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Construction of a prognostic risk score iy

model based on the ARHGAP family to predict
the survival of osteosarcoma

Wenda Liu'f, Kezhou Xia'", Di Zheng'", Xinghan Huang', Zhun Wei', Zicheng Wei' and Weichun Guo'"

Abstract

Background Osteosarcoma (OS) is the most common primary malignancy of bone tumors. More and more ARHGAP
family genes have been confirmed are to the occurrence, development, and invasion of tumors. However, its signifi-
cance in osteosarcoma remains unclear. In this study, we aimed to identify the relationship between ARHGAP family
genes and prognosis in patients with OS.

Methods OS samples were retrieved from the TCGA and GEO databases. We then performed LASSO regression
analysis and multivariate COX regression analysis to select ARHGAP family genes to construct a risk prognosis model.
We then validated this prognostic model. We utilized ESTIMATE and CIBERSORT algorithms to calculate the stroma
and immune scores of samples, as well as the proportions of tumor infiltrating immune cells (TICs). Finally, we con-
ducted in vivo and in vitro experiments to investigate the effect of ARHGAP28 on osteosarcoma.

Results We selected five genes to construct a risk prognosis model. Patients were divided into high- and low-risk
groups and the survival time of the high-risk group was lower than that of the low-risk group. The high-risk group
in the prognosis model constructed had relatively poor immune function. GSEA and ssGSEA showed that the low-
risk group had abundant immune pathway infiltration. The overexpression of ARHGAP28 can inhibit the prolifera-
tion, migration, and invasion of osteosarcoma cells and tumor growth in mice, and IHC showed that overexpression
of ARHGAP28 could inhibit the proliferation of tumor cells.

Conclusion We constructed a risk prognostic model based on five ARHGAP family genes, which can predict the over-
all survival of patients with osteosarcoma, to better assist us in clinical decision-making and individualized treatment.

Keywords Osteosarcoma, Prognosis model, Immune pathway infiltration, ARHGAP family genes, Individualized
treatment

Introduction

Osteosarcoma (OS) is one of the most common malig-
nancies in the skeletal system. It originates in the mes-
enchymal tissue and is most likely to occur in the long
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patients with osteosarcoma have distant metastases,
mainly to the lung, and the prognosis is poor, with an
overall survival rate of less than 20% [3-5]. At present,
the basic treatment techniques for osteosarcoma are
neo-adjuvant chemotherapy and surgical resection,
which can enhance the survival percentage of patients
with an early diagnosis of osteosarcoma by 60-70% [6].
With the development of molecular biology and tissue
bioengineering, great progress has been made in treat-
ing osteosarcoma, which has significantly improved the
postoperative quality of life and the 5-year survival rate
of patients with malignant tumors [2]. However, those
with metastatic tumors who cannot be treated with sur-
gery have a very poor prognosis, with a 5-year survival
rate of less than 20% [7]. Due to the high heterogene-
ity and low incidence of osteosarcoma, it is difficult to
identify a specific driver gene, so we currently cannot
predict the prognosis of patients based on the changes
of a single molecule in their body [8]. Therefore, there
is an urgent need for some biomarkers to predict the
survival status of patients with clinical osteosarcoma to
better assess the risk and personalized management of
patients.

Rho family is a member of the Ras supergene family of
guanosine triphosphatase (GTPase), which is involved
in cell morphology, gene transcription, cell cycle, cell
apoptosis, cell carcinogenesis, cell migration and infil-
tration, and other processes [9, 10]. However, the Rho
GTPase-activating proteins (RHOGAPs) family is a
negative regulatory factor of the Rho family proteins
[11]. We have found ARHGAP proteins to be altered in
expression in many diseases, including cancer, so they
may be a potential target for treating diseases [12, 13].
They have reported that the high expression of ARH-
GAP protein can inhibit the proliferation and migration
of tumor cells, and has a good prognosis for mice, so
it may become a target for tumor therapy [14]. How-
ever, there have been no systematic studies on whether
ARHGAP protein affects the prognosis of patients with
osteosarcoma and its clinical significance.

In this study, we have studied the ARHGAP family
genes systematically. We identified the genes associated
with the prognosis of osteosarcoma in ARHGAP and
selected five genes to construct a unique prognostic
risk model for predicting the survival time of patients
with osteosarcoma. Then we validated the prognos-
tic results in the training cohort, testing cohort, entire
cohort, and GSE39055 cohort, respectively. Finally, we
studied the relationship between our constructed prog-
nostic model and the immune microenvironment. Our
study is more helpful in evaluating the prognosis of
patients with osteosarcoma and conducting individual-
ized treatment.
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Materials and methods

Data acquisition

We collected RNA sequencing data (RNA-seq) in frag-
ment per kilobase method (FPKM) format and match-
ing clinical information from The Cancer Genome Atlas
(https://portal.gdc.cancer.gov/) for 88 patients with oste-
osarcoma. Clinical data of these patients should include
age, sex, survival status, follow-up time, diagnosis time,
etc. To make the results more reliable, we downloaded
the GSE39055 dataset from the Gene Expression Omni-
bus database (https://www.ncbi.nlm.nih.gov/geo/) for
external validation. This dataset contains patient RNA-
seq data and corresponding clinical information. For the
convenience of follow-up analysis, we excluded those
patients with no follow-up information or unknown sur-
vival status and finally included a total of 123 patients for
the follow-up study, including 86 patients in the TAR-
GET database and 37 patients in the GSE39055 dataset.
Then, we used the “sva” package in R to process the two
data sets to eliminate the batch effect.

Identification and differential expression analysis

of prognostic-related ARHGAP family genes

We got the ARHGAP family gene from the GeneCards
database  (https://www.genecards.org/) and previ-
ous research [11]. We then performed a univariate Cox
regression analysis based on the expression of these
genes and patient clinical information, and those genes
with p<0.05 were considered to be prognostic-related.
According to the expression amount of these genes, we
drew the expression heatmap of each gene in each sample
and the expression correlation between them.

Construction of prognostic risk profiles based

on the ARHGAP family and subsequent validation

To construct a prognostic risk model and for further
verification, we randomly divided patients in the TAR-
GET cohort 1: 1 into a training cohort and a testing
cohort. We then performed multivariate Cox regression
and the Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression analysis for prognostic-related
genes in the ARHGAP family in the training cohort.
Based on this result, we identified the ARHGAP family
genes and their corresponding regression coefficients
that ultimately participated in the construction of the
prognosis model. We used the following formula to cal-
culate the risk score for each osteosarcoma patient in
the cohort: Risk score=Y) y_, (Coefficient (i) x Expr(i)),
where Coefficient is the regression coefficient, Expr
is the expression of ARHGAPs and n is the number of
genes we included in the prognostic model. Using the
same formula, we can determine the respective risk
coefficients for the testing cohort, the entire internal
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cohort, and the external GSE39055 cohort. We divided
osteosarcoma patients in each cohort into high—and
low-risk groups based on their risk scores. We did a sur-
vival analysis of the training cohort, the testing cohort,
the entire internal cohort, and the external GSE39055
cohort to assess survival differences between high- and
low-risk groups in each cohort. To confirm the sensitiv-
ity, specificity, and accuracy of the risk-prognosis model,
we simulated the time-dependent receiver operating
characteristic (ROC) curve.

Construct a nomogram to verify and predict the prognosis

of osteosarcoma patients

A nomogram was created by combining risk score and
other two clinicopathological characteristics includ-
ing gender, and age in the TCGA cohort. We were then
using the nomogram to predict 2-year, 3-year, and 5-year
survival for osteosarcoma. Time-dependent ROC curves
and calibration curves were simulated in the TCGA and
GSE39055 datasets, respectively, to verify the efficacy
of the nomogram in predicting the overall survival of
patients with osteosarcoma.

Screening of differential genes between high- and low-risk
groups

We have divided patients in the TCGA entire cohort
into high- and low-risk groups. We secured the differen-
tially expressed genes (DEGs) between the two groups,
and the screening standard was | log2FC |>0.5 and
p-value<0.05. Then we made a heatmap based on the
expression of different differential genes in each sample.
We generated the hub genes by simulating the PPI net-
work of differential genes between the two groups using
The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) web-based database (string-interac-
tion.org).

Functional enrichment analysis between differentially
expressed genes

Gene enrichment analysis can help us identify which
biological functions and pathways are primarily respon-
sible for prognostic risk scores between the two groups.
Next, we carried out the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis and Gene Ontol-
ogy (GO) enrichment analyses to analyze these differen-
tial genes [15-17]. To have a more intuitive and in-depth
understanding of the mechanism of differential genes, we
then conducted a GSEA enrichment analysis on the dif-
ferential genes between the high- and low-risk groups to
determine whether they play a role in a biological process
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or pathway. We analyzed the standard genetic set "c2.
cp.kegg.v7.0.symbols.gmt" by using GSEA software.

Analysis of immune function between high- and low-risk
group

To understand whether the prognostic risk score, we
constructed works in the tumor microenvironment
(TME), we calculated the immunological scores, esti-
mate scores, stromal scores, and tumor purity in the
immune microenvironment of osteosarcoma patients
between the two risk groups. We used the CIBERSORT
algorithm to analyze the expression data of each sam-
ple and calculate the relative abundance of 22 types of
immune cells in them [18, 19], and then used R pack-
ets to visualize the abundance of immune cells between
the two risk groups. We also analyzed the correlation
between each immune infiltrating cell in the osteosar-
coma sample. Then we performed single-sample gene
set enrichment analysis (ssGSEA) in the TCGA and
GSE39055 datasets respectively and obtained the dif-
ferences in immune function scores and expression of
22 kinds of infiltrated cells between high- and low-risk
groups.

Cell line culture and transfection

We obtained the 143B and U20S human osteosarcoma
cell lines from the China Center for Type Culture Col-
lection (Wuhan, China). To culture these cell lines, we
used RPMI-1640 medium (Invitrogen, USA) supple-
mented with 10% fetal bovine serum (FBS; Tian Hang,
China) and 1% Penicillin—Streptomycin and incubated
them at 37 °C with 5% CO2. The ARHGAP28 expression
plasmids were purchased from Sangon Biotech Co., Ltd
(Shanghai, China), and we cultured OS cells in 6-well
and 96-well plates for subsequent experiments. We con-
ducted a series of assays, including western blot analy-
sis, CCK-8 assay, transwell invasion assay, and wound
healing assay, using ARHGAP28-overexpressing cells.

Western blot analysis

We extracted total proteins from osteosarcoma cells in
good growth condition using RIPA buffer (Servicebio
Technology, Wuhan, China) and followed the instruc-
tions. The protein concentration was quantified using
a BCA kit (Servicebio Technology, Wuhan, China).
Next, the total protein was separated by electrophore-
sis and transferred to a membrane. After blocking and
washing the membrane three times with tris-buffered
saline with tween (TBST), we cut the membrane and
incubated primary antibodies overnight at 4 “C. Fol-
lowing that, the membrane was washed and incubated
with secondary antibodies. Finally, we used the ECL kit
(Thermo Fisher Scientific) for display.
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CCK-8 assay

We inoculated osteosarcoma cells in good growth con-
dition on 96-well plates, with three multiple wells in
each group. We replaced the complete medium, which
contained 10 uL CCK-8 reagent, at 0, 24, 48, 72, 96, and
120 h after planting the plates and incubated them for
2 h each time. We then used a microplate reader (Bio-
Rad Laboratories, Inc.) to measure the absorbance of
each well at OD 450 nm (optical density), which indi-
cates the viability of each cell line.

Transwell invasion assay

Transwell chambers (Corning, USA) and Matrigel (Corn-
ing, USA) were used for conducting invasion experi-
ments. The upper chamber was filled with the medium
at a 1:6 ratio. After coagulation, 200 puL of medium con-
taining 1x 10° cells was added to the upper layer of each
chamber, and 600pL of complete medium (containing
10%EBS) was added to the lower layer of each chamber.
After 48 h of cell culture, the cells were removed and
fixed with 4% paraformaldehyde and stained with 1%
crystal violet. Take pictures under an inverted micro-
scope (Olympus, Japan) and count the number of cells.

Wound healing assay

We inoculated osteosarcoma cell lines 143B and U20S
into 6-well plates with 2 mL complete medium added to
each well and 3 multiple Wells in each group. When cell
density reached 95%, a 100uL gun tip was used to mark
the bottom of each well of the culture plate, and serum-
free medium was replaced, and the culture was contin-
ued after photographing with an inverted microscope
(Olympus, Japan). After 24 and 48 h of culture, the area
of intermediate scratches was observed with an inverted
microscope and photographed. The wound area was
measured using the Image] software and wound healing
percentage was calculated to evaluate the migrate ability.
The calculation formula is below: Migration rate=(area
of 0 h—area of 24 h or 48 h) / (area of 0 h) x 100.

Animal studies

The Renmin Hospital of Wuhan University Ethics Com-
mittee authorized the experiments. Female BALB/c
nude mice (4—6 weeks old) were obtained from Bei-
jing HFK Experiment Animal Center (Beijing, China)
and randomly divided into two groups of six mice each
(NC, ARHGAP28 OE). These mice were subcutaneously
injected with stably transfected 143B osteosarcoma cells
and kept in a standard environment with food and water.
Tumor size and volume were monitored weekly. After
four weeks, all mice were euthanized with 2% pento-
barbital sodium (150 mg/kg), and tumors were excised
and weighed. The tumors were then either preserved in
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liquid nitrogen or fixed in 4% paraformaldehyde. The
care of the laboratory animals and animal experiments
were performed following the animal ethics guidelines
and approved protocols of Renmin Hospital of Wuhan
University.

Immunohistochemistry (IHC) staining

The tumor tissue was fixed with 4% paraformaldehyde for
24 h and cut into 4-pm slices, which were then blocked
with 1% bovine serum albumin at room temperature
for 1 h. After that, the slices were incubated with corre-
sponding primary antibodies at 4 ‘C overnight, followed
by 1-h incubation with secondary antibodies at room
temperature. Finally, chromogenic detection was per-
formed using a DAB kit (CST, USA) and observed under
an inverted microscope (Olympus).

Statistical analysis

All our data processing and picture drawing was car-
ried out by using R software (version 4.2.1). We used the
log-rank test for the Kaplan—-Meier survival difference
analysis of the high—and low-risk groups. We used the
Wilcoxon rank-sum test and the two-tailed Student’s
t-test to compare the high- and low-risk groups. Multi-
variate Cox regression analysis was used to identify fac-
tors that could independently predict the prognosis of
patients with osteosarcoma. We defined p<0.05 as a sig-
nificant difference. “*” is equal to “p <0.05”, “**” is equal to
“p<0.01” and “***” is equal to “p <0.001".

Results

Characterization of ARHGAP family genes

We included 35 genes in the ARHGAP family. We ana-
lyzed the expression patterns of these genes using the
STRING database (Fig. 1A). Hub gene analysis suggested
that ARHGAPIS5, ARHGAP35, ARHGAP28, ARHGAPI9,
ARHGAP21, ARHGAP23, ARHGAP40, ARHGAPIO,
ARHGAP26, ARHGAP30, and ARHGAP9 were identified
as hub genes, with the largest interaction network among
these proteins (Fig. 1B). We used univariate Cox regres-
sion analysis on datasets from the TCGA database to
identify prognosis-related genes of the ARHGAP family
in osteosarcoma. Nine ARHGAP genes with p-values less
than 0.05, as determined by univariate Cox regression
analysis, were identified as ARHGAP family prognosis-
related genes. The expression profiles of ARHGAP family
prognosis-related genes (Fig. 1C). We show an associa-
tion between prognostic genes in the ARHGAP family
(Fig. 1D).

Construction of a prognostic risk score model
To construct a prognostic signature based on ARH-
GAP family genes, we randomly classified the TCGA
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Fig. 1 Identification of prognosis-related ARHGAP family genes in osteosarcoma. A A network of protein—protein interactions involving all ARHGAP
genes. B The PPl network’s hub genes. C Heatmap illustrating the expression patterns of prognosis-related ARHGAP family genes in TCGA datasets. D
Heatmap of the genes in the ARHGAP family that are associated with prognosis

OS cohort into training (n=45) and testing (n=43)
cohorts. In the training cohort, we performed multi-
variate Cox and LASSO analysis to screen ARHGAP
family genes (Fig. 2A-B). The ordinate in the Fig. 2A
is Binomial Deviance. There are two dashed lines in
Fig. 2A, the left is the line with the lowest error, and the
right is the line with few features. Each curve in Fig. 2B
represents the change trajectory of each independent
variable coefficient, the upper abscissa is the number of
non-zero coefficients in the model at this time. As the
X value changes, the later the coefficient is compressed
to 0, the more important the variable. Five ARHGAP
genes (ARHGAPI, ARHGAPI0, ARHGAP25, ARH-
GAP28, and ARHGAPS) with the best lambda value
were retained following LASSO analysis to construct a
prognostic signature for OS. The risk score based on the
prognosis signature was obtained using a linear com-
bination of the expression levels of the selected genes
and their corresponding coefficients. The formula was

as follows: Risk score=ARHGAPI % (-0.05243) + ARH-
GAPI10x (-0.3089) + ARHGAP25 x (-1.09414) + ARH-
GAP28x (-2.17281) + ARHGAPS x (-0.26809). We then
calculated the risk score for each patient in the train-
ing cohort, using the median risk score to classify
patients into high- and low-risk categories. The prog-
nosis of OS specimens declined as risk scores rose,
as seen by the risk score plot (Fig. 2C-D). The heat-
map shows the expression of ARHGAP1, ARHGAPI0,
ARHGAP25, ARHGAP28, and ARHGAPS in high- and
low-risk groups (Fig. 2E). The Kaplan—Meier survival
analysis done to evaluate overall survival between the
two patient groups revealed that patients in the high-
risk group had a significantly worse prognosis than
those in the low-risk group (Fig. 2F). In addition,
the ROC curve of the training cohort showed reli-
able results, with a 2-year Area Under Curve (AUC) of
0.910, 3-year AUC of 0.901, and 5-year AUC of 0.934
(Fig. 2Q), indicating that ARHGAP-based prognostic
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features have good accuracy and specificity in predict-
ing overall survival of osteosarcoma patients.

Validation of a five-gene prognostic model

from the ARHGAP gene family in an internal cohort

We validated prognostic risk profiles based on ARH-
GAP in the testing cohort and the entire cohort to test
the accuracy and repeatability of signatures. The above
algorithm was used to determine the risk score of the
patients, and the median risk score of the training
cohort was used to divide the patients into high- and
low-risk groups. We showed the distribution of the risk
scores for the testing cohort and the entire cohort in

nificantly different overall survival in the high- and low-OS groups. G

Fig. 3A-B. Patients with higher risk scores had poorer
outcomes (Fig. 3C-D), suggesting that the prognos-
tic risk model we constructed can accurately pre-
dict overall survival in patients with OS. Based on the
expression of five genes (ARHGAP1, ARHGAPI10, ARH-
GAP25, ARHGAP28, ARHGAPS) in the above ARH-
GAP family in the testing cohort and the entire cohort,
we constructed a heatmap (Fig. 3E-F). The expressions
of ARHGAP10, ARHGAP25, and ARHGAP28 were
considerably greater in the low-risk group than in the
high-risk group (p<0.05) (Fig. S1). The Kaplan—Meier
survival analysis showed a significant difference in over-
all survival between the two risk groups (Fig. 3G-H),
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between the two risk groups. The results show a significantly different overall survival in high- and low-OS groups. I, J Time-dependent ROC curve

analysis in the testing cohort and the entire cohort

and the high-risk group had a shorter survival, which
further verified that the model was constructed could
well predict the survival of patients. In addition, the
ROC curve of the testing cohort and the entire cohort
showed the same results, with a 2-year AUC of 0.794,
3-year AUC of 0.727, and 5-year AUC of 0.726 in the
testing cohort (Fig. 3I), and 2-year AUC of 0.858, 3-year
AUC of 0.814 and 5-year AUC of 0.843 in the testing
cohort (Fig. 3J). This is consistent with our findings in
the training cohort.

Validation of a five-gene prognostic model

from the ARHGAP gene family in an external cohort

We repeated this process with the GSE39055 (n=37)
dataset for external validation to test the accuracy and
repeatability of the signature based on the five genes in
the ARHGAP family. Following the previous steps, we
divided the patients in GSE39055 into high- and low-
risk groups (Fig. 4A). Similarly, we can intuitively see
the distribution of survival time and survival status of
patients in the GSE39055 dataset (Fig. 4B). The results
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Time-dependent ROC curve analysis in the GSE39055 cohort

showed that high-risk patients had a significantly higher
mortality rate than low-risk patients. We mapped the
expression heatmap of the five genes of the ARHGAP
family used to construct the prognostic risk score in
the GSE39055 dataset (Fig. 4C). Patients in the high-
risk group had a lower rate of survival than those in the
low-risk group, according to the Kaplan—Meier analysis
(Fig. 4D), confirming the accuracy and universality of
our model construction. By calculating the AUC of the
GSE39055 dataset, we could further evaluate the predic-
tion accuracy of the prognosis model we constructed,
with a 2-year AUC of 0.840, 3-year AUC of 0.773, and
5-year AUC of 0.771 in the GSE39055 dataset (Fig. 4E).
The results of the analysis in the external cohort are
consistent with the above results, indicating that a
risk-prognosis model based on the ARHGAP family is

accurate in predicting the survival time and survival out-
come of patients with osteosarcoma.

Validate the risk prognosis model based on clinical
information

We grouped patients in the TCGA entire cohort accord-
ing to clinical traits such as gender (male (n=49), female
(n=37)) and age (<=14 (n=39),> 14 (n=47)), and then
whether risk scores were equally applicable when dis-
cussed to different subgroups. We compared the over-
all survival of patients in each subgroup of the two data
sets (Fig. 5A-B), and the results showed that in each
subgroup, the survival of patients in the low-risk group
was always longer than that in the high-risk group, and
in the TCGA dataset, the difference in the risk score
among the subgroups was significant (P<0.05).
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Construction and validation of a Nomogram of a risk
prognosis model based on the ARHGAP family

To make our Nomogram predictions more accurate, we
incorporated clinical factors such as patient gender and
age into the prognostic features used to construct them
(Fig. 6A). To visualize the function of the Nomogram, we
simulated a calibration curve for the 2-year, 3-year, and

5-year overall survival of patients in the TCGA entire
cohort (Fig. 6B) and external GSE39055 cohort (Fig. 6C).
In this figure, the 45° diagonal represents the best predic-
tion ability. The more our calibration curve fits, the better
the prediction function of our Nomogram is constructed.
Calibration curves in the TCGA entire cohort and exter-
nal GSE39055 cohort showed that we constructed the
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predict the prognosis of clinical osteosarcoma patients

Nomogram could accurately assess the risk and progno-
sis of patients with clinical osteosarcoma.

DEGs, PPl network, GO, and KEGG enrichment analyses

in two risk groups

We analyzed the differentially expressed genes between
the high- and low-risk groups in the entire TCGA cohort
and created a volcano map (Fig. 7A). We found 472 dif-
ferential genes between the two groups, of which 213
genes were upregulated and 259 genes were downregu-
lated in the high-risk group. We created a heatmap of the
expression of these differential genes in each sample and
used it for subsequent analysis (Fig. 7B). We then used

the STRING online database to analyze the expression
patterns of the differential genes between the two risk
groups (Fig. 7C). According to the PPI network diagram,
CD8A, VEGFA, CCR5, FCGR3A, MYC, VCAMI, CD163,
CD2, and PTGS2 were considered hub genes (Fig. 7D),
and their differentially expressed proteins had the great-
est interaction correlation. Hub gene analysis showed
that CD8A, VEGFA, CCRS5, and FCGR3A were the top
four genes in this PPI network. Then we performed func-
tional analyses of these differential genes, including GO
and KEGG analyses. We showed the GO enrichment
analysis results in Fig. 7E. Biological process (BP) analy-
sis mainly included the external encapsulating structure
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organization and cell chemotaxis. Cellular component
(CC) analysis revealed the external side of the plasma
membrane. Molecular function (MF) analysis mainly
included antigen binding and receptor-ligand activ-
ity. Furthermore, KEGG enrichment analysis revealed
some potential enrichment signaling pathways for these
differentially expressed genes, including Viral protein
interaction with cytokine and cytokine receptors, Pro-
tein digestion and absorption, Mineral absorption, and
Hematopoietic cell lineage (Fig. 7F). The functional
enrichment results of different genes in the two risk
groups further confirmed that immune factors may play
an indispensable role in osteosarcoma progression.

GSEA

To more intuitively observe the information related to
different signaling pathways between the two risk groups,
we conducted a GSEA analysis and showed the top 14
functions and signaling pathways (Fig. 8A). These enrich-
ment pathways revealed a variety of immune-related
signaling pathways as compared to the high-risk group,
including the B cell receptor signaling pathway (Fig. 8B),
natural killer cell-mediated cytotoxicity (Fig. 8C), T cell
receptor signaling pathway (Fig. 8D), and antigen pro-
cessing and presentation, etc. (Fig. 8E), which were
upregulated in the low-risk group. These enrichment
results indicate that the high-risk group had a suppressed
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immune microenvironment, suggesting that immune
factors play an important role in the development of
osteosarcoma.

Differences in immune cells and immune
microenvironment between high—and low-risk groups

in the TCGA entire cohort

We used the estimation algorithm to calculate the immu-
nological scores, estimate scores, stromal scores, and
tumor purity of each sample in the TCGA entire cohort
to better study the guiding effect of the prognostic model
constructed using five genes in the ARHGAP family on
the immune microenvironment. The results showed that
patients in the high-risk group had significantly lower
immunological scores, estimate scores, stromal scores,
and higher tumor purity (Fig. 9A-D). The relationship
between immune, estimate, stromal scores and tumor
purity, and patient survival has previously been investi-
gated [20]. Kaplan—Meier survival analysis revealed that
patients with lower stromal, immune, and estimate scores
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had shorter overall survival, whereas patients with lower
tumor purity had longer survival than those with higher
tumor purity. This again proves that the immune status
of the immune microenvironment of osteosarcoma can
affect the occurrence and development of osteosarcoma,
as well as the survival of patients with osteosarcoma. This
suggests that the five genes of the ARHGAP family used
to construct prognostic models affect the immune micro-
environment of patients and play a role in the immuno-
therapy of osteosarcoma. To investigate the relationship
between ARHGAP gene expression and immune infiltra-
tion in osteosarcoma, we used CIBERSORT to calculate
the proportion of immune cell infiltration in each sample
in the TCGA dataset and compared it between the two
risk groups. We then plotted a bar graph (Fig. 10A). The
bar graph shows that Macrophages M2, Macrophages
MO0, and CD4 memory resting T cells are the most abun-
dant of these immune cells in the immune microenviron-
ment of all osteosarcoma samples. Moreover, the increase
in Macrophages M2 is associated with the occurrence

2000

ImmuneScore

-2000

high risk low risk

©
©

I
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TumorPurity

0.3
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Fig.9 Analysis of immune-related scores for the two groups. A-D The stromal, immune, and estimate score, and tumor purity in high- and low-risk
groups of the TCGA entire cohort. A The estimated score. B The Immune Score. C The Stromal Score. D The Tumor Purity
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and development of tumors and poor prognosis of
patients, and our results confirm this view. We also inves-
tigated the relationship between individual immune cells
in the immune microenvironment (Fig. 10B). The results
showed a relatively large correlation between mac-
rophages and T cells, suggesting that there might be a
mechanism of mutual regulation between the two types
of cells in the immune microenvironment, which could
provide ideas for subsequent analysis of the immune
microenvironment and immunotherapy of osteosarcoma.
We also performed an immune infiltration analysis and
analyzed the differences in the expression of immune
cells between the risk groups (Fig. 10C-D). According to
the results of the study, the proportion of immune cells
in the immunological microenvironment of the two risk
groups of osteosarcoma patients was different.

ssGSEA

Based on ssGSEA, we analyzed differences in immune
function scores and immune cell enrichment scores
between the two groups. The low-risk group had much
more Th2 cells and TIL cells than the high-risk group,
which was consistent with the findings from the TCGA

and GSE39055 cohorts (Fig. 11A-B). In addition, in the
TCGA and GSE39055 cohorts, the low-risk group’s
immune cell concentration was much higher than that of
the high-risk group, especially DCs, Thl cells, and Neu-
trophils, suggesting that the deficiency of immune func-
tion is an important factor leading to poor prognosis in
patients with osteosarcoma. In the TCGA and GSE39055
cohorts, higher CCR and checkpoint scores in the low-
risk group than those in the high-risk group (Fig. 11C-D)
mainly manifested the differences in immune function
between the two risk groups.

Kaplan-Meier survival analysis of the five ARHGAP genes
in the two risk groups

Finally, we performed a Kaplan—-Meier curve survival
analysis of the five genes that constructed the progno-
sis model in the TCGA cohort. Kaplan—Meier curves
showed that high expression of ARHGAP1, ARHGAP2S,
and ARHGAP28 was associated with better progno-
sis, whereas expression of ARHGAP8 and ARHGAPIO
was not associated with patient prognosis (p<0.05)
(Fig. 12A-E).
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Overexpression of ARHGAP28 inhibits the proliferation,
migration, and invasion of human osteosarcoma cell lines
To verify the bioinformatics results we made earlier, we
conducted a western blot experiment, CCK-8 experi-
ment, transwell experiment, and wound healing assay.
We found that overexpression of ARHGAP28 inhibited
the activity of human osteosarcoma cells. According to
the results of western blot, we successfully overexpressed
ARHGAP28, the protein content of ARHGAP28 was
about 150% higher than that of the NC groups (Fig. 13A-
B), and then we used the overexpressed cell lines as
well as the NC group for follow-up experiments. Com-
pared with the NC group, the cell viability of the ARH-
GAP28 overexpression group was significantly decreased
(Fig. 13C). Results of wound healing experiments showed
that ARHGAP28 inhibited the migration of human oste-
osarcoma cell lines (Fig. 13D-E). In addition, transwell
results suggested that ARHGAP28 overexpression could

also inhibit the invasion ability of osteosarcoma cell lines
(Fig. 13F-G). The above results verified the correctness
and accuracy of our previous analysis. High expression
of ARHGAP28 in osteosarcoma cell lines can inhibit the
proliferation, migration, and invasion of osteosarcoma,
and we can judge the risk of OS patients based on this.

Increased expression of ARHGAP28 inhibits tumor growth in
vivo

We injected stable ARHGAP28 overexpressing 143B
osteosarcoma cells and NC cells into nude mice subcu-
taneously (Fig. 14D-E). Tumor volume was monitored
every 7 days, and ARHGAP28 overexpression resulted
in smaller tumors compared to NC (Fig. 14A-C). More-
over, IHC results suggested a lower Ki-67 level in the
ARHGAP28 overexpression group than in the NC group
(Fig. 14F-G). In conclusion, our results indicate that
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ARHGAP28 overexpression suppresses in vivo tumor
growth.

Discussion

Osteosarcoma is the most common primary malignant
bone tumor in orthopedics, with two peaks in adoles-
cents and the elderly. The peak age of adolescent-onset is
about 15 years old, mainly primary OS, and the second
peak age is about 75 years old, mainly secondary OS [21].

OS mainly occurs in the epiphyseal region of the long
diaphysis, where blood transport is abundant [1]. In the
early stage of osteosarcoma, blood transport to the lung
is most common and develops rapidly, which greatly
reduces the survival of patients with osteosarcoma [22].
With the increase and improvement of treatment meth-
ods, the survival rate of patients with osteosarcoma
has been greatly improved, but how to further improve
the prognosis of patients is a major clinical challenge,
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especially for patients with pulmonary metastatic osteo-
sarcoma, which occurs earlier and has a worse prognosis
[23]. Hence, on the one hand, we should be looking for
more effective treatments; on the other hand, we should
also develop some new ideas. We can use high-through-
put sequencing technology and existing sequencing
results to screen genes, and then predict the prognosis
of patients so that we can carry out more personalized
treatment for patients.

For nearly 20 years, we have considered the Rio fam-
ily as an anti-tumor target, especially for RAS-driven
tumors. Rho family proteins transition between active
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GTP-binding states and inactive GDP-binding states,
which are regulated by the ARHGAP family and can
increase the intrinsic GTPase activity of Rho GTPase to
convert it to inactive GDP-binding states [11]. Nowa-
days, it is believed that most ARHGAP genes have mul-
tiple functional domains except the RHOGAP functional
domain, which integrates signal factors in many signaling
pathways and may mediate the interaction between the
Rho family and other signaling pathways. However, the
number of ARHGAP proteins is much larger than that
of their substrate Rho proteins, and ARHGAP proteins
have diverse biological functions. Therefore, the deep
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regulatory mechanism of ARHGAP on the Rho family
is still far from clear. The ARHGAP family is involved in
many biological activities, such as exocytosis, endocytosis,
cytokinesis, cell differentiation, cell migration, neuronal
morphogenesis, angiogenesis, and tumor suppression
[11]. In recent years, the relationship between ARHGAP
family genes and tumor development, invasion, and
metastasis has attracted more and more attention [24].
In this study, we screened the ARHGAP family genes and
finally screened 5 genes to construct a risk model for eval-
uating the prognosis of patients with osteosarcoma, and
to provide certain ideas and help for clinical treatment.

In this study, we first collected gene expression infor-
mation and clinical information of patients with osteo-
sarcoma in the TARGET cohort and the GSE39055
cohort and then removed patients without follow-up
information and survival status to prepare the data for
our next analysis. For better analysis, we then obtained

the genetic information of the ARHGAP family from the
online website, and uniformly named it in the two data-
sets. We then performed univariate COX analysis in the
TCGA cohort and screened out 9 genes associated with
the prognosis of patients with osteosarcoma. For sub-
sequent analysis and verification, we randomly divided
patients in the TCGA cohort into two groups at a ratio
of 1: 1, namely the training cohort and the testing cohort.
We performed LASSO regression analysis and multivari-
ate COX regression analysis on the patients in the training
cohort and finally obtained five genes: ARHGAPI, ARH-
GAP8, ARHGAP10, ARHGAP25, and ARHGAP28, and
then we constructed a risk prediction model for patients
with osteosarcoma based on these five genes. We calcu-
lated each patient’s risk score and divided them into high-
and low-risk groups, and then analyzed the relationship
between survival status and survival time and risk score in
the training cohort, testing cohort, entire internal cohort,
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and GSE39055 cohort respectively, finally, Kaplan—Meier
survival analysis and ROC curve were performed for veri-
fication. The results show that the high-risk group had
a lower survival time than the low-risk group. This sug-
gests that our risk model can well predict the prognosis of
patients with osteosarcoma. We can tell that these genes
are protective factors for patients with osteosarcoma.
Among them, ARHGAP1, ARHGAPS8, and ARHGAPIO
play different roles in different tumors or different path-
ways. ARHGAPI was the first gene discovered in this
family, and its content in cervical cancer cells and Ewing
Sarcoma (ES) cells was lower than that in the matching
normal tissue, which proved that it could inhibit the cell
vitality, cell migration, and invasion of these two cancer
cells in a time-dependent manner to a certain extent [25,
26]. However, in breast cancer (BC), ARHGAPI is a car-
cinogenic factor, and its expression level in BC samples
is higher than that in normal tissues, its overexpression
can promote the proliferation and invasion of BC cells
while inhibiting its expression can significantly inhibit
the growth of tumors [27-29]. ARHGAPI may also regu-
late the bone microenvironment by inhibiting the RhoA/
ROCK pathway, which stimulates osteogenic differentia-
tion of mesenchymal stem cells [30]. However, the role of
ARHGAPI in osteosarcoma has not been reported, which
can be further studied in the future. Similarly, ARHGAP8
is overexpressed in most colorectal cancers compared to
normal tissues, but we observe relatively low expression
in Bladder cancer, suggesting that ARHGAP8 may play
different roles in different tumors, but its role in osteo-
sarcoma is unknown [31, 32]. ARHGAPIO is well known
as a tumor suppressor and has been demonstrated in a
variety of cancers, such as Uterine leiomyomas (ULs),
prostate cancer, ovarian cancer (OC), lung cancer, colon
carcinoma (CRC) and BC [33-38]. Cdc42, a key protein
that cancer cells need to metastasize, helps them spread
through the bloodstream to other parts of the body. In
ovarian cancer, RHGAP10 inhibits Cdc42 activity in cells,
in turn, it can inhibit the growth and invasion of tumors,
thus playing a role in cancer suppression [37]. However,
ARHGAPI0 manifested as an oncogene in gastric tumors
and non-small cell lung cancer (NSCLC) [39-41]. The
expression level of ARHGAP10 in NSCLC is higher than
that in normal tissues. When its expression is decreased,
the expression of GLUT1 is also decreased, which inhibits
the glucose metabolism process of cells and thus the pro-
gression of cancer [40]. Therefore, the role of ARHGAPIO
in different tumors may be related to its participation
in different pathways or different regulatory molecules
upstream and downstream of the same pathway. How-
ever, its specific role in osteosarcoma is still unclear, so
we can conduct further research. ARHGAP25 has also
been widely studied as a tumor suppressor gene in cancer,
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including Pancreatic adenocarcinoma (PAAD), NSCLC,
Lung cancer, and CRC [14, 42—-46]. Epithelial-mesenchy-
mal transition (EMT) is a common mechanism of tumor
metastasis, which can reduce the adhesion between cells
so that tumor cells can be separated from the original
site to metastasize [47]. The Wnt/j3-catenin pathway can
increase the viability and invasion ability of cancer cells
by activating EMT [48]. However, ARHGAP25 exerts
its anticancer effects by negatively regulating EMT and
Wht/B-catenin pathways [44]. Of course, ARHGAP25 may
regulate different pathways in different tumors to play a
role in cancer inhibition. However, whether ARHGAP25
can inhibit the metastasis of osteosarcoma has not been
studied, and it can become the object of our subsequent
research [49]. Finally, the expression level of ARHGAP28
in osteosarcoma is significantly related to the prognosis
and survival time of patients, but it has not been stud-
ied in osteosarcoma. Therefore, we speculate that ARH-
GAP28 is a tumor suppressor gene for osteosarcoma, and
we plan to further study it in the next step.

We then constructed a nomogram based on the TCGA
cohort to incorporate age, gender, and risk scores and
simulated 2-, 3-, and 5-year time-dependent AUC curves
for osteosarcoma patients in the TCGA and GSE39055
cohorts, respectively. The results showed that the risk
score was an independent predictor of the prognosis of
patients with osteosarcoma, and the simulation results
of the AUC curve were good, which could better prove
the accuracy and applicability of the model. To find out
which functional pathway the molecular differences
between the high- and low-risk groups are enriched in,
to better screen the differential genes that can be used as
targets for clinical diagnosis and treatment, we screened
the differential genes between the high- and low-risk
groups and conducted functional enrichment analy-
sis. KEGG results show that it mainly enriched them in
Protein digestion and absorption and Cytokine-cytokine
receptor interaction, which also confirms our above anal-
ysis. They interact with different upstream and down-
stream molecules in different tumors to show different
functions, and the process is very complex [11].

Nowadays, immunotherapy has been emphasized in the
treatment of patients with osteosarcoma [50]. Therefore,
we further studied whether they relate the risk model to the
immune microenvironment, which can provide some ideas
for the immunotherapy of osteosarcoma. GSEA analysis
showed that the low-risk group had higher enrichment of
immune function than the high-risk group [51], such as the
B cell receptor signaling pathway, natural killer cell-medi-
ated cytotoxicity, T cell receptor signaling pathway, and
antigen processing and presentation. They have reported
that Macrophages M2 can promote the generation of
tumors [52-54]. In our study, the content of Macrophages
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M2 is relatively high in osteosarcoma. ssGSEA showed
that the content of immune cells in the high-risk group
was much lower than that in the low-risk group, indicating
that the occurrence and development of osteosarcoma are
closely related to the immune environment, which will pro-
vide new ideas for us to find new therapeutic targets and
methods for osteosarcoma in the future.

Since the role of ARHGAP28 in osteosarcoma remains
unclear, we confirmed the role of ARHGAP28 through
in vitro and in vivo biological experiments. Overexpres-
sion of ARHGAP28 had significant effects on the viability,
proliferation, migration, and invasion of OS cells. We found
that overexpression of ARHGAP28 can inhibit the prolifer-
ation, migration, and invasion of osteosarcoma cells. In vivo
experiments have shown that overexpression of ARH-
GAP28 can inhibit tumor growth in mice, and IHC has
shown that the reduced level of Ki-67 in the ARHGAP28
overexpression group can inhibit the proliferation of tumor
cells. In summary, ARHGAP28 may play a positive role in
inhibiting the growth and progression of osteosarcoma.

However, inevitably, our research also has some short-
comings. First, we only used an external GSE39055
cohort for verification, which may have some discrepan-
cies in some data sets. Second, the expression levels of
ARHGAPI, ARHGAPS, and ARHGAPIO in our model
showed the same trend with the prognosis and survival
time of patients with osteosarcoma, but there was no
significant correlation. Whether the model constructed
by combining these five genes is also applicable to other
cohorts needs further verification. Third, we lack clini-
cal samples to verify the accuracy of the model we con-
structed, so we can only test our hypothesis with cell
experiments. Finally, we did not investigate ARHGAP28
further, such as its relationship to human immunity.

The study categorized OS invalids into risk groups
based on the ARHGAP family. The high-OS group dis-
played abnormal immune function, such as the B cell
receptor signaling pathway, natural killer cell-mediated
cytotoxicity, T cell receptor signaling pathway, and anti-
gen processing and presentation. The results show that
ARHGAP family genes are likely to play a role in the
immune function of the human body, inhibiting the
occurrence and progression of tumors, and these gene
targets may also be promising personalized drug targets.

In summary, we constructed a five-gene (ARHGAPI,
ARHGAP8, ARHGAPI10, ARHGAP25, and ARHGAP28)
risk prognostic model based on the ARHGAP family. It
can predict the prognosis of patients with osteosarcoma,
and verify its accuracy and universality. Finally, we also
analyzed the relationship between it and the immune sys-
tem of patients, which provided ideas and directions for
our follow-up research and the management and treat-
ment of clinical patients.
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