L group), 
the top 20 KEGG pathways in LNCaP-ADR cells were 
mainly related to cell cycle, cell senescence, base repair, 
amino acid metabolism, lipid metabolism, and so on. 
(Fig. 4B).

Fig. 3 Classification and analysis of GO functions of the DEGs between LNCaP-ADR cells and LNCaP parental cells. The x-axis represents the GO 
classification, while the y-axis represents the number of genes
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Differential gene expression analysis reveals enriched gene 
sets in the LNCaP‑ADR cells
In the analysis of hallmark gene sets, 14 out of 36 gene 
sets were upregulated in the LNCaP-ADR cells (LA 
group). One gene set showed significant enrichment at 
a false discovery rate (FDR) < 25%, primarily related to 
inflammatory response (Fig. 5).

In the analysis of ontology gene sets, 507 out of 2,359 
gene sets were upregulated in the LNCaP-ADR cells. 
Seven gene sets were significantly enriched at FDR < 25%, 
mainly associated with 9 plus 2 motile cilium, motile 
cilium, ciliary plasm, response to endoplasmic reticulum 
stress, cilium or flagellum-dependent cell motility, cilium 
movement, and cilium (Fig. 5).

Fig. 4 Significant GO terms & KEGG pathways differing in LNCaP-ADR vs. LNCaP parental cells, top 20. A The scatter plot represents the top 20 
enriched GO terms in LNCaP-ADR cells. B The scatter plot represents the top 20 enriched KEGG pathways in LNCaP-ADR cells

Fig. 5 GSEA results across three datasets: Hallmark gene sets, Ontology gene sets, and Oncogenic signature gene sets. The LNCaP-ADR cells 
showed enrichment in 15 pathways
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In the analysis of oncogenic signature gene sets, 54 
out of 160 gene sets were upregulated in the LNCaP-
ADR cells. Seven gene sets were significantly enriched 
at FDR < 25%, primarily related to PTEN, SRC, IL15, 
RB, AKT, VEGF, and KRAS (Fig. 5).

Metabolite profiling reveals significant changes 
in LNCaP‑ADR cells
PCA and OPLS-DA were used to analyze the metabo-
lite data matrix of the LA group and L group samples. 
The PCA and OPLS-DA score plots demonstrated 
a clear discrimination between the two groups, 

Fig. 6 Multivariate analysis of the metabolic profile of LNCaP-ADR cells and LNCaP parental cells. A, B PCA score plots in the POS model A and NEG 
model (B). C, D OPLS-DA score plots in the POS model (C) and NEG model (D). E, F Permutation tests of the OPLS-DA model in the POS model (E) 
and NEG model (F). PCA, principal component analysis. OPLS-DA, orthogonal projections to latent structures- discriminant analysis



Page 9 of 16Dai et al. BMC Cancer         (2023) 23:1241  

indicating significant changes in metabolite compo-
sition in LNCaP-ADR cells (LA group) compared to 
LNCaP parental cells (L group) (Fig.  6A-D). The per-
mutation test of the OPLS-DA model confirmed the 
robustness of the original model and indicated no 
overfitting (Fig. 6E, F). The volcano plots showed that 
2,243 endogenous differentially expressed metabolites 
(DEMs) were significantly down-regulated and 1,215 
DEMs were significantly up-regulated in the LA group 
under the positive ion mode; while 1,548 endogenous 
DEMs were significantly down-regulated and 1,564 
DEMs were significantly up-regulated in the LA group 
under the negative ion mode (P < 0.05) (Fig. 7A, B).

Metabolic pathways enriched in DEMs of LNCaP‑ADR cells
All markers of DEMs were functionally annotated and sub-
jected to pathway enrichment analysis using KEGG. Four 
metabolic pathways that met the screening criteria (P < 0.05, 
FDR < 0.1, Impact > 0) were identified in the positive ion 
mode: Arginine and proline metabolism, Sphingolipid 
metabolism, Beta-alanine metabolism, and Glycerophos-
pholipid metabolism. In the negative ion mode, five meta-
bolic pathways that met the screening criteria (P < 0.05, 
FDR < 0.1, Impact > 0) were identified: Arginine and proline 
metabolism, Alanine, aspartate and glutamate metabolism, 
Pyrimidine metabolism, Taurine and hypotaurine metabo-
lism, and Purine metabolism (Tables 1 and 2).

Fig. 7 Identification of differential metabolites between LNCaP-ADR cells and LNCaP parental cells. A, B Volcano plots depicting the differential 
metabolites in LNCaP-ADR cells compared to LNCaP parental cells, presented separately for the POS model (A) and NEG model (B). In the plots, red 
dots indicate upregulated metabolites, blue dots indicate downregulated metabolites, and gray dots represent unaffected metabolites

Table 1 Pathway analysis: altered metabolites in LNCaP-ADR vs. LNCaP parental cells using POS mode

Pathway name Match status p ‑Ln(p) Holm p FDR Impact

Arginine and proline metabolism 12/77 0.00057715 7.4574 0.046172 0.046172 0.42386

Sphingolipid metabolism 6/25 0.0015432 6.4739 0.12191 0.061728 0.33382

Beta-Alanine metabolism 6/28 0.0028776 5.8508 0.22446 0.075303 0.12176

Glycerophospholipid metabolism 7/39 0.0037651 5.582 0.28991 0.075303 0.25106

Table 2 Pathway analysis: altered metabolites in LNCaP-ADR vs. LNCaP parental cells using NEG mode

Pathway name Match status p ‑Ln(p) Holm p FDR Impact

Arginine and proline metabolism 12/77 0.000064435 9.6498 0.0051548 0.0051548 0.40538

Alanine, aspartate and glutamate metabolism 6/24 0.00036124 7.926 0.028538 0.01445 0.23362

Pyrimidine metabolism 9/60 0.00075231 7.1924 0.05868 0.020061 0.25617

Taurine and hypotaurine metabolism 5/20 0.0011554 6.7633 0.088965 0.022347 0.42267

Purine metabolism 11/92 0.0013967 6.5737 0.10615 0.022347 0.13774
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Pathway‑specific upregulation of metabolites 
in LNCaP‑ADR cells
The DEMs involved in the identified metabolic pathways 
were subjected to hierarchical clustering analysis. The 
heat maps showed the up-regulated expression levels of 

intermediate metabolites and/or end products in glyc-
erophospholipid, sphingomyelin, Beta-Alanine,  and 
arginine and proline metabolism pathways in the LNCaP-
ADR cells (LA group) under the positive ion mode 
(Fig.  8A). Under the negative ion mode, the expression 

Fig. 8 Differential metabolites between LNCaP-ADR cells and LNCaP parental cells. A Heatmap illustrating the results of hierarchical clustering 
analysis comparing LNCaP-ADR cells (LA group) with LNCaP parental cells (L group) in the POS model, and (B) in the NEG model. The x-axis 
represents different experimental groups, the y-axis represents the investigated differential metabolites, and the color represents the relative 
expression of the corresponding metabolite in the corresponding sample

Fig. 9 Venn diagram: The mutual KEGG pathway in metabolome using POS and NEG models and transcriptome
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levels of intermediate metabolites and/or end products in 
arginine and proline metabolism, alanine, aspartate and 
glutamate metabolism, purine and pyrimidine metabo-
lism, and taurine metabolism were significantly up-regu-
lated In the LNCaP-ADR cells (Fig. 8B).

Integration of transcriptomic and metabolomic analyses 
reveals enriched pathway and correlation between genes 
and metabolites in LNCaP‑ADR cells
The metabolic pathways selected from the metabolomic 
analysis in both positive ion mode (POS) and negative 
ion mode (NEG) were compared with the 310  KEGG 
metabolic pathways identified from the transcriptomic 
analysis. The Venn diagram (Fig. 9) revealed that only one 
pathway, Arginine and proline metabolism, was enriched 
with both differentially expressed genes (DEGs) and dif-
ferentially expressed metabolites (DEMs).

Further analysis focused on the differential metabo-
lites of Arginine and proline metabolism in both POS 
and NEG modes. The MS2 score and mean values 
were compared, resulting in the identification of 17 
DEMs (Table  3). Among these, 5 endogenous DEMs 
(5-Aminopentanoic acid, L-Arginine, L-Glutamic 
acid, N-Acetyl-L-alanine, and Pyrrole-2-carboxylic 
acid) were significantly up-regulated in LNCaP-ADR 
cells compared to parental cells. Additionally, 6 DEGs 
(MAOA, ALDH3A2, ALDH2, ARG1, CKMT2, and 
CNDP1) were identified as significantly up-regulated 
in the LNCaP-ADR cells (LA group) compared to the 
LNCaP parental cells (L group) (Table 4).

To explore the correlation between the screened 
DEMs and DEGs, a correlation analysis was per-
formed and visualized using clustering correlation 
heatmaps and correlation network maps (Fig. 10A, B). 
The up-regulated DEMs in the LNCaP-ADR cells, such 
as 5-Aminopentanoic acid, L-Arginine, L-Glutamic 
acid, N-Acetyl-L-alanine, and Pyrrole-2-carboxylic 
acid, showed negative correlations with DEGs CKB, 
CKMT1A, and CKMT1B, while they showed positive 
correlations with DEGs CKMT2, ALDH3A2, ARG1, 
CNDP1, ALDH2, and MAOA. Furthermore, 6 DEGs 
(CKB, CKMT1A, CKMT2, ARG1, CNDP1, and ALDH2) 
exhibited high correlations with multiple DEMs. The 
selected up-regulated and down-regulated DEGs and 
DEMs were identified in KEGG pathways using the tool 
at https:// pathv iew. uncc. edu and https:// www. kegg. jp/ 
pathw ay/ ko003 30 [13–15], as shown in Fig. 11.

Validation of the differentially expressed genes (DEGs) 
between LNCAP‑ADR cells and parental cell
To validate DEGs identified through transcriptom-
ics and metabolomics, the six selected genes (MAOA, 
ALDH3A2, ALDH2, ARG1, CKMT2, and CNDP1) were 

further  confirmed using QPCR. The results demon-
strated significant upregulation of mRNA levels of these 
six DEGs  in LNCAP-ADR cells compared to LNCaP 
parental cells (Fig. 12).

Discussion
The integration of metabolomic and transcriptomic data 
in this study offers a comprehensive view of the metabolic 
alterations associated with LNCaP-ADR cells, uncov-
ering potential key pathways and biomarkers involved 
in the development of androgen-independent prostate 
cancer. The identification of the Arginine and proline 

Table 3 Identified metabolites in arginine and proline 
metabolism pathway via combined POS and NEG model analysis

Metabolites variation trend MS2 score MEAN log2(fc)

5-Aminopentanoic 
acid

up 1.000 12.911 0.172

L-Arginine up 0.977 0.579 2.280

L-Glutamic acid up 0.995 39.837 0.706

N-Acetyl-L-alanine up 0.998 2.531 0.480

Pyrrole-2-carboxylic 
acid

up 0.998 1.618 0.864

4-Guanidinobutanoic 
acid

down 0.983 82.363 -1.949

Argininosuccinic acid down 0.749 0.330 -0.924

Citrulline down 0.966 5.967 -0.890

Creatine down 0.990 140.793 -9.632

Creatinine down 0.951 27.266 -0.632

Hydroxyproline down 0.998 7.080 -2.686

L-Aspartic acid down 0.871 0.050 -0.464

L-Proline down 1.000 59.569 -0.818

N-Acetylputrescine down 0.945 11.949 -7.518

Ornithine down 0.999 1.840 -0.865

Phosphocreatine down 0.644 0.077 -0.848

N-Acetylornithine down 0.978 0.669 -2.530

Table 4 Differentially expressed genes identified in the arginine 
and proline metabolism pathway

Gene ID Gene name KEGG 
name

variation 
trend

log2(fc)

ENSG00000189221 MAOA K00274 up 1.14

ENSG00000072210 ALDH3A2 NA up 1.23

ENSG00000111275 ALDH2 NA up 1.26

ENSG00000118520 ARG1 NA up 3.56

ENSG00000131730 CKMT2 NA up 4.35

ENSG00000150656 CNDP1 K05604 up 5.21

ENSG00000166165 CKB NA down -1.69

ENSG00000223572 CKMT1A K00933 down -1.11

ENSG00000237289 CKMT1B NA down -1.08

https://pathview.uncc.edu
https://www.kegg.jp/pathway/ko00330
https://www.kegg.jp/pathway/ko00330
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metabolism pathway as enriched with both DEGs and 
DEMs highlights its significance in driving the metabolic 
reprogramming observed in LNCaP-ADR cells.

Within the Arginine and proline metabolism pathway, 
several metabolites were found to be significantly up-
regulated in LNCaP-ADR cells compared to the parental 
cells. Among these metabolites, 5-Aminopentanoic acid, 
L-Arginine, L-Glutamic acid, N-Acetyl-L-alanine, and 
Pyrrole-2-carboxylic acid stood out as potential biomark-
ers for distinguishing androgen-independent prostate 
cancer.

Arginine is a fundamental component of protein syn-
thesis and plays a critical role in tumor cell growth. It 
also serves as an important precursor for polyamines, 
including putrescine, spermidine, and spermine, which 
play key roles in cellular proliferation and growth [16]. 
Moreover, previous reports have indicated that arginine 
has the ability to directly activate the nutrient-sensing 
kinase, mammalian target of rapamycin complex 1 
(mTORC1), and acts as an epigenetic regulator target-
ing TEAD4 to modulate oxidative phosphorylation 
(OXPHOS) in prostate cancer cells [17]. Arginine also 
participates in the urea cycle, producing nitrogen and 
energy supply. The urea cycle plays a crucial role in 
maintaining nitrogen balance in the body and prevent-
ing the accumulation of toxic ammonia. In contrast to 

the toxic effects of excessive ammonia under normal 
physiological conditions, cancer cells can utilize and 
recycle ammonia for the synthesis of amino acids and 
nucleic acids, essential for supporting tumor prolif-
eration and providing the necessary building blocks for 
proteins and nucleotides [18]. Notably, arginine is also 
involved in the activation of immunological effector 
cells and decreasing tumoral immunosurveillance [19]. 
Previous studies have demonstrated that urine samples 
or tissues from prostate cancer patients exhibit higher 
levels of arginine compared to those from patients with 
benign prostatic hyperplasia (BPH) [20, 21]. Together 
with our findings, arginine deprivation might repre-
sent a novel antimetabolite strategy for the treatment 
of CRPC.

Five-Aminopentanoic acid, also known as 5-amino-
valeric acid, is a degradation product of lysine. It func-
tions as a methylene homologue of γ-aminobutyric acid 
(GABA) [22]. In advanced prostate cancer, the excessive 
production of GABA has been reported to directly mod-
ulate nuclear androgen receptor signals, thereby con-
tributing to tumorigenesis [23]. Studies have indicated 
a significant increase in glutamate content in malignant 
prostate cancer tissue, which is associated with an ele-
vated risk of advanced prostate cancer [24, 25]. Although 
there are currently no reports on the relationship 

Fig. 10 Correlation analysis between differentially expressed metabolites and genes. A Heatmap illustrating the correlation between differentially 
expressed metabolites and genes. The horizontal and vertical axes represent the differentially expressed genes and metabolites used for analysis, 
respectively. The color of each heatmap block indicates the correlation coefficient obtained through Pearson correlation analysis: red indicates 
a positive correlation, blue indicates a negative correlation. * denotes a significant correlation between key species and metabolites (p-value<0.05), 
and ** denotes an extremely significant correlation (p-value<0.01). B Network representation showing the correlation between differentially 
expressed metabolites (blue nodes) and genes (red nodes). The size of each node reflects its degree of centrality, indicating the number 
of connections it has with other nodes. The thickness of the lines in the network is determined by the rho value, which indicates the strength 
of the correlation (absolute value of rho): thicker lines represent stronger correlations (positive or negative), while thinner lines represent weaker 
correlations. Solid gold lines represent positive correlations, while dashed silver lines represent negative correlations
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between Pyrrole-2-carboxylic acid and prostate cancer, 
a study by Hai Jin et  al. demonstrates its high diagnos-
tic capability for metastasis in esophageal squamous 
cell carcinoma [26]. The increased abundance of these 
metabolites in LNCaP-ADR cells suggests a rewiring of 
the metabolic network in the cells, potentially fueling the 
aggressive phenotype exhibited by these cells.

In LNCaP-ADR cells, we observed upregulation of sev-
eral genes associated with the arginine and proline meta-
bolic pathways, including MAOA, ALDH3A2, ALDH2, 
ARG1, CKMT2, and CNDP1. MAOA has been associated 
with perineural invasion in prostate cancer cells [27]. 
ALDH3A2 [28–30] and ALDH2 [31–33] are implicated 
in various cancer types. ARG1 and ARG2 have a posi-
tive correlation with LNCaP cell growth [34]. CKMT2 
is linked to gastric cancer prognosis and osteosarcoma 
progression [35, 36]. CNDP1 is involved in carnosine 
metabolism and reduced plasma levels are associated 

with poor prognosis in gastrointestinal cancers [37, 38]. 
The up-regulation of these genes in the LNCaP-ADR 
cells indicate their association with enhanced migration 
and invasion capabilities compared to the parental cells. 
These genes could potentially serve as diagnostic markers 
for detecting CRPC and supporting clinical treatment.

Furthermore, our GSEA analysis revealed that the 
LNCaP-ADR cells exhibited enrichment in gene sets 
associated with inflammatory response, cilium-depend-
ent cell motility, response to endoplasmic reticulum 
stress, PTEN loss, Src kinases, RB mutations, PI3K-
AKT-mTOR signaling, RAS signaling, and angiogenesis. 
The association between inflammation [39–41], PTEN 
loss [42], Src kinases [43], RB mutations, PI3K-AKT-
mTOR signaling [44], RAS signaling [45], and prostate 
cancer development have been well established. Cilia 
play a role in cell motility and fluid transportation [46], 
and their enrichment in the LNCaP-ADR cells suggests 

-1 0 1

-1 0 1

Fig. 11 KEGG pathway: Differentially expressed genes and metabolites in arginine and proline metabolism. In the upper right corner of the figure, 
there are two legends, from top to bottom, for “gene” and “metabolite” respectively. The “gene” legend corresponds to the rectangles in the diagram, 
while the “metabolite” legend corresponds to the circles. The color intensity in both shapes indicates the expression level, with higher expression 
depicted as a deeper shade of red
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enhanced migration and invasion abilities. Enhanced 
angiogenesis, mediated by VEGF, is crucial for cancer 
metastasis, including prostate cancer [47]. These studies 
supported our findings since CRPC cells exhibit a more 
aggressive behavior compared to other prostate can-
cer cells. However, our study has limitations: we solely 
conducted in vitro validation of the selected DEGs from 
mRNA level. In our next steps, we intend to conduct fur-
ther experiments to validate the identified metabolites 
and genes both in  vivo and in  vitro, so that to enhance 
the depth and reliability of our study, and strengthen the 
overall findings and provide a more robust understanding 
of the mechanisms involved.

Overall, this integrative analysis of metabolomic and 
transcriptomic data contributes to our knowledge of the 
metabolic landscape of androgen-independent prostate 
cancer. The identified biomarkers and key regulatory 
genes offer potential avenues for developing targeted 
therapies and diagnostic tools for more effective manage-
ment of advanced prostate cancer. Future studies should 
focus on elucidating the specific roles of these biomole-
cules and further validating their clinical relevance.

Acknowledgements
Not applicable.

Disclaimer
The funders had no roles in study design, data collection and analysis, decision 
to publish, or preparation of the manuscript.

Authors’ contributions
YG and PL performed the study concept and design; XD provided acquisition, 
analysis, and interpretation of data, and statistical analysis. XS and ML provided 
technical and material support; XD and XS wrote the original draft; YG and PL 
performed review and revision of the paper. All authors read and approved 
the final paper.

Funding
This work was supported by grants from the National Natural Science Founda-
tion of  China (81660486, 81872395).

Availability of data and materials
All untargeted metabolomic data used in this publication have been depos-
ited to the EMBL-EBI MetaboLights database with the identifier MTBLS8377 
(liver metabolomics). The complete data set can be accessed at https:// www. 
ebi. ac. uk/ metab oligh ts/ MTBLS 8377. Additional data related to this paper are 
available upon request from the corresponding author.

Declarations

Ethics approval and consent to participate
This study did not involve any direct human or human data. The study 
was reviewed and approved by the Ethics Committee of Ningxia Medical 
University.

Consent for publication
This study did not involve any direct human or human data. The study 
was reviewed and approved by the Ethics Committee of Ningxia Medical 
University.

Competing interests
The authors declare no competing interests.

Author details
1 Key Laboratory of Fertility Preservation and Maintenance of Ministry of Edu-
cation, Department of Biochemistry and Molecular Biology, School of Basic 
Medical Sciences, Ningxia Medical University, Yinchuan, China. 2 Department 

Fig. 12 Validating expression levels of 6 DEGs in LNCaP ADR and parental cells. mRNA levels of MAOA, ARG1, ALDH2, ALDH3A2, CKMT2, and CNDP1 
were detected using QPCR. **P<0.01

https://www.ebi.ac.uk/metabolights/MTBLS8377
https://www.ebi.ac.uk/metabolights/MTBLS8377


Page 15 of 16Dai et al. BMC Cancer         (2023) 23:1241  

of Nephrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 
China. 3 Ankang Central Hospital, Ankang, China. 4 Department of Pediatrics, 
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 
China. 5 National Health Commission Key Laboratory of Metabolic Cardiovas-
cular Diseases Research, Ningxia Medical University, Yinchuan, China. 

Received: 25 August 2023   Accepted: 2 December 2023

References
 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray 

F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
2021;71(3):209–49.

 2. Sandhu S, Moore CM, Chiong E, Beltran H, Bristow RG, Williams SG. Pros-
tate cancer. Lancet. 2021;398(10305):1075–90.

 3. Al Olama AA, Kote-Jarai Z, Berndt SI, Conti DV, Schumacher F, Han Y, Benl-
loch S, Hazelett DJ, Wang Z, Saunders E, et al. A meta-analysis of 87,040 
individuals identifies 23 new susceptibility loci for prostate cancer. Nat 
Genet. 2014;46(10):1103–9.

 4. Omlin A, Pezaro C, Mukherji D, Mulick Cassidy A, Sandhu S, Bianchini D, 
Olmos D, Ferraldeschi R, Maier G, Thompson E, et al. Improved survival in 
a cohort of trial participants with metastatic castration-resistant prostate 
cancer demonstrates the need for updated prognostic nomograms. Eur 
Urol. 2013;64(2):300–6.

 5. Patrikidou A, Loriot Y, Eymard JC, Albiges L, Massard C, Ileana E, Di 
Palma M, Escudier B, Fizazi K. Who dies from prostate cancer? Prostate 
Cancer Prostatic Dis. 2014;17(4):348–52.

 6. Tousignant KD, Rockstroh A, Taherian Fard A, Lehman ML, Wang C, 
McPherson SJ, Philp LK, Bartonicek N, Dinger ME, Nelson CC, et al. Lipid 
uptake is an androgen-enhanced lipid supply pathway associated with 
prostate cancer disease progression and bone metastasis. Mol Cancer 
Res. 2019;17(5):1166–79.

 7. Hennigs JK, Minner S, Tennstedt P, Loser R, Huland H, Klose H, Graefen 
M, Schlomm T, Sauter G, Bokemeyer C, et al. Subcellular compartmen-
talization of survivin is associated with biological aggressiveness and 
prognosis in prostate cancer. Sci Rep. 2020;10(1):3250.

 8. Cao J, Li J, Yang X, Li P, Yao Z, Han D, Ying L, Wang L, Tian J. Transcrip-
tomics analysis for the identification of potential age-related genes 
and cells associated with three major urogenital cancers. Sci Rep. 
2021;11(1):641.

 9. Zhao YY, Cheng XL, Vaziri ND, Liu S, Lin RC. UPLC-based metabonomic 
applications for discovering biomarkers of diseases in clinical chemis-
try. Clin Biochem. 2014;47(15):16–26.

 10. Jung K, Reszka R, Kamlage B, Bethan B, Stephan C, Lein M, Kristiansen 
G. Tissue metabolite profiling identifies differentiating and prognostic 
biomarkers for prostate carcinoma. Int J Cancer. 2013;133(12):2914–24.

 11. Teahan O, Bevan CL, Waxman J, Keun HC. Metabolic signatures of 
malignant progression in prostate epithelial cells. Int J Biochem Cell Biol. 
2011;43(7):1002–9.

 12. Roberts MJ, Schirra HJ, Lavin MF, Gardiner RA. Metabolomics: a novel 
approach to early and noninvasive prostate cancer detection. Korean J 
Urol. 2011;52(2):79–89.

 13. Kanehisa M. Toward understanding the origin and evolution of cellular 
organisms. Protein Sci. 2019;28(11):1947–51.

 14. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 
KEGG for taxonomy-based analysis of pathways and genomes. Nucleic 
Acids Res. 2023;51(D1):D587-592.

 15. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28(1):27–30.

 16. Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine 
dependence of tumor cells: targeting a chink in cancer’s armor. Onco-
gene. 2016;35(38):4957–72.

 17. Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, 
Wang T, Harper JW, Gygi SP, Sabatini DM. The CASTOR proteins are argi-
nine sensors for the mTORC1 pathway. Cell. 2016;165(1):153–64.

 18. Hajaj E, Sciacovelli M, Frezza C, Erez A. The context-specific roles of urea 
cycle enzymes in tumorigenesis. Mol Cell. 2021;81(18):3749–59.

 19. Matos A, Carvalho M, Bicho M, Ribeiro R. Arginine and arginases modu-
late metabolism, tumor microenvironment and prostate cancer progres-
sion. Nutrients. 2021;13(12):4503.

 20. Franko A, Shao Y, Heni M, Hennenlotter J, Hoene M, Hu C, Liu X, Zhao X, 
Wang Q, Birkenfeld AL, et al. Human prostate cancer is characterized by 
an increase in urea cycle metabolites. Cancers (Basel). 2020;12(7):1814.

 21. Sroka WD, Boughton BA, Reddy P, Roessner U, Slupski P, Jarzemski P, Dab-
rowska A, Markuszewski MJ, Marszall MP. Determination of amino acids in 
urine of patients with prostate cancer and benign prostate growth. Eur J 
Cancer Prev. 2017;26(2):131–4.

 22. Callery PS, Geelhaar LA. 1-Piperideine as an in vivo precursor of the 
gamma-aminobutyric acid homologue 5-aminopentanoic acid. J Neuro-
chem. 1985;45(3):946–8.

 23. Taylor RA, Watt MJ. Unsuspected protumorigenic signaling role for 
the oncometabolite GABA in advanced prostate cancer. Cancer Res. 
2019;79(18):4580–1.

 24. Artemyev DN, Kukushkin VI, Avraamova ST, Aleksandrov NS, Kirillov YA. 
Using the method of optical biopsy of prostatic tissue to diagnose pros-
tate cancer. Molecules. 2021;26(7):1961.

 25. Noonan-Wheeler FC, Wu W, Roehl KA, Klim A, Haugen J, Suarez BK, Kibel 
AS. Association of hereditary Prostate cancer gene polymorphic variants 
with sporadic aggressive prostate carcinoma. Prostate. 2006;66(1):49–56.

 26. Jin H, Qiao F, Chen L, Lu C, Xu L, Gao X. Serum metabolomic signatures 
of lymph node metastasis of esophageal squamous cell carcinoma. J 
Proteome Res. 2014;13(9):4091–103.

 27. Yin L, Li J, Wang J, Pu T, Wei J, Li Q, Wu BJ. MAOA promotes prostate 
cancer cell perineural invasion through SEMA3C/PlexinA2/NRP1-cMET 
signaling. Oncogene. 2021;40(7):1362–74.

 28. Kennedy SA, Jarboui MA, Srihari S, Raso C, Bryan K, Dernayka L, Charitou 
T, Bernal-Llinares M, Herrera-Montavez C, Krstic A, et al. Extensive rewiring 
of the EGFR network in colorectal cancer cells expressing transforming 
levels of KRAS(G13D). Nat Commun. 2020;11(1):499.

 29. Nassa G, Giurato G, Salvati A, Gigantino V, Pecoraro G, Lamberti J, Rizzo F, 
Nyman TA, Tarallo R, Weisz A. The RNA-mediated estrogen receptor alpha 
interactome of hormone-dependent human breast cancer cell nuclei. Sci 
Data. 2019;6(1):173.

 30. Yin Z, Wu D, Shi J, Wei X, Jin N, Lu X, Ren X. Identification of ALDH3A2 as a 
novel prognostic biomarker in gastric adenocarcinoma using integrated 
bioinformatics analysis. BMC Cancer. 2020;20(1):1062.

 31. Guey LT, Garcia-Closas M, Murta-Nascimento C, Lloreta J, Palencia L, 
Kogevinas M, Rothman N, Vellalta G, Calle ML, Marenne G, et al. Genetic 
susceptibility to distinct bladder cancer subphenotypes. Eur Urol. 
2010;57(2):283–92.

 32. Seo W, Gao Y, He Y, Sun J, Xu H, Feng D, Park SH, Cho YE, Guillot A, Ren 
T, et al. ALDH2 deficiency promotes alcohol-associated Liver cancer by 
activating oncogenic pathways via oxidized DNA-enriched extracellular 
vesicles. J Hepatol. 2019;71(5):1000–11.

 33. Yang S, Lee J, Choi IJ, Kim YW, Ryu KW, Sung J, Kim J. Effects of alcohol 
consumption, ALDH2 rs671 polymorphism, and Helicobacter pylori 
Infection on the gastric cancer risk in a Korean population. Oncotarget. 
2017;8(4):6630–41.

 34. Gannon PO, Godin-Ethier J, Hassler M, Delvoye N, Aversa M, Poisson AO, 
Peant B, Alam Fahmy M, Saad F, Lapointe R, et al. Androgen-regulated 
expression of arginase 1, arginase 2 and interleukin-8 in human prostate 
cancer. PLoS One. 2010;5(8):e12107.

 35. Wang H, Tang M, Ou L, Hou M, Feng T, Huang YE, Jin Y, Zhang H, Zuo G. 
Biological analysis of cancer specific microRNAs on function modeling in 
osteosarcoma. Sci Rep. 2017;7(1):5382.

 36. Wen F, Huang J, Lu X, Huang W, Wang Y, Bai Y, Ruan S, Gu S, Chen X, Shu 
P. Identification and prognostic value of metabolism-related genes in 
gastric cancer. Aging. 2020;12(17):17647–61.

 37. Gaunitz F, Hipkiss AR. Carnosine and cancer: a perspective. Amino Acids. 
2012;43(1):135–42.

 38. Schwenk JM, Igel U, Neiman M, Langen H, Becker C, Bjartell A, Ponten F, 
Wiklund F, Gronberg H, Nilsson P, et al. Toward next generation plasma 
profiling via heat-induced epitope retrieval and array-based assays. Mol 
Cell Proteomics. 2010;9(11):2497–507.

 39. Dwivedi S, Goel A, Khattri S, Mandhani A, Sharma P, Misra S, Pant KK. 
Genetic variability at promoters of IL-18 (pro-) and IL-10 (anti-) inflam-
matory gene affects susceptibility and their circulating serum levels: an 



Page 16 of 16Dai et al. BMC Cancer         (2023) 23:1241 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

explorative study of prostate cancer patients in north Indian populations. 
Cytokine. 2015;74(1):117–22.

 40. Russo MA, Ravenna L, Pellegrini L, Petrangeli E, Salvatori L, Magrone T, Fini 
M, Tafani M. Hypoxia and inflammation in prostate cancer progression. 
Cross-talk with androgen and estrogen receptors and cancer stem cells. 
Endocr Metab Immune Disord Drug Targets. 2016;16(4):235–48.

 41. Singh AN, Sharma N. Identification of key pathways and genes with aber-
rant methylation in prostate cancer using bioinformatics analysis. Onco 
Targets Ther. 2017;10:4925–33.

 42. Wise HM, Hermida MA, Leslie NR. Prostate cancer, PI3K, PTEN and progno-
sis. Clin Sci (Lond). 2017;131(3):197–210.

 43. Vlaeminck-Guillem V, Gillet G, Rimokh R. SRC: marker or actor in prostate 
cancer aggressiveness. Front Oncol. 2014;4:222.

 44. Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR 
pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT 
signaling. Int J Mol Sci. 2020;21(12):4507.

 45. Bahcivan A, Gamsizkan M, Kantarcioglu Coskun S, Cangur S, Yuksel A, 
Ceyhan A, Onal B. KRAS, BRAF, PIK3CA mutation frequency of radi-
cal prostatectomy samples and review of the literature. Aging Male. 
2020;23(5):1627–41.

 46. Satir P, Christensen ST. Overview of structure and function of mammalian 
cilia. Annu Rev Physiol. 2007;69:377–400.

 47. Adekoya TO, Richardson RM. Cytokines and chemokines as mediators of 
prostate cancer metastasis. Int J Mol Sci. 2020;21(12):4449.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Integrative analysis of transcriptomic and metabolomic profiles reveals enhanced arginine metabolism in androgen-independent prostate cancer cells
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Cell culture
	RNA-sequencing
	Gene Ontology (GO) and Kyoto Encyclopedia of genes and genomes (KEGG) enrichment analysis
	Gene Set Enrichment Analysis (GSEA)
	Metabolites extraction
	LC-MSMS analysis
	Principal Component Analysis (PCA)
	Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA)
	Screening of differentially expressed metabolites
	Metabolic pathway analysis of differentially expressed metabolites
	Clustering correlation heatmap and correlation network map
	Quantitative real-time PCR (QPCR)
	Statistical analysis

	Result
	Identification of differentially expressed genes in LNCaP-ADR cells
	Highly expressed GO terms in the LNCaP-ADR cells associated with cell replication and DNA maintenance
	Significantly enriched pathways in LNCaP-ADR cells
	Differential gene expression analysis reveals enriched gene sets in the LNCaP-ADR cells
	Metabolite profiling reveals significant changes in LNCaP-ADR cells
	Metabolic pathways enriched in DEMs of LNCaP-ADR cells
	Pathway-specific upregulation of metabolites in LNCaP-ADR cells
	Integration of transcriptomic and metabolomic analyses reveals enriched pathway and correlation between genes and metabolites in LNCaP-ADR cells
	Validation of the differentially expressed genes (DEGs) between LNCAP-ADR cells and parental cell

	Discussion
	Acknowledgements
	References


