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Abstract 

Background Osteosarcoma (OS) is the most common primary malignancy of bone tumors. More and more ARHGAP 
family genes have been confirmed are to the occurrence, development, and invasion of tumors. However, its signifi-
cance in osteosarcoma remains unclear. In this study, we aimed to identify the relationship between ARHGAP family 
genes and prognosis in patients with OS.

Methods OS samples were retrieved from the TCGA and GEO databases. We then performed LASSO regression 
analysis and multivariate COX regression analysis to select ARHGAP family genes to construct a risk prognosis model. 
We then validated this prognostic model. We utilized ESTIMATE and CIBERSORT algorithms to calculate the stroma 
and immune scores of samples, as well as the proportions of tumor infiltrating immune cells (TICs). Finally, we con-
ducted in vivo and in vitro experiments to investigate the effect of ARHGAP28 on osteosarcoma.

Results We selected five genes to construct a risk prognosis model. Patients were divided into high- and low-risk 
groups and the survival time of the high-risk group was lower than that of the low-risk group. The high-risk group 
in the prognosis model constructed had relatively poor immune function. GSEA and ssGSEA showed that the low-
risk group had abundant immune pathway infiltration. The overexpression of ARHGAP28 can inhibit the prolifera-
tion, migration, and invasion of osteosarcoma cells and tumor growth in mice, and IHC showed that overexpression 
of ARHGAP28 could inhibit the proliferation of tumor cells.

Conclusion We constructed a risk prognostic model based on five ARHGAP family genes, which can predict the over-
all survival of patients with osteosarcoma, to better assist us in clinical decision-making and individualized treatment.

Keywords Osteosarcoma, Prognosis model, Immune pathway infiltration, ARHGAP family genes, Individualized 
treatment

Introduction
Osteosarcoma (OS) is one of the most common malig-
nancies in the skeletal system. It originates in the mes-
enchymal tissue and is most likely to occur in the long 
diaphyseal region with abundant blood supply, such 
as the distal femur and proximal tibia [1]. Most oste-
osarcomas are primary and a few are secondary [2]. 
Osteosarcoma mainly occurs in children and adoles-
cents with strong bone growth and development. Due 
to the highly invasive nature of osteosarcoma, 75% of 
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patients with osteosarcoma have distant metastases, 
mainly to the lung, and the prognosis is poor, with an 
overall survival rate of less than 20% [3–5]. At present, 
the basic treatment techniques for osteosarcoma are 
neo-adjuvant chemotherapy and surgical resection, 
which can enhance the survival percentage of patients 
with an early diagnosis of osteosarcoma by 60–70% [6]. 
With the development of molecular biology and tissue 
bioengineering, great progress has been made in treat-
ing osteosarcoma, which has significantly improved the 
postoperative quality of life and the 5-year survival rate 
of patients with malignant tumors [2]. However, those 
with metastatic tumors who cannot be treated with sur-
gery have a very poor prognosis, with a 5-year survival 
rate of less than 20% [7]. Due to the high heterogene-
ity and low incidence of osteosarcoma, it is difficult to 
identify a specific driver gene, so we currently cannot 
predict the prognosis of patients based on the changes 
of a single molecule in their body [8]. Therefore, there 
is an urgent need for some biomarkers to predict the 
survival status of patients with clinical osteosarcoma to 
better assess the risk and personalized management of 
patients.

Rho family is a member of the Ras supergene family of 
guanosine triphosphatase (GTPase), which is involved 
in cell morphology, gene transcription, cell cycle, cell 
apoptosis, cell carcinogenesis, cell migration and infil-
tration, and other processes [9, 10]. However, the Rho 
GTPase-activating proteins (RHOGAPs) family is a 
negative regulatory factor of the Rho family proteins 
[11]. We have found ARHGAP proteins to be altered in 
expression in many diseases, including cancer, so they 
may be a potential target for treating diseases [12, 13]. 
They have reported that the high expression of ARH-
GAP protein can inhibit the proliferation and migration 
of tumor cells, and has a good prognosis for mice, so 
it may become a target for tumor therapy [14]. How-
ever, there have been no systematic studies on whether 
ARHGAP protein affects the prognosis of patients with 
osteosarcoma and its clinical significance.

In this study, we have studied the ARHGAP family 
genes systematically. We identified the genes associated 
with the prognosis of osteosarcoma in ARHGAP and 
selected five genes to construct a unique prognostic 
risk model for predicting the survival time of patients 
with osteosarcoma. Then we validated the prognos-
tic results in the training cohort, testing cohort, entire 
cohort, and GSE39055 cohort, respectively. Finally, we 
studied the relationship between our constructed prog-
nostic model and the immune microenvironment. Our 
study is more helpful in evaluating the prognosis of 
patients with osteosarcoma and conducting individual-
ized treatment.

Materials and methods
Data acquisition
We collected RNA sequencing data (RNA-seq) in frag-
ment per kilobase method (FPKM) format and match-
ing clinical information from The Cancer Genome Atlas 
(https:// portal. gdc. cancer. gov/) for 88 patients with oste-
osarcoma. Clinical data of these patients should include 
age, sex, survival status, follow-up time, diagnosis time, 
etc. To make the results more reliable, we downloaded 
the GSE39055 dataset from the Gene Expression Omni-
bus database (https:// www. ncbi. nlm. nih. gov/ geo/) for 
external validation. This dataset contains patient RNA-
seq data and corresponding clinical information. For the 
convenience of follow-up analysis, we excluded those 
patients with no follow-up information or unknown sur-
vival status and finally included a total of 123 patients for 
the follow-up study, including 86 patients in the TAR-
GET database and 37 patients in the GSE39055 dataset. 
Then, we used the “sva” package in R to process the two 
data sets to eliminate the batch effect.

Identification and differential expression analysis 
of prognostic‑related ARHGAP family genes
We got the ARHGAP family gene from the GeneCards 
database (https:// www. genec ards. org/) and previ-
ous research [11]. We then performed a univariate Cox 
regression analysis based on the expression of these 
genes and patient clinical information, and those genes 
with p < 0.05 were considered to be prognostic-related. 
According to the expression amount of these genes, we 
drew the expression heatmap of each gene in each sample 
and the expression correlation between them.

Construction of prognostic risk profiles based 
on the ARHGAP family and subsequent validation
To construct a prognostic risk model and for further 
verification, we randomly divided patients in the TAR-
GET cohort 1: 1 into a training cohort and a testing 
cohort. We then performed multivariate Cox regression 
and the Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression analysis for prognostic-related 
genes in the ARHGAP family in the training cohort. 
Based on this result, we identified the ARHGAP family 
genes and their corresponding regression coefficients 
that ultimately participated in the construction of the 
prognosis model. We used the following formula to cal-
culate the risk score for each osteosarcoma patient in 
the cohort: Risk score = n

k=1
(Coefficient(i) ∗ Expr(i)) , 

where Coefficient is the regression coefficient, Expr 
is the expression of ARHGAPs and n is the number of 
genes we included in the prognostic model. Using the 
same formula, we can determine the respective risk 
coefficients for the testing cohort, the entire internal 
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cohort, and the external GSE39055 cohort. We divided 
osteosarcoma patients in each cohort into high—and 
low-risk groups based on their risk scores. We did a sur-
vival analysis of the training cohort, the testing cohort, 
the entire internal cohort, and the external GSE39055 
cohort to assess survival differences between high- and 
low-risk groups in each cohort. To confirm the sensitiv-
ity, specificity, and accuracy of the risk-prognosis model, 
we simulated the time-dependent receiver operating 
characteristic (ROC) curve.

Construct a nomogram to verify and predict the prognosis 
of osteosarcoma patients
A nomogram was created by combining risk score and 
other two clinicopathological characteristics includ-
ing gender, and age in the TCGA cohort. We were then 
using the nomogram to predict 2-year, 3-year, and 5-year 
survival for osteosarcoma. Time-dependent ROC curves 
and calibration curves were simulated in the TCGA and 
GSE39055 datasets, respectively, to verify the efficacy 
of the nomogram in predicting the overall survival of 
patients with osteosarcoma.

Screening of differential genes between high‑ and low‑risk 
groups
We have divided patients in the TCGA entire cohort 
into high- and low-risk groups. We secured the differen-
tially expressed genes (DEGs) between the two groups, 
and the screening standard was | log2FC |> 0.5 and 
p-value < 0.05. Then we made a heatmap based on the 
expression of different differential genes in each sample. 
We generated the hub genes by simulating the PPI net-
work of differential genes between the two groups using 
The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) web-based database (string-interac-
tion.org).

Functional enrichment analysis between differentially 
expressed genes
Gene enrichment analysis can help us identify which 
biological functions and pathways are primarily respon-
sible for prognostic risk scores between the two groups. 
Next, we carried out the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis and Gene Ontol-
ogy (GO) enrichment analyses to analyze these differen-
tial genes [15–17]. To have a more intuitive and in-depth 
understanding of the mechanism of differential genes, we 
then conducted a GSEA enrichment analysis on the dif-
ferential genes between the high- and low-risk groups to 
determine whether they play a role in a biological process 

or pathway. We analyzed the standard genetic set "c2.
cp.kegg.v7.0.symbols.gmt" by using GSEA software.

Analysis of immune function between high‑ and low‑risk 
group
To understand whether the prognostic risk score, we 
constructed works in the tumor microenvironment 
(TME), we calculated the immunological scores, esti-
mate scores, stromal scores, and tumor purity in the 
immune microenvironment of osteosarcoma patients 
between the two risk groups. We used the CIBERSORT 
algorithm to analyze the expression data of each sam-
ple and calculate the relative abundance of 22 types of 
immune cells in them [18, 19], and then used R pack-
ets to visualize the abundance of immune cells between 
the two risk groups. We also analyzed the correlation 
between each immune infiltrating cell in the osteosar-
coma sample. Then we performed single-sample gene 
set enrichment analysis (ssGSEA) in the TCGA and 
GSE39055 datasets respectively and obtained the dif-
ferences in immune function scores and expression of 
22 kinds of infiltrated cells between high- and low-risk 
groups.

Cell line culture and transfection
We obtained the 143B and U2OS human osteosarcoma 
cell lines from the China Center for Type Culture Col-
lection (Wuhan, China). To culture these cell lines, we 
used RPMI-1640 medium (Invitrogen, USA) supple-
mented with 10% fetal bovine serum (FBS; Tian Hang, 
China) and 1% Penicillin–Streptomycin and incubated 
them at 37 °C with 5% CO2. The ARHGAP28 expression 
plasmids were purchased from Sangon Biotech Co., Ltd 
(Shanghai, China), and we cultured OS cells in 6-well 
and 96-well plates for subsequent experiments. We con-
ducted a series of assays, including western blot analy-
sis, CCK-8 assay, transwell invasion assay, and wound 
healing assay, using ARHGAP28-overexpressing cells.

Western blot analysis
We extracted total proteins from osteosarcoma cells in 
good growth condition using RIPA buffer (Servicebio 
Technology, Wuhan, China) and followed the instruc-
tions. The protein concentration was quantified using 
a BCA kit (Servicebio Technology, Wuhan, China). 
Next, the total protein was separated by electrophore-
sis and transferred to a membrane. After blocking and 
washing the membrane three times with tris-buffered 
saline with tween (TBST), we cut the membrane and 
incubated primary antibodies overnight at 4 ℃. Fol-
lowing that, the membrane was washed and incubated 
with secondary antibodies. Finally, we used the ECL kit 
(Thermo Fisher Scientific) for display.
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CCK‑8 assay
We inoculated osteosarcoma cells in good growth con-
dition on 96-well plates, with three multiple wells in 
each group. We replaced the complete medium, which 
contained 10 μL CCK-8 reagent, at 0, 24, 48, 72, 96, and 
120 h after planting the plates and incubated them for 
2 h each time. We then used a microplate reader (Bio-
Rad Laboratories, Inc.) to measure the absorbance of 
each well at OD 450  nm (optical density), which indi-
cates the viability of each cell line.

Transwell invasion assay
Transwell chambers (Corning, USA) and Matrigel (Corn-
ing, USA) were used for conducting invasion experi-
ments. The upper chamber was filled with the medium 
at a 1:6 ratio. After coagulation, 200 µL of medium con-
taining 1 ×  105 cells was added to the upper layer of each 
chamber, and 600µL of complete medium (containing 
10%FBS) was added to the lower layer of each chamber. 
After 48  h of cell culture, the cells were removed and 
fixed with 4% paraformaldehyde and stained with 1% 
crystal violet. Take pictures under an inverted micro-
scope (Olympus, Japan) and count the number of cells.

Wound healing assay
We inoculated osteosarcoma cell lines 143B and U2OS 
into 6-well plates with 2 mL complete medium added to 
each well and 3 multiple Wells in each group. When cell 
density reached 95%, a 100µL gun tip was used to mark 
the bottom of each well of the culture plate, and serum-
free medium was replaced, and the culture was contin-
ued after photographing with an inverted microscope 
(Olympus, Japan). After 24 and 48 h of culture, the area 
of intermediate scratches was observed with an inverted 
microscope and photographed. The wound area was 
measured using the ImageJ software and wound healing 
percentage was calculated to evaluate the migrate ability. 
The calculation formula is below: Migration rate = (area 
of 0 h—area of 24 h or 48 h) / (area of 0 h) × 100.

Animal studies
The Renmin Hospital of Wuhan University Ethics Com-
mittee authorized the experiments. Female BALB/c 
nude mice (4–6  weeks old) were obtained from Bei-
jing HFK Experiment Animal Center (Beijing, China) 
and randomly divided into two groups of six mice each 
(NC, ARHGAP28 OE). These mice were subcutaneously 
injected with stably transfected 143B osteosarcoma cells 
and kept in a standard environment with food and water. 
Tumor size and volume were monitored weekly. After 
four weeks, all mice were euthanized with 2% pento-
barbital sodium (150  mg/kg), and tumors were excised 
and weighed. The tumors were then either preserved in 

liquid nitrogen or fixed in 4% paraformaldehyde. The 
care of the laboratory animals and animal experiments 
were performed following the animal ethics guidelines 
and approved protocols of Renmin Hospital of Wuhan 
University.

Immunohistochemistry (IHC) staining
The tumor tissue was fixed with 4% paraformaldehyde for 
24 h and cut into 4-µm slices, which were then blocked 
with 1% bovine serum albumin at room temperature 
for 1 h. After that, the slices were incubated with corre-
sponding primary antibodies at 4 ℃ overnight, followed 
by 1-h incubation with secondary antibodies at room 
temperature. Finally, chromogenic detection was per-
formed using a DAB kit (CST, USA) and observed under 
an inverted microscope (Olympus).

Statistical analysis
All our data processing and picture drawing was car-
ried out by using R software (version 4.2.1). We used the 
log-rank test for the Kaplan–Meier survival difference 
analysis of the high—and low-risk groups. We used the 
Wilcoxon rank-sum test and the two-tailed Student’s 
t-test to compare the high- and low-risk groups. Multi-
variate Cox regression analysis was used to identify fac-
tors that could independently predict the prognosis of 
patients with osteosarcoma. We defined p < 0.05 as a sig-
nificant difference. “*” is equal to “p < 0.05”, “**” is equal to 
“p < 0.01” and “***” is equal to “p < 0.001”.

Results
Characterization of ARHGAP family genes
We included 35 genes in the ARHGAP family. We ana-
lyzed the expression patterns of these genes using the 
STRING database (Fig. 1A). Hub gene analysis suggested 
that ARHGAP15, ARHGAP35, ARHGAP28, ARHGAP19, 
ARHGAP21, ARHGAP23, ARHGAP40, ARHGAP10, 
ARHGAP26, ARHGAP30, and ARHGAP9 were identified 
as hub genes, with the largest interaction network among 
these proteins (Fig. 1B). We used univariate Cox regres-
sion analysis on datasets from the TCGA database to 
identify prognosis-related genes of the ARHGAP family 
in osteosarcoma. Nine ARHGAP genes with p-values less 
than 0.05, as determined by univariate Cox regression 
analysis, were identified as ARHGAP family prognosis-
related genes. The expression profiles of ARHGAP family 
prognosis-related genes (Fig.  1C). We show an associa-
tion between prognostic genes in the ARHGAP family 
(Fig. 1D).

Construction of a prognostic risk score model
To construct a prognostic signature based on ARH-
GAP family genes, we randomly classified the TCGA 



Page 5 of 22Liu et al. BMC Cancer         (2023) 23:1179  

OS cohort into training (n = 45) and testing (n = 43) 
cohorts. In the training cohort, we performed multi-
variate Cox and LASSO analysis to screen ARHGAP 
family genes (Fig.  2A–B). The ordinate in the Fig.  2A 
is Binomial Deviance. There are two dashed lines in 
Fig. 2A, the left is the line with the lowest error, and the 
right is the line with few features. Each curve in Fig. 2B 
represents the change trajectory of each independent 
variable coefficient, the upper abscissa is the number of 
non-zero coefficients in the model at this time. As the 
λ value changes, the later the coefficient is compressed 
to 0, the more important the variable. Five ARHGAP 
genes (ARHGAP1, ARHGAP10, ARHGAP25, ARH-
GAP28, and ARHGAP8) with the best lambda value 
were retained following LASSO analysis to construct a 
prognostic signature for OS. The risk score based on the 
prognosis signature was obtained using a linear com-
bination of the expression levels of the selected genes 
and their corresponding coefficients. The formula was 

as follows: Risk score = ARHGAP1 × (-0.05243) + ARH-
GAP10 × (-0.3089) + ARHGAP25 × (-1.09414) + ARH-
GAP28 × (-2.17281) + ARHGAP8 × (-0.26809). We then 
calculated the risk score for each patient in the train-
ing cohort, using the median risk score to classify 
patients into high- and low-risk categories. The prog-
nosis of OS specimens declined as risk scores rose, 
as seen by the risk score plot (Fig.  2C–D). The heat-
map shows the expression of ARHGAP1, ARHGAP10, 
ARHGAP25, ARHGAP28, and ARHGAP8 in high- and 
low-risk groups (Fig.  2E). The Kaplan–Meier survival 
analysis done to evaluate overall survival between the 
two patient groups revealed that patients in the high-
risk group had a significantly worse prognosis than 
those in the low-risk group (Fig.  2F). In addition, 
the ROC curve of the training cohort showed reli-
able results, with a 2-year Area Under Curve (AUC) of 
0.910, 3-year AUC of 0.901, and 5-year AUC of 0.934 
(Fig.  2G), indicating that ARHGAP-based prognostic 

Fig. 1 Identification of prognosis-related ARHGAP family genes in osteosarcoma. A A network of protein–protein interactions involving all ARHGAP 
genes. B The PPI network’s hub genes. C Heatmap illustrating the expression patterns of prognosis-related ARHGAP family genes in TCGA datasets. D 
Heatmap of the genes in the ARHGAP family that are associated with prognosis
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features have good accuracy and specificity in predict-
ing overall survival of osteosarcoma patients.

Validation of a five‑gene prognostic model 
from the ARHGAP gene family in an internal cohort
We validated prognostic risk profiles based on ARH-
GAP in the testing cohort and the entire cohort to test 
the accuracy and repeatability of signatures. The above 
algorithm was used to determine the risk score of the 
patients, and the median risk score of the training 
cohort was used to divide the patients into high- and 
low-risk groups. We showed the distribution of the risk 
scores for the testing cohort and the entire cohort in 

Fig.  3A-B. Patients with higher risk scores had poorer 
outcomes (Fig.  3C-D), suggesting that the prognos-
tic risk model we constructed can accurately pre-
dict overall survival in patients with OS. Based on the 
expression of five genes (ARHGAP1, ARHGAP10, ARH-
GAP25, ARHGAP28, ARHGAP8) in the above ARH-
GAP family in the testing cohort and the entire cohort, 
we constructed a heatmap (Fig. 3E-F). The expressions 
of ARHGAP10, ARHGAP25, and ARHGAP28 were 
considerably greater in the low-risk group than in the 
high-risk group (p < 0.05) (Fig. S1). The Kaplan–Meier 
survival analysis showed a significant difference in over-
all survival between the two risk groups (Fig.  3G-H), 

Fig. 2 Development of prognostic risk assessment model. A, B Multivariate Cox analysis with LASSO regression. C, D Risk scores and distribution 
of OS patients in the training cohort. E Heatmap of the prognostic model genes in the training cohorts. F Comparison of overall survival 
between the two risk groups in the training cohort. The results showed a significantly different overall survival in the high- and low-OS groups. G 
Time-dependent ROC curve analysis in the training cohort
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and the high-risk group had a shorter survival, which 
further verified that the model was constructed could 
well predict the survival of patients. In addition, the 
ROC curve of the testing cohort and the entire cohort 
showed the same results, with a 2-year AUC of 0.794, 
3-year AUC of 0.727, and 5-year AUC of 0.726 in the 
testing cohort (Fig. 3I), and 2-year AUC of 0.858, 3-year 
AUC of 0.814 and 5-year AUC of 0.843 in the testing 
cohort (Fig. 3J). This is consistent with our findings in 
the training cohort.

Validation of a five‑gene prognostic model 
from the ARHGAP gene family in an external cohort
We repeated this process with the GSE39055 (n = 37) 
dataset for external validation to test the accuracy and 
repeatability of the signature based on the five genes in 
the ARHGAP family. Following the previous steps, we 
divided the patients in GSE39055 into high- and low-
risk groups (Fig.  4A). Similarly, we can intuitively see 
the distribution of survival time and survival status of 
patients in the GSE39055 dataset (Fig.  4B). The results 

Fig. 3 Validation of the ARHGAP gene signature in the testing cohort and the entire cohort. A, B The distribution of risk scores in the testing cohort 
and the entire cohort. C, D The distribution of survival time and status in the testing cohort and the entire cohort. E, F Heatmap of prognostic 
model genes in the testing cohort and entire cohort. G, H Comparison of the overall survival in the testing cohort and the entire cohort 
between the two risk groups. The results show a significantly different overall survival in high- and low-OS groups. I, J Time-dependent ROC curve 
analysis in the testing cohort and the entire cohort
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showed that high-risk patients had a significantly higher 
mortality rate than low-risk patients. We mapped the 
expression heatmap of the five genes of the ARHGAP 
family used to construct the prognostic risk score in 
the GSE39055 dataset (Fig.  4C). Patients in the high-
risk group had a lower rate of survival than those in the 
low-risk group, according to the Kaplan–Meier analysis 
(Fig.  4D), confirming the accuracy and universality of 
our model construction. By calculating the AUC of the 
GSE39055 dataset, we could further evaluate the predic-
tion accuracy of the prognosis model we constructed, 
with a 2-year AUC of 0.840, 3-year AUC of 0.773, and 
5-year AUC of 0.771 in the GSE39055 dataset (Fig. 4E). 
The results of the analysis in the external cohort are 
consistent with the above results, indicating that a 
risk-prognosis model based on the ARHGAP family is 

accurate in predicting the survival time and survival out-
come of patients with osteosarcoma.

Validate the risk prognosis model based on clinical 
information
We grouped patients in the TCGA entire cohort accord-
ing to clinical traits such as gender (male (n = 49), female 
(n = 37)) and age (< = 14 (n = 39), > 14 (n = 47)), and then 
whether risk scores were equally applicable when dis-
cussed to different subgroups. We compared the over-
all survival of patients in each subgroup of the two data 
sets (Fig.  5A-B), and the results showed that in each 
subgroup, the survival of patients in the low-risk group 
was always longer than that in the high-risk group, and 
in the TCGA dataset, the difference in the risk score 
among the subgroups was significant (P < 0.05).

Fig. 4 Validation of the ARHGAP gene signature in the GSE39055 cohort. A The profile of risk score in the GSE39055 cohort. B The distribution 
of survival time and status in the GSE39055 cohort. C Heatmap of prognostic model genes in GSE39055 cohort. D Comparison of the overall 
survival in the GSE39055 cohort between the two risk groups. The results show a significantly different overall survival in high- and low-OS groups. E 
Time-dependent ROC curve analysis in the GSE39055 cohort



Page 9 of 22Liu et al. BMC Cancer         (2023) 23:1179  

Construction and validation of a Nomogram of a risk 
prognosis model based on the ARHGAP family
To make our Nomogram predictions more accurate, we 
incorporated clinical factors such as patient gender and 
age into the prognostic features used to construct them 
(Fig. 6A). To visualize the function of the Nomogram, we 
simulated a calibration curve for the 2-year, 3-year, and 

5-year overall survival of patients in the TCGA entire 
cohort (Fig. 6B) and external GSE39055 cohort (Fig. 6C). 
In this figure, the 45° diagonal represents the best predic-
tion ability. The more our calibration curve fits, the better 
the prediction function of our Nomogram is constructed. 
Calibration curves in the TCGA entire cohort and exter-
nal GSE39055 cohort showed that we constructed the 

Fig. 5 Kaplan–Meier survival curves in subgroup analyses based on various clinical variables in TCGA and GSE39055 cohort. A Subgroup survival 
analysis of risk model per age in TCGA cohort. B Subgroup survival analysis of risk model per gender in TCGA cohort. C Subgroup survival analysis 
of risk model per age in GSE39055 cohort. D Subgroup survival analysis of risk model per gender in GSE39055 cohort
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Nomogram could accurately assess the risk and progno-
sis of patients with clinical osteosarcoma.

DEGs, PPI network, GO, and KEGG enrichment analyses 
in two risk groups
We analyzed the differentially expressed genes between 
the high- and low-risk groups in the entire TCGA cohort 
and created a volcano map (Fig. 7A). We found 472 dif-
ferential genes between the two groups, of which 213 
genes were upregulated and 259 genes were downregu-
lated in the high-risk group. We created a heatmap of the 
expression of these differential genes in each sample and 
used it for subsequent analysis (Fig.  7B). We then used 

the STRING online database to analyze the expression 
patterns of the differential genes between the two risk 
groups (Fig. 7C). According to the PPI network diagram, 
CD8A, VEGFA, CCR5, FCGR3A, MYC, VCAM1, CD163, 
CD2, and PTGS2 were considered hub genes (Fig.  7D), 
and their differentially expressed proteins had the great-
est interaction correlation. Hub gene analysis showed 
that CD8A, VEGFA, CCR5, and FCGR3A were the top 
four genes in this PPI network. Then we performed func-
tional analyses of these differential genes, including GO 
and KEGG analyses. We showed the GO enrichment 
analysis results in Fig. 7E. Biological process (BP) analy-
sis mainly included the external encapsulating structure 

Fig. 6 A nomogram was conducted to predict the overall survival of OS patients in the GSE39055 and TCGA cohorts. A Nomogram for estimating 
overall survival in OS patients. B, C The calibration curves for 2-, 3-, and 5-year overall survival prediction in TCGA entire cohort and external 
GSE39055 cohort. The nomogram-predicted survival curves were close to the 45-degree diagonal, showing that our nomogram can accurately 
predict the prognosis of clinical osteosarcoma patients
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organization and cell chemotaxis. Cellular component 
(CC) analysis revealed the external side of the plasma 
membrane. Molecular function (MF) analysis mainly 
included antigen binding and receptor-ligand activ-
ity. Furthermore, KEGG enrichment analysis revealed 
some potential enrichment signaling pathways for these 
differentially expressed genes, including Viral protein 
interaction with cytokine and cytokine receptors, Pro-
tein digestion and absorption, Mineral absorption, and 
Hematopoietic cell lineage (Fig.  7F). The functional 
enrichment results of different genes in the two risk 
groups further confirmed that immune factors may play 
an indispensable role in osteosarcoma progression.

GSEA
To more intuitively observe the information related to 
different signaling pathways between the two risk groups, 
we conducted a GSEA analysis and showed the top 14 
functions and signaling pathways (Fig. 8A). These enrich-
ment pathways revealed a variety of immune-related 
signaling pathways as compared to the high-risk group, 
including the B cell receptor signaling pathway (Fig. 8B), 
natural killer cell-mediated cytotoxicity (Fig.  8C), T cell 
receptor signaling pathway (Fig.  8D), and antigen pro-
cessing and presentation, etc. (Fig.  8E), which were 
upregulated in the low-risk group. These enrichment 
results indicate that the high-risk group had a suppressed 

Fig. 7 Gene differential analysis and functional enrichment analysis. A The volcano plot revealed differences in gene expression 
between high- and low-risk groups. B A heatmap was conducted using differently expressed genes in the two groups. C PPI network of those 
genes in the two groups. D The PPI network’s hub genes. E, F GO and KEGG enrichment analysis
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Fig. 8 GSEA analysis of the two risk groups. A The top 14 changed pathways were conducted utilizing the KEGG gene set. B‑E Select several 
immune-related pathways from the GSEA analysis. B B cell receptor signaling pathway. C Natural killer cell-mediated cytotoxicity. D T cell receptor 
signaling pathway. E Antigen processing and presentation



Page 13 of 22Liu et al. BMC Cancer         (2023) 23:1179  

immune microenvironment, suggesting that immune 
factors play an important role in the development of 
osteosarcoma.

Differences in immune cells and immune 
microenvironment between high—and low‑risk groups 
in the TCGA entire cohort
We used the estimation algorithm to calculate the immu-
nological scores, estimate scores, stromal scores, and 
tumor purity of each sample in the TCGA entire cohort 
to better study the guiding effect of the prognostic model 
constructed using five genes in the ARHGAP family on 
the immune microenvironment. The results showed that 
patients in the high-risk group had significantly lower 
immunological scores, estimate scores, stromal scores, 
and higher tumor purity (Fig.  9A-D). The relationship 
between immune, estimate, stromal scores and tumor 
purity, and patient survival has previously been investi-
gated [20]. Kaplan–Meier survival analysis revealed that 
patients with lower stromal, immune, and estimate scores 

had shorter overall survival, whereas patients with lower 
tumor purity had longer survival than those with higher 
tumor purity. This again proves that the immune status 
of the immune microenvironment of osteosarcoma can 
affect the occurrence and development of osteosarcoma, 
as well as the survival of patients with osteosarcoma. This 
suggests that the five genes of the ARHGAP family used 
to construct prognostic models affect the immune micro-
environment of patients and play a role in the immuno-
therapy of osteosarcoma. To investigate the relationship 
between ARHGAP gene expression and immune infiltra-
tion in osteosarcoma, we used CIBERSORT to calculate 
the proportion of immune cell infiltration in each sample 
in the TCGA dataset and compared it between the two 
risk groups. We then plotted a bar graph (Fig. 10A). The 
bar graph shows that Macrophages M2, Macrophages 
M0, and CD4 memory resting T cells are the most abun-
dant of these immune cells in the immune microenviron-
ment of all osteosarcoma samples. Moreover, the increase 
in Macrophages M2 is associated with the occurrence 

Fig. 9 Analysis of immune-related scores for the two groups. A‑D The stromal, immune, and estimate score, and tumor purity in high- and low-risk 
groups of the TCGA entire cohort. A The estimated score. B The Immune Score. C The Stromal Score. D The Tumor Purity
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and development of tumors and poor prognosis of 
patients, and our results confirm this view. We also inves-
tigated the relationship between individual immune cells 
in the immune microenvironment (Fig. 10B). The results 
showed a relatively large correlation between mac-
rophages and T cells, suggesting that there might be a 
mechanism of mutual regulation between the two types 
of cells in the immune microenvironment, which could 
provide ideas for subsequent analysis of the immune 
microenvironment and immunotherapy of osteosarcoma. 
We also performed an immune infiltration analysis and 
analyzed the differences in the expression of immune 
cells between the risk groups (Fig. 10C-D). According to 
the results of the study, the proportion of immune cells 
in the immunological microenvironment of the two risk 
groups of osteosarcoma patients was different.

ssGSEA
Based on ssGSEA, we analyzed differences in immune 
function scores and immune cell enrichment scores 
between the two groups. The low-risk group had much 
more Th2 cells and TIL cells than the high-risk group, 
which was consistent with the findings from the TCGA 

and GSE39055 cohorts (Fig.  11A-B). In addition, in the 
TCGA and GSE39055 cohorts, the low-risk group’s 
immune cell concentration was much higher than that of 
the high-risk group, especially DCs, Th1 cells, and Neu-
trophils, suggesting that the deficiency of immune func-
tion is an important factor leading to poor prognosis in 
patients with osteosarcoma. In the TCGA and GSE39055 
cohorts, higher CCR  and checkpoint scores in the low-
risk group than those in the high-risk group (Fig. 11C-D) 
mainly manifested the differences in immune function 
between the two risk groups.

Kaplan–Meier survival analysis of the five ARHGAP genes 
in the two risk groups
Finally, we performed a Kaplan–Meier curve survival 
analysis of the five genes that constructed the progno-
sis model in the TCGA cohort. Kaplan–Meier curves 
showed that high expression of ARHGAP1, ARHGAP25, 
and ARHGAP28 was associated with better progno-
sis, whereas expression of ARHGAP8 and ARHGAP10 
was not associated with patient prognosis (p < 0.05) 
(Fig. 12A-E).

Fig. 10 Comparison of immune cell infiltration in high- and low-risk groups in the TCGA cohort. A The relative quantity of immunocyte infiltration 
in the TCGA cohort. B The heatmap shows the correlation of immune infiltrating cells in the TCGA cohort. C, D The proportion of 22 immune cell 
types in high- and low-risk categories of the TCGA cohort
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Overexpression of ARHGAP28 inhibits the proliferation, 
migration, and invasion of human osteosarcoma cell lines
To verify the bioinformatics results we made earlier, we 
conducted a western blot experiment, CCK-8 experi-
ment, transwell experiment, and wound healing assay. 
We found that overexpression of ARHGAP28 inhibited 
the activity of human osteosarcoma cells. According to 
the results of western blot, we successfully overexpressed 
ARHGAP28, the protein content of ARHGAP28 was 
about 150% higher than that of the NC groups (Fig. 13A-
B), and then we used the overexpressed cell lines as 
well as the NC group for follow-up experiments. Com-
pared with the NC group, the cell viability of the ARH-
GAP28 overexpression group was significantly decreased 
(Fig. 13C). Results of wound healing experiments showed 
that ARHGAP28 inhibited the migration of human oste-
osarcoma cell lines (Fig.  13D-E). In addition, transwell 
results suggested that ARHGAP28 overexpression could 

also inhibit the invasion ability of osteosarcoma cell lines 
(Fig.  13F-G). The above results verified the correctness 
and accuracy of our previous analysis. High expression 
of ARHGAP28 in osteosarcoma cell lines can inhibit the 
proliferation, migration, and invasion of osteosarcoma, 
and we can judge the risk of OS patients based on this.

Increased expression of ARHGAP28 inhibits tumor growth in 
vivo
We injected stable ARHGAP28 overexpressing 143B 
osteosarcoma cells and NC cells into nude mice subcu-
taneously (Fig.  14D-E). Tumor volume was monitored 
every 7  days, and ARHGAP28 overexpression resulted 
in smaller tumors compared to NC (Fig. 14A-C). More-
over, IHC results suggested a lower Ki-67 level in the 
ARHGAP28 overexpression group than in the NC group 
(Fig.  14F-G). In conclusion, our results indicate that 

Fig. 11 Comparison of immune cell infiltration and immune function based on ssGSEA. A, B Box plots exhibiting enrichment scores 
of immunocytes between the two subgroups in TCGA and GSE39055 cohorts. C, D Box plots exhibiting enrichment scores of the related immune 
function between the two subgroups in TCGA and GSE39055 cohorts
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ARHGAP28 overexpression suppresses in  vivo tumor 
growth.

Discussion
Osteosarcoma is the most common primary malignant 
bone tumor in orthopedics, with two peaks in adoles-
cents and the elderly. The peak age of adolescent-onset is 
about 15  years old, mainly primary OS, and the second 
peak age is about 75 years old, mainly secondary OS [21]. 

OS mainly occurs in the epiphyseal region of the long 
diaphysis, where blood transport is abundant [1]. In the 
early stage of osteosarcoma, blood transport to the lung 
is most common and develops rapidly, which greatly 
reduces the survival of patients with osteosarcoma [22]. 
With the increase and improvement of treatment meth-
ods, the survival rate of patients with osteosarcoma 
has been greatly improved, but how to further improve 
the prognosis of patients is a major clinical challenge, 

Fig. 12 Kaplan–Meier survival analysis of the five ARHGAP genes in high- and low-risk groups. A Kaplan–Meier survival analysis of ARHGAP1. B 
Kaplan–Meier survival analysis of ARHGAP8. C Kaplan–Meier survival analysis of ARHGAP10. D Kaplan–Meier survival analysis of ARHGAP25. E Kaplan–
Meier survival analysis of ARHGAP28 
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especially for patients with pulmonary metastatic osteo-
sarcoma, which occurs earlier and has a worse prognosis 
[23]. Hence, on the one hand, we should be looking for 
more effective treatments; on the other hand, we should 
also develop some new ideas. We can use high-through-
put sequencing technology and existing sequencing 
results to screen genes, and then predict the prognosis 
of patients so that we can carry out more personalized 
treatment for patients.

For nearly 20  years, we have considered the Rho fam-
ily as an anti-tumor target, especially for RAS-driven 
tumors. Rho family proteins transition between active 

GTP-binding states and inactive GDP-binding states, 
which are regulated by the ARHGAP family and can 
increase the intrinsic GTPase activity of Rho GTPase to 
convert it to inactive GDP-binding states [11]. Nowa-
days, it is believed that most ARHGAP genes have mul-
tiple functional domains except the RHOGAP functional 
domain, which integrates signal factors in many signaling 
pathways and may mediate the interaction between the 
Rho family and other signaling pathways. However, the 
number of ARHGAP proteins is much larger than that 
of their substrate Rho proteins, and ARHGAP proteins 
have diverse biological functions. Therefore, the deep 

Fig. 13 Overexpress ARHGAP28 inhibits the proliferation, migration, and invasion of human OS cell lines. A, B The protein content of ARHGAP28. 
C CCK-8 assay was applied to measure the viability of osteosarcoma cells in the ARHGAP28 overexpression group, and NC group. D Photos 
of 0 h and 36 h wound healing assay. E Statistical analysis of migration rate. F‑G The transwell assay was applied to measure the invasion ability 
of osteosarcoma cells in the two groups. Scale bar: 400 µm. All data are from three independent experiments and are shown as mean ± SD. “**” 
represented “p < 0.01”, “***” represented “p < 0.001”, “****” represented “p < 0.0001”
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regulatory mechanism of ARHGAP on the Rho family 
is still far from clear. The ARHGAP family is involved in 
many biological activities, such as exocytosis, endocytosis, 
cytokinesis, cell differentiation, cell migration, neuronal 
morphogenesis, angiogenesis, and tumor suppression 
[11]. In recent years, the relationship between ARHGAP 
family genes and tumor development, invasion, and 
metastasis has attracted more and more attention [24]. 
In this study, we screened the ARHGAP family genes and 
finally screened 5 genes to construct a risk model for eval-
uating the prognosis of patients with osteosarcoma, and 
to provide certain ideas and help for clinical treatment.

In this study, we first collected gene expression infor-
mation and clinical information of patients with osteo-
sarcoma in the TARGET cohort and the GSE39055 
cohort and then removed patients without follow-up 
information and survival status to prepare the data for 
our next analysis. For better analysis, we then obtained 

the genetic information of the ARHGAP family from the 
online website, and uniformly named it in the two data-
sets. We then performed univariate COX analysis in the 
TCGA cohort and screened out 9 genes associated with 
the prognosis of patients with osteosarcoma. For sub-
sequent analysis and verification, we randomly divided 
patients in the TCGA cohort into two groups at a ratio 
of 1: 1, namely the training cohort and the testing cohort. 
We performed LASSO regression analysis and multivari-
ate COX regression analysis on the patients in the training 
cohort and finally obtained five genes: ARHGAP1, ARH-
GAP8, ARHGAP10, ARHGAP25, and ARHGAP28, and 
then we constructed a risk prediction model for patients 
with osteosarcoma based on these five genes. We calcu-
lated each patient’s risk score and divided them into high- 
and low-risk groups, and then analyzed the relationship 
between survival status and survival time and risk score in 
the training cohort, testing cohort, entire internal cohort, 

Fig. 14 Increased expression of ARHGAP28 inhibits tumor growth in vivo. A Tumor growth was measured in vivo by monitoring its volume every 
7 days. B The xenograft tumor size in nude mice was compared. C The weight of tumors was compared between the two groups. D‑E The xenograft 
tumor was subjected to western blot and quantitative analyses of ARHGAP28. F, G Immunohistochemical analysis of ARHGAP28 and Ki-67 in tumors 
excised from two groups. Scale bar: 200 µm. All data are from three independent experiments and are shown as mean ± SD. “***” represented 
“p < 0.001”, “****” represented “p < 0.0001”



Page 19 of 22Liu et al. BMC Cancer         (2023) 23:1179  

and GSE39055 cohort respectively, finally, Kaplan–Meier 
survival analysis and ROC curve were performed for veri-
fication. The results show that the high-risk group had 
a lower survival time than the low-risk group. This sug-
gests that our risk model can well predict the prognosis of 
patients with osteosarcoma. We can tell that these genes 
are protective factors for patients with osteosarcoma. 
Among them, ARHGAP1, ARHGAP8, and ARHGAP10 
play different roles in different tumors or different path-
ways. ARHGAP1 was the first gene discovered in this 
family, and its content in cervical cancer cells and Ewing 
Sarcoma (ES) cells was lower than that in the matching 
normal tissue, which proved that it could inhibit the cell 
vitality, cell migration, and invasion of these two cancer 
cells in a time-dependent manner to a certain extent [25, 
26]. However, in breast cancer (BC), ARHGAP1 is a car-
cinogenic factor, and its expression level in BC samples 
is higher than that in normal tissues, its overexpression 
can promote the proliferation and invasion of BC cells 
while inhibiting its expression can significantly inhibit 
the growth of tumors [27–29]. ARHGAP1 may also regu-
late the bone microenvironment by inhibiting the RhoA/
ROCK pathway, which stimulates osteogenic differentia-
tion of mesenchymal stem cells [30]. However, the role of 
ARHGAP1 in osteosarcoma has not been reported, which 
can be further studied in the future. Similarly, ARHGAP8 
is overexpressed in most colorectal cancers compared to 
normal tissues, but we observe relatively low expression 
in Bladder cancer, suggesting that ARHGAP8 may play 
different roles in different tumors, but its role in osteo-
sarcoma is unknown [31, 32]. ARHGAP10 is well known 
as a tumor suppressor and has been demonstrated in a 
variety of cancers, such as Uterine leiomyomas (ULs), 
prostate cancer, ovarian cancer (OC), lung cancer, colon 
carcinoma (CRC) and BC [33–38]. Cdc42, a key protein 
that cancer cells need to metastasize, helps them spread 
through the bloodstream to other parts of the body. In 
ovarian cancer, RHGAP10 inhibits Cdc42 activity in cells, 
in turn, it can inhibit the growth and invasion of tumors, 
thus playing a role in cancer suppression [37]. However, 
ARHGAP10 manifested as an oncogene in gastric tumors 
and non-small cell lung cancer (NSCLC) [39–41]. The 
expression level of ARHGAP10 in NSCLC is higher than 
that in normal tissues. When its expression is decreased, 
the expression of GLUT1 is also decreased, which inhibits 
the glucose metabolism process of cells and thus the pro-
gression of cancer [40]. Therefore, the role of ARHGAP10 
in different tumors may be related to its participation 
in different pathways or different regulatory molecules 
upstream and downstream of the same pathway. How-
ever, its specific role in osteosarcoma is still unclear, so 
we can conduct further research. ARHGAP25 has also 
been widely studied as a tumor suppressor gene in cancer, 

including Pancreatic adenocarcinoma (PAAD), NSCLC, 
Lung cancer, and CRC [14, 42–46]. Epithelial-mesenchy-
mal transition (EMT) is a common mechanism of tumor 
metastasis, which can reduce the adhesion between cells 
so that tumor cells can be separated from the original 
site to metastasize [47]. The Wnt/β-catenin pathway can 
increase the viability and invasion ability of cancer cells 
by activating EMT [48]. However, ARHGAP25 exerts 
its anticancer effects by negatively regulating EMT and 
Wnt/β-catenin pathways [44]. Of course, ARHGAP25 may 
regulate different pathways in different tumors to play a 
role in cancer inhibition. However, whether ARHGAP25 
can inhibit the metastasis of osteosarcoma has not been 
studied, and it can become the object of our subsequent 
research [49]. Finally, the expression level of ARHGAP28 
in osteosarcoma is significantly related to the prognosis 
and survival time of patients, but it has not been stud-
ied in osteosarcoma. Therefore, we speculate that ARH-
GAP28 is a tumor suppressor gene for osteosarcoma, and 
we plan to further study it in the next step.

We then constructed a nomogram based on the TCGA 
cohort to incorporate age, gender, and risk scores and 
simulated 2-, 3-, and 5-year time-dependent AUC curves 
for osteosarcoma patients in the TCGA and GSE39055 
cohorts, respectively. The results showed that the risk 
score was an independent predictor of the prognosis of 
patients with osteosarcoma, and the simulation results 
of the AUC curve were good, which could better prove 
the accuracy and applicability of the model. To find out 
which functional pathway the molecular differences 
between the high- and low-risk groups are enriched in, 
to better screen the differential genes that can be used as 
targets for clinical diagnosis and treatment, we screened 
the differential genes between the high- and low-risk 
groups and conducted functional enrichment analy-
sis. KEGG results show that it mainly enriched them in 
Protein digestion and absorption and Cytokine-cytokine 
receptor interaction, which also confirms our above anal-
ysis. They interact with different upstream and down-
stream molecules in different tumors to show different 
functions, and the process is very complex [11].

Nowadays, immunotherapy has been emphasized in the 
treatment of patients with osteosarcoma [50]. Therefore, 
we further studied whether they relate the risk model to the 
immune microenvironment, which can provide some ideas 
for the immunotherapy of osteosarcoma. GSEA analysis 
showed that the low-risk group had higher enrichment of 
immune function than the high-risk group [51], such as the 
B cell receptor signaling pathway, natural killer cell-medi-
ated cytotoxicity, T cell receptor signaling pathway, and 
antigen processing and presentation. They have reported 
that Macrophages M2 can promote the generation of 
tumors [52–54]. In our study, the content of Macrophages 
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M2 is relatively high in osteosarcoma. ssGSEA showed 
that the content of immune cells in the high-risk group 
was much lower than that in the low-risk group, indicating 
that the occurrence and development of osteosarcoma are 
closely related to the immune environment, which will pro-
vide new ideas for us to find new therapeutic targets and 
methods for osteosarcoma in the future.

Since the role of ARHGAP28 in osteosarcoma remains 
unclear, we confirmed the role of ARHGAP28 through 
in  vitro and in  vivo biological experiments. Overexpres-
sion of ARHGAP28 had significant effects on the viability, 
proliferation, migration, and invasion of OS cells. We found 
that overexpression of ARHGAP28 can inhibit the prolifer-
ation, migration, and invasion of osteosarcoma cells. In vivo 
experiments have shown that overexpression of ARH-
GAP28 can inhibit tumor growth in mice, and IHC has 
shown that the reduced level of Ki-67 in the ARHGAP28 
overexpression group can inhibit the proliferation of tumor 
cells. In summary, ARHGAP28 may play a positive role in 
inhibiting the growth and progression of osteosarcoma.

However, inevitably, our research also has some short-
comings. First, we only used an external GSE39055 
cohort for verification, which may have some discrepan-
cies in some data sets. Second, the expression levels of 
ARHGAP1, ARHGAP8, and ARHGAP10 in our model 
showed the same trend with the prognosis and survival 
time of patients with osteosarcoma, but there was no 
significant correlation. Whether the model constructed 
by combining these five genes is also applicable to other 
cohorts needs further verification. Third, we lack clini-
cal samples to verify the accuracy of the model we con-
structed, so we can only test our hypothesis with cell 
experiments. Finally, we did not investigate ARHGAP28 
further, such as its relationship to human immunity.

The study categorized OS invalids into risk groups 
based on the ARHGAP family. The high-OS group dis-
played abnormal immune function, such as the B cell 
receptor signaling pathway, natural killer cell-mediated 
cytotoxicity, T cell receptor signaling pathway, and anti-
gen processing and presentation. The results show that 
ARHGAP family genes are likely to play a role in the 
immune function of the human body, inhibiting the 
occurrence and progression of tumors, and these gene 
targets may also be promising personalized drug targets.

In summary, we constructed a five-gene (ARHGAP1, 
ARHGAP8, ARHGAP10, ARHGAP25, and ARHGAP28) 
risk prognostic model based on the ARHGAP family. It 
can predict the prognosis of patients with osteosarcoma, 
and verify its accuracy and universality. Finally, we also 
analyzed the relationship between it and the immune sys-
tem of patients, which provided ideas and directions for 
our follow-up research and the management and treat-
ment of clinical patients.
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